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Abstract
Energy consumption is becoming a crucial issue in the design of

digital systems especially when considering portable and embedded sys-
tems due to their operational dependency on batteries. Since the proces-
sor is a major source of energy consumption, energy-aware scheduling
strategies that decrease the CPU speed when possible enable to achieve
significant energy savings.

In this paper, we study the low-power scheduling under the Round-
Robin policy which is widely available since it is part of the Posix1003.1b
standard. An algorithm that computes the minimum processor speed for
scheduling a job set under Round-Robin is provided. It relies on an ef-
ficient feasibility test that is also a contribution of this paper. Finally,
we present mechanisms that are necessary for ensuring schedulability
at run-time and that reduce consumption when jobs do not require their
worst-case execution time.

A counter-intuitive result shown in this study is that a job set might
not be feasible at maximum frequency while being feasible with a lower
frequency. This implies that even without interests in energy saving,
lower frequencies have to be considered for feasibility.
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1 Introduction

Context of the paper. With the advent of embedded and portable systems,
energy consumption has become a crucial issue in systems design. All bat-
tery operated systems, such as PDAs, laptops and mobile phones or even im-
plantable biomedical systems would benefit from a better energy efficiency.

Focusing on the processor, new low level techniques explore the fact that
a linear voltage and frequency decrease results in, at least, a quadratic energy
consumption reduction[5]. Without any timing constraints, the best solution
with regard to (w.r.t.) consumption is to execute the application at the low-
est available processor speed which, in general, will not enable the system to
meet the required performance level. Setting deadlines is a way to ensure this
minimum performance level even on non-real time systems and studying the
scheduling with feasibility concern is useful even outside the traditional con-
text of real-time computing.

Until recently the Round-Robin (RR) policy has not been seriously consid-
ered for being used in the field of real-time computing. Traditionally, the RR
policy was considered useful for low priority processes performing some back-
ground computation tasks "when nothing more important is running" (see[1]
pp 163). However it has been shown in[12] that RR should not be ruled out a
priori because there are cases where this policy is an efficient choice in terms
of schedulability as well as for fine tuning the system (e.g. minimizing the
end-of-execution jitter for instance in automatic control applications). In addi-
tion, RR is part of the Posix1003.1b standard[7] and thus it is implemented in
the wide majority of real-time operating systems. The problem addressed here
is to minimize the energy consumption of a set of jobs scheduled under the RR
policy while meeting the deadline constraints.

Existing work. The two most common techniques for reducing power in
processors are Dynamic Power Management (DPM) and Voltage Scaling (VS).
DPM compatible processors must possess at least one sleep mode and the
whole problem is to decide when to shut down the CPU if it is inactive. The
principle of Voltage Scaling is to change the voltage supply and thus the clock
frequency of the processor1. Two types of voltage scaling can be distinguished.
In Static Voltage Scaling (SVS) a single voltage is applied to the system. The
voltage is set off-line, for instance through the BIOS of the computer, and it

1For each voltage supply there is an optimal frequency which is the highest frequency
achievable with the voltage value. In the rest of the document, we will use interchangeably
either voltage, frequency or speed of the processor.



will not be modified during the system execution. With Dynamic Voltage Scal-
ing (DVS) it is possible to vary the clock frequency at run-time. It is in general
the most effective technique even with the speed switching overheads, but it
cannot be used on most systems since the processor and operating systems
must be compliant with this technique.

Many papers have proposed power conscious versions of widely known
real-time scheduling policies such as Fixed-Priority Preemptive (FPP) or Ear-
liest Deadline First (EDF). Regarding FPP, Shin and Choi describe in[15] a
run-time mechanism that takes advantage of slack time to reduce energy. When
there is just one active task, frequency is lowered in such a way as to finish the
task at the arrival date of the next task. In the case where there is no active
tasks, the processor may be shutted down. An off-line algorithm is presented
in [16], where the authors propose an algorithm to compute the minimum con-
stant speed applicable to a periodic task set under FPP. In[5], Gruian takes a
step further and describes how to obtain the minimum constant speed for each
task of the task set.

Quan and Hu in[13] describe an optimal algorithm for voltage scheduling
a set of jobs with FPP. Their analysis is based on an EDF schedule transforma-
tion but it is restricted to task sets with certain characteristics. More recently,
[19] proves that computing the voltage schedule of a set of tasks under FPP is
NP-Hard and they present an approximation scheme that runs in polynomial
time and whose precision w.r.t. the optimal solution can be chosen arbitrarily
small.

