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There is a gap between research results 

and industrial practices

 “Support for any real-time scheduling algorithm or locking 

protocol developed with the last twenty years is practically 

non-existent in both commercial and open-source RTOS” -
J. Andersson & Mollison in 2011 [1]

 Not the case in other fields as comp. architecture, graphics

 True for scheduling policies, resource sharing protocols, 

task activation(!), schedulability analysis - mono & 

multiprocessor, w/wo low-power constraint

 Time needed to actually apply RMA, TTA, CAN analysis … 
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Many reasons for that…
 End-users do not acknowledge they can benefit from state-

of-the-art scheduling techniques

 Too much effort wrt short term benefits: learning theory & 

changing practices

 Research results not made easy to understand

 Models studied do not suit the needs, e.g.:

 Task models: e.g, multiprocessor systems, I/O access, etc

 Traffic models for networks: need for segmented message, 

aperiodic traffic, mixed transmission model, etc

 Communication stack models : FIFO waiting queues, limited 

number of transmission buffers, delays in refilling buffers, limits of 

drivers, etc

 Tool support is weak or expensive, integration weak with 

OS and compilers 4



Specific reason: WCET (over)estimation

 Scheduling results (mainly) relies on WCET assumptions 

WCET estimations are conservative (typically +30%) 

with today’s HW, how to reach >75% CPU load level ?

 (at least) 2 ways out of that:

• More analyzable hardware

• Scheduling framework relying on statistical 

measurements: both methodology and techniques 

needed
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In some systems, gap is or should 

become narrower  

 Systems subject to certification : e.g. AFDX networking 

When resource usage optimization is an industrial 

requirement: e.g. automotive Electronic Control Units & 

buses.

 Technology requires state-of-the-art techniques: many-

core systems, 3D chips, low-power

 Model-Driven Development: hide the complexity from the 

users
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(SOME) SCHEDULING PRACTICES IN 

INDUSTRY
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Many RTS are simple enough to not need 

an OS (1/2) 

for ( ;; ) {

if ( packet_received ) { // set by communication controller

Process_data();

Packet_received = 0; }

} Polled loop

for ( ;; ) {

task_1(); // functions are tasks here

task_2(); // tasks can communicate through global variables

…

task_n(); 

task_2(); 

}

static cyclic scheduling 
within the main function
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Many RTS are simple enough to not need 

an OS (2/2)

void main() {

init(); 

while ( TRUE ) ; // wait for some interrupt to occur

}

void intr_1() // interrupt handler (IH) will execute task_1

{ save( context ); 

task_1(); 

restore( context );

}

void intr_2()

{ save( context ); 

task_2(); 

restore( context );

}

Interrupt driven systems
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Types of scheduling

1. Time-triggered / static cyclic scheduling: Arinc653, TTP, 

FlexRay (static seg.)

2. Processor sharing: RR, GPS, WFQ

3. Priority driven:

1. fixed priority scheduling: FPP, CAN

2. dynamic priority scheduling: EDF

 Partitioned versus migrating algorithms in multiprocessor 

systems

Complex systems tend to use multi-layered / 

hierarchical scheduling solutions 

often static-cyclic + static priority
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From federated to integrated architectures: 

complexity moves from HW to software platforms

 Automotive in the 90s: one function per ECU

 Avionics before : federated architectures with 

independent units hosting one function each

 Not sustainable with the increasing # of functions: cables 

(up to 2km in cars, >100km in aircrafts), # nodes, overall 

complexity

Today: Independent functions / multi-source software 

running on standardized execution platforms: e.g. 

Arinc653, Autosar 

Upcoming:  powerful multi-processor stations 

interconnected by high-speed backbones
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Automotive systems
Complex and heterogeneous 

architectures with strong 

real-time constraints

BMW 7 series (figure from [2])

70 ECUs, 2500 signals, 

>6 comm. protocols,  number of  

variants, etc 

0

5

10

15

20

25

30

35

40

45

X4-2000 X4-2003 D2 2004 D2 TG D25 X3 X6-2005 X7-2007 W2

PF3

CAN LAS

info