When the scheduling is made on top of EDF, Yao et al. in[18] pro-
posed an off-line algorithm for finding the optimal voltage schedule of a set
of independent tasks. Their algorithm works by identifying the time inter-
val, termed the critical interval, over which the highest processing speed is
required. The lowest admissible frequency is computed for this interval, the
tasks belonging to this interval (i.e. arrival date and deadline inside the in-
terval) are then removed and a sub-problem is constructed with the remaining
tasks. The complexity of an implementation isΘ

(
n3
)
. Recently, this schedul-

ing problem has been solved by transforming it in a shortest path problem[3;
4; 2]. In this way, the optimal off-line voltage schedule can be determined with
a lower complexity, decreasing it up toΘ(nlogn) when tasks are FIFO. The
case where the number of speeds is finite is also considered and an algorithm
minimizing the number of speed changes is provided. For the non-preemptive
case, still under EDF, Honget al present an heuristic[6] based on the work of
Yaoet al.



Goal of the study. The objective is to provide an algorithm for finding the
minimal processor frequency that still permits a job set with real-time con-
straints to be successfully scheduled under Round-Robin. The algorithm is
based on a schedulability analysis of a job set under RR which is another con-
tribution of the paper. On-line mechanisms for further reducing the energy
consumption and ensuring the feasibility when jobs do not require their Worst-
Case Execution Time (WCET) are also proposed. Finally, a first solution to
the problem when the frequency might be changed on-line is given.

Organization of the paper. The model of the system is described in section
2 which includes the power and task model as well as a formal definition of the
Round-Robin policy. Section 3 will be devoted to the schedulability analysis of
a set of jobs under RR. In section 4 one focus on the energy reduction problem,
featuring off- and on-line proposals. The conclusion of this study is presented
in section 5.

2 Model of the system

In this section we introduce the task and the power model used and a formal
definition of the RR scheduling policy is given.

2.1 Power model

We are considering an uniprocessor system equipped with two power reduction
mechanisms that are DPM and VS. Regarding DPM, one assume two modes:
active and sleep. For VS, we are assuming a finite number of processor fre-
quencies. Since a continuous number of processor speeds is not feasible with
today’s technology[5], this assumption is very reasonable.

As power consumption differences among clock cycles are statistically in-
significant (refer to[14]), we assume that all clock cycles require the same
amount of energy. The term processor speed is the relative value of the clock
frequencyf , compared to the maximum clock frequencyfmax:

sf =
f

fmax
.

For example, running at half of the maximum speed(Sf = 0.5) will take twice
the time to complete the job. The setSF is the set of all speeds available for
the processor.



2.2 Task model

A job is a sequential process that takes a certain time to be executed depending
on the amount of clock cycles needed and on the processor frequency. The
system under study consists in a set ofN independent jobs,J = {J1,J2, . . . ,JN}
that do not recur over time. Nevertheless, as it is classicaly done for EDF[18;
3] and FPP[19], it is possible to accommodate the system to periodic tasks
by considering all instances until theLCM of the tasks period (or 2·LCM plus
the maximum of the response times when the first instance of all tasks are are
not released simultaneously). JobJi is characterized by a tuple of the form
〈Ai ,Ci ,ψi ,Di〉. Let us define these timing parameters for a jobJi :

• Ai : arrival time of the job. At timeAi , Ji is ready to execute.

• Ci : worst-case execution time at maximum frequency.

• ψi : it is the length of the quantum ofJi under RR.

• Di : deadline of jobJi . Hard real-time constraints are imposed in our
model thus missing deadlines cannot be tolerated as it can jeopardize
the system.

Associated with each jobJi , we denoteEi as the time instant on which job
Ji fully finishes its execution which clearly depends on the scheduling policy
used. The set{Ei} denotes the set of end of execution times while{Di} is the
set of deadlines of all jobsJi from setJ with 1≤ i ≤ N.

An RR-Cycle is defined as a time interval that starts by the execution of the
lowest index job that has pending work and finishes when all active jobs have
used the processor once for at most its quantum time. The sum of all quantums
of the jobs with index lower or equal toi is ϒi = ∑

j≤i

ψ j .

2.3 The Round-Robin policy

At each instant, a scheduling policy chooses among the set of all active in-
stances exactly one instance for being executed on the processing unit. The
idea presented in[10] is to define scheduling policies through a priority func-
tion Γk,n(t) that gives the priority of every instanceτk,n at any timet. The
resource allocation rule is theHighest Priority First Rulewhich means that the
scheduler will always select the pending job with the highest priority for being
executed.



The functionΓk,n(t) takes its values from a totally ordered set which can
been chosen as the set of multidimensionalR-valued vectorsP = {(p1, . . . , pn)
∈ Rn | n ∈ N}. As no natural order exists for vectors, a lexicographic order
where theith component is taken as theith “letter” of a word consisting of real
numbers is defined. Vectors are compared component per component and the
convention is that smaller the numerical value, bigger the priority. For instance
(1,2,3)� (1,2,4) where� means “strictly bigger”.

A priority function for RR has been proposed in the context of recurrent
tasks[11], the priority function for jobs is basically a simplification of the one
proposed in[11]. The priority of a jobJk at timet is:

Γk(t) =

(⌊R t
Ak

∏k(x)dx

ψk

⌋
+P(Ak), k

)
(1)

where:

• P(t) is the number of RR-Cycles that have been completed fromUk until
t.

• Wk(t) is the amount work that remains to be done for jobJk at timet.

• W1...N(t) = ∑N
k=1Wk(t), the total amount of work to be done for the whole

job set.

• Uk = max{t ≤ Ak : W1...N(t) = 0}. This is the first date before or atAk

such that there is no pending work, it is usually termed the beginning of
an interference period in the literature.

• ∏k(t) =
{

1, if Jk uses the processor at timet
0, if Jk doesn’t uses the processor at timet

The first term of the first component of the vector, see equation (1), guarantees
that a job uses the processor during its whole quantum time if enough work
is pending which is the basic functioning scheme of RR. When a new job is
activated, the second elementP(Ak) prevent the job from monopolizing the
processor due to its absence in the previous RR-Cycles. The last component
of the vector ensure that two jobs will not share the same priority if their first
components are equal. Note that only the jobs that are active at timet (i.e.
Ji s.t.Ai ≤ t) can be chosen to be executed whatever their priority.



3 Feasibility under Round-Robin

In this section, we propose a feasibility analysis of a set of jobs under Round-
Robin which will be used for the frequency reduction strategy described in
section4. This schedulability analysis is not a feasibility test but an explicit
computation of response times that have to be compared to deadlines for as-
sessing feasibility.

3.1 Algorithmic details

The basic idea behind the algorithm is that it is possible to determine the work
done for each job during a certain time interval by counting the number of
elapsed RR-Cycles. A new “time period” starts whenever the length of the
RR-Cycle time changes due to the activation of at least a job. The RR-cycle
also changes when a job leaves the system but that will be taken into account
in a second step. For evaluating the work done for each job, and thus deriving
the execution end, one jumps from one time period to another. If at the end
of a time period the CPU time allocated to a job is greater or equal to its
WCET then the job has been finished during this time period and a closer
examination of the exact end of execution date has to be performed (using
function DetermineEnd labeled as algorithm2).

3.1.1 Determining time periods

The complete algorithm is divided into several parts. The first step is to de-
termine the ordered set of the successive “time periods” denoted asK. It is
defined in a recursive way :{

K1 = A1.

Ku = Ku−1 +
⌊

Au−Ku−1
ϒu−1

⌋
·ϒu−1 , if u > 1.

(2)

This set is constituted by all time instants at which a new RR-cycle starts with
at least one additional job. If we have anyKa = Kb, with 1 ≤ a ≤ N and
1≤ b≤ N, then one just includeKmin(a,b) into K. This is the case when there
is more than one new active job that arrives in the same RR-cycle. Consider
succ(Ki) as the element from setK that immediately succeedsKi . For the
elementKN, succ(KN) = ∞.

The execution thread is initiated in the RRFT function (see algorithm1) by
determining the first two elements of setK, which allows to compute the work
performed for all active jobs during the time period (a time period corresponds
to the interval time betweenKu and succ(Ku)). The setJ

′
is formed by all



jobs that have finished their execution during the current time period and their
precise end of execution dates are determined in function DetermineEnd (see
algorithm2). Then the job is updated in the following way (end of algorithm
1):

• if no job has finished in the current time period, the remaining work is
adjusted here. Otherwise the work is adjusted at step 3 of DetermineEnd
since it may happen that the RR-cycle finishes before the predicted date
and thus that job might not execute at all in the RR-cycle (see figure1
and explanations at the end of §3.1.2).

• the activation dates beforesucc(K1) are shifted tosucc(K1).

The “While” loop of algorithm1 is executed until all jobs are finished.
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Figure 1: Scheduling special cases after job termination. On figure b), the end
of execution ofJ3 induces a new time period and thusJ4,J5 andJ6 are only
executed in the first RR-cycle of the next time period. Figure a) shows the case
whereJ3 does not finish before the end of its quantum.



Algorithm 1 RRFT

Input: Job set J = {Ji(Ai ,Ci ,Ψi)} ordered by arrival dates.
Output: Index ordered vector of{Ei} from job set J

While J 6= /0
Determine K1and succ(K1) of K from job set J. /* Set K defined in section 3.1 */
For each Ji active between K1 and succ(K1) ,

If Wi(succ(K1)) = 0 Then /* Wi(succ(Ku)) =
(
Wi(Ku)− succ(Ku)−Ku

ϒi
·Ψi

)+
*/

Add J′i (Ai ,Ci ,Ψi) in J′

End If.
End For.
If J′ 6= /0 Then

Run DetermineEnd(J,J′,K1) /*Defined in Algorithm 2.*/
Else

Update remaining work of jobs at point succ(K1).
Update activation date: Ai ≤ succ(K1)⇒ Ai = succ(K1)

EndIf.
End While.

End.

3.1.2 Determining execution ends

The DetermineEnd function (refer to algorithm2) determines the ends of ex-
ecution during the current time period (whose beginning is denotedKu). The
function starts by determining the first job that finishes its execution between
Ku andsucc(Ku) (step 1 in algorithm2). Then, at step 2, one identifies the jobs
starting their execution in the next RR-cycle due to the first end of execution.
In this case, the beginning of the next RR is also the start of a new time period.
For instance, in figure1b), J4 will be executed in the next RR-cycle contrarily
to what was planned.

At step 3, an update of the remaining jobs characteristics is carried out.
The value of the smallest element of setA allows to distinguish between the
jobs that executed some work in the time period and the jobs that did not. In
the latter case, the only required modification will be the value of the job index
due to the termination of at least one higher priority job (the setFi in algorithm
2 is formed by all finished jobs with index lower thani).



Algorithm 2 DetermineEnd

Input : Job set J = {Ji(Ai ,Ci ,ψi)}, job set J′ =
{

J′i (A
′
i ,C

′
i ,ψ

′
i)
}

, value Ku from K set.
Output : Determines the end of execution time of job Jd (at least).

Step 1: Determine the first job that finishes execution in period Ku until succ(Ku).
/* m is the number of used quantums, d is the index of the job. */

(m,d) = min
{
(m′,d′) | m′ =

⌈
Wd′ (Ku)

ψd′

⌉
,∀d′ = 1...u−1,m′ ∈ N+,J′d ∈ J′

}
.

/* h is the index of the highest job active between Ku and succ(Ku). */
h = max{i | Ai ≤ succ(Ku) ∧ Wi(Ku) > 0, Ji ∈ J}
Ed = Ku +(m−1) ·ϒh +ϒd−1 +Wd(Ku)− (m−1) ·ψd.
Output Ed from job Jd .
If J\Jd = /0 Then

End .
End If

Step 2: Determine the start of the following RR-Cycle.
/* A is the index set of jobs that will start execution in the next RR-Cycle. */

Consider A =

{
i | Ai ≥ Ed + ∑

d<b<i

min{ψb,Wb(Ed)} ∧ i ≤ h, Ji ∈ J

}
.

Step 3: Update remaining jobs’ characteristics.
Consider Fi = {jobs finished in the currentK period with index inferior toi} .
Let p = min(A).
Each J′i that composes the job set J′ is re-defined in the following manner:

J′i =



W′
i =

{
Wi(Ku)−m·ψi , i < d
Wi(Ku)− (m−1) ·ψi −min{Wi(Ku),ψi} , i > d

ψ′
i = ψi

A′i =
{

max
{

E j | Tj ∈ Fp
}

, i < p
Ai , i ≥ p

i =
{

i, i < d
i− ]Fi , i > d

, for i = 1...p−1

Remove finished jobs from J′, with their ends of execution determined.
J′i = Ji+]Fp , for i = p...N.

J = J′.

Regarding the jobs that executed some work, besides the priority index
(same strategy as above), one has to modify the arrival time and the remaining
work. The computation for finding the exact remaining work for each job
at the end of the time period is then performed. One denotesd the index
of the job that finishes first its execution in the RR-cycle. Lower index jobs
use the same number of quantums (casei < d in the update ofW′

i ). Higher
index jobs, however, might not completely use their last quantum time (used
after the first job has finished), since they might end their execution before.
Thus, a comparison between their remaining time and their quantum size has
to be performed (casei > d in the update ofW′

i ). Then the arrival time of
each active job is shifted to the last end of execution date of the RR-cycle.
These new arrival dates will be used to compute the nextK set elements at the



beginning of the While loop in function RRFT (see algorithm1). At the end of
DetermineEnd, at least one job has finished its execution, the remaining jobs
attributes were updated (index, remaining execution time, arrival date) and the
set of jobsJ is updated accordingly.

3.2 Complexity and performance

During the algorithm at most 2N time periods are created: at mostN induced
by an arrival andN by an end of execution. For each time period, one needs to
update the job’s characteristics which is performed at most in 4N time in the
DetermineEnd algorithm. The overall complexity is polynomial inΘ(N2).

The correctness of the algorithm has been validated on several hundred
of experiments against a naive feasibility test that consists in simulating the
scheduling. Logically, our proposal proves to be faster than the naive imple-
mentation when the number of quantums used by each task becomes large
(greater than 15 with our implementation).

4 Energy reduction

In this section, we provide energy reduction techniques for scheduling under
RR on an uniprocessor system. We first consider the problem of finding a
single speed that ensures the feasibility during the whole lifetime of the system
based on the WCET. Then, since WCET of a job is hardly reached, we propose
on-line mechanisms for further reducing the consumption through DPM and
ensuring schedulability when jobs consume less than their WCET. Finally, one
describes a first non-optimal extension to the case where several speeds might
be used on-line.

4.1 Off-line analysis

The following observation allows to reduce the number of feasible processor
speeds which will narrow the search space for this voltage scheduling problem.

Observation 1. The single optimal processor speed under RR is higher or
equal to the maximum of the speeds ensuring feasibility under EDF.

Proof: A direct consequence of Theorem 1 in[18] is that the minimum speed
needed to ensure feasibility under EDF, denotedSed f, is the the utilization fac-
tor of the “critical interval” of the job set. The utilization factoru(t1, t2) of an



interval[t1, t2[ is intuitively the quantity of CPU needed to successfully sched-
ule under EDF jobs belonging to this interval (arrival and deadline inside the
interval). The critical interval is the time interval that maximizes the utilization
factor, thus:

Sed f = max
0≤t1≤t2

u(t1, t2) =
SJ(t1, t2)
t2− t1

(3)

whereSJ(t1, t2) is the workload of jobs of job setJ with deadlines lower than
t2 and arrival in[t1, t2[. Since EDF is optimal for the scheduling of independent
jobs (see[8] quoted in[17]) no other policy can successfully schedule the jobs
belonging to this interval at a lower speed than EDF. The speed under RR is
thus greater or equal toSed f. �

From now on, the only speeds considered are the ones that remain inside
the interval that begins inSed f (observation 1) and ends in max{SF}. Using
the feasibility test of section3, one can test for each speed ofSF′ = {si |si ∈
SF, Sed f ≤ si} the schedulability under RR. The WCETs taken for the jobs
have to be updated w.r.t the frequency for which the feasibility is tested; at
speedsf , the time needed for executing jobJi is Ci/sf whereCi is the WCET
at the maximum frequency (see paragraph2.2). Intuitively, we might envisage
that the search through the setSF′ could be directed using a classical binary
search procedure which would ensure at most log2#SF′ feasibility tests (cf.
[9]) but it is actually not possible as shown in Observation 2.

Observation 2. Under Round-Robin, feasibility is not monotonous in the
frequency of the CPU.

Proof: We will show on a counter example that a job set might be feasible
with speedS1 and not feasible withS2 > S1. Let us consider the job set defined
in table1. The scheduling of this job set is shown on figure2 at speed 1 (sub-
figure a) and speed 0.8 (sub-figure b). One sees that jobJ4 does not meet its
deadline constraint at speed 1 while it is schedulable at speed 0.8 . �

The search for the minimum acceptable speed has to start from speed
min{si |si ∈ SF, si ≥ Sed f} and it stops at max{SF}. In the worst-case, ev-
ery single speed inSF′ has to be tested to assess the feasibility of the system.
Observation 2 also implies that even without any interests in lowering energy
consumption, it might be useful to consider lower frequency for the schedula-
bility of the system.



Ai Ci C0.8
i ψi Di

J1 0 16 20 8 45

J2 5 16 20 8 50

J3 34 32 40 16 90

J4 52 4 5 5 64

Table 1: Characteristics of figure2 job set.Ci denotes the WCET of jobi at
speed 1 whileC0.8

i is the WCET at speed 0.8 .
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J4
J3
J2
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a)Processor speed = 1

b)Processor speed = 0.8

Figure 2: Feasibility under different processor speeds. In figure a), the job set
scheduled at maximum speed is not feasible. Surprisingly, lowering the speed
to 0.8 enable the job set to be feasible.

4.2 On-line mechanisms

At run-time, due to a better knowledge of the job set that is being scheduled,
some improvements can be made in order to further lower the energy gains
provided by off-line analysis. This better knowledge comes from the fact that
it is known when a job finishes its execution. Whenever the execution time is
shorter than the job’s WCET, the spare time left can be used for more energy
savings. However, feasibility has to be ensured.

Observation 3. The termination of a job earlier than its expected WCET
may provoke the unfeasibility of the job set under Round-Robin.

Intuitively, one could say that an earlier termination of a job will not pro-
voke other jobs to miss their deadline. However, under RR this doesn’t remain
true. As an example, refer to figure3. In figure3a), all jobs need their WCET
while in figure3b), job J2 terminates before its WCET (at time 32). Due to



the earlier termination of jobJ2, an extra RR-cycle is being scheduled before
the first quantum of jobJ5. And as seen in the example, it will turn the job set
unfeasible sinceJ5 finishes after its deadline.

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
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A5

D5
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Figure 3: Unfeasibility of the job set due to earlier completion ofJ2. Figure
b) corresponds to the case whereJ2 finishes earlier than planned, one sees that
job J5, arrived at time 53.5, does not meet its deadline set to 58.5 .

In the following, we propose two strategies for ensuring feasibility and
reducing consumption. Both require the knowledge of the estimated end of
execution date, denotedEi for job Ji , that is computed off-line when assessing
feasibility.

Quantum Sleep Method. The time allocated to the job and not used due to
the early completion is simply spent on waiting. Two solutions are possible,
either the processor is shutted down in sleep mode or NOP operations are ex-
ecuted (NOP only consume 20% of the average energy taken by other instruc-
tions, see[15]). The first solution might not be feasible due to the switching
mode overhead. If both techniques are possible, since the threshold at which
the sleep mode becomes more effective can be easily computed off-line, the
strategy leading to the most energy savings is selected at run-time.
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Figure 4: Quantum Sleep Method.

Group Quantum Sleep Method. This is an optimization w.r.t. the previous
solution that consists in grouping sleep instants whenever possible. It reduces
the amount of switches between processor modes and, for DPM, it might en-
able deeper sleep mode. However, special concern must be taken into account
regarding Observation 3.

After the earlier end of execution of a job, several particular “events” can
follow such as the arrival of a job or the planned end of execution time of the
job that finishes earlier. When the next event after an earlier completion is the
planned end of execution date of the job, we propose a method to group the
unused quantums while ensuring the schedulability of the remaining jobs after
the sleep period.

The amount of time that can be spent in sleep mode due to the termination
of job Ji at timet before the next eventnei(t) is

SLEEP(Ji , t) = Qa(t)+Qb(t)+Si(t +Qa, nei(t)−Qb) (4)

where:

• Xi is the actual end of execution ofJi ,

• C∗
i is the actual execution time ofJi ,

• Si(t1, t2) is the amount of time that was planned to be allocated to jobJi

betweent1 andt2,

• nei(t) is the next “event” after timet for job Ji ,

• 1[a] =
{

1, if the predicatea is true
0, otherwise



The total amount of time that can be clustered is an addition of three parts
as seen in equation4. The portion of quantum remaining afterJi ’s end of
execution at timeXi is calculated asQa(t) = (Ψi − (C∗

i modΨi)) · 1[t=Xi ](first
term of 4). The portion of the last quantum whereJi was planned to finish
corresponds toQb(t) = (Ci modψi) ·1[nei(t)=Ei ](second term of4). The time
period of full-sized quantums ofJi located between the first and last quantum
corresponds toSi(t +Qa, nei(t)−Qb) (third term of4).

The sleep period starting point will benei(t)−SLEEP(Ji , t) with a du-
ration of SLEEP(Ji , t). Until time nei(t)−SLEEP(Ji , t) all jobs except the
one that finishes earlier are scheduled without changes. Figure5a) illustrates
this strategy. The feasibility is preserved since∀x∈ [t, nei(t)−SLEEP(Ji , t)),
Sj(t,x) ≥ S

′
j(t,x) whereS

′
j(t1, t2) is the amount of CPU allocated to jobJj be-

tweent1 andt2 under the scheduling with the sleep interval. The scheduling
afternei(t) remains unchanged.

Our clustering strategy also applies when the next event after the early
completion of jobJi is the beginning of a sleep period due the completion
of a job Jj . It is the case forJ1 in figure 5b). Considering this possibility,
the next event for jobJi finishing at timet is nei(t) = min{Ei ∪ (nej(Xj)−
SLEEP(Jj ,Xj))}.

After a sleep period, there still might exist unused quantums belonging to
a job that has finished before the sleep period (e.g. jobJ1 in figure 5.b)). In
this case, one can iteratively use equation4 to create several sleep periods in
the timeline. For computing the following clusters of unused quantums, the
parametert in equation4 would not be the actual end of execution time but the
end of the sleep period before the first quantum one wants to group (ne(X2) in
figure5.b)).

4.3 Extensions

Considering just one processor speed for the whole job set is clearly not an
optimal solution when the processor and the operating system enable the speed
to be changed at run-time. Indeed, with a single speed, the most constrained
job dictates its speed requirement to all jobs during the whole lifetime of the
system.

A first solution to the case where multiple frequencies are possible is to
determine “time intervals” such that the choice made for the frequency during
one time interval cannot interfere with the scheduling inside other intervals.
This is possible if time intervals are all separated by processor idle times. The
time intervals can be chosen as the largest possible processors busy periods
corresponding to the case where all jobs execute until their deadlines. The
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Figure 5: Group Quantum Sleep Method. In a), after the end of execution of
J2 at pointX2, the pointne(X2) and the valueSLEEP(J2,X2) are calculated,
defining time 15 as the instant where the processor enters sleep mode. In b),
the end of execution ofJ1 increases the sleep period due toJ2, shifting its start
to 10.



remaining idle times cannot be used whatever the scheduling decisions and
thus the time intervals between idle times cannot interfere one with each other.
The beginning of intervali is denotedAi and its endEi , they can be computed
iteratively :

Ai = min{Ai ≥ Ei−1} and

Ei = min{D j > Ai |@Ak < D j withDk > D j , j = 1..N}

with E0 = min{Ai}. Note that the computation of{Ai} and{Ei} can be carried
out during the feasibility test without adding significant overheads.

If the low power algorithm from section4.1 is applied separately to each
of the time intervals, it can only reduce energy consumption since the highest
speed of the groups will be local to the group it belongs to and it will not be
the speed chosen for all time intervals.

5 Conclusion

In this paper, we address the problem of scheduling a set of real-time job under
Round-Robin with the objective of minimizing the energy consumption while
meeting feasibility constraints. We first considered the problem of finding a
single speed that ensures the feasibility during the whole lifetime of the sys-
tem based on the WCET. Our solution is optimal in the context of a single
frequency as the use of a lower frequency will not ensure feasibility. Since
the WCET of a job is not always reached, we proposed on-line mechanisms
that use the gain time for further reducing the consumption through DPM and
for ensuring schedulability. Another contribution of the paper is an efficient
feasibility test for Round-Robin which, to our best knowledge, has not been
proposed in the context of non recurrent tasks.

A first counter-intuitive result is that the end of execution of a job before its
WCET might lead to a non-feasible schedule. It has also been highlighted that
a job set might not be feasible at maximum frequency while being feasible with
a lower frequency. This implies that even without interests in energy saving,
lower frequencies have to be considered for feasibility.

We extend the analysis to the case where several frequencies might be
used on-line and propose a first solution to this problem by applying the single
frequency solution on time intervals that cannot interfere one with each other.
More efficient approaches may be perhaps derived from a fluid approximation
of the Round-Robin policy.
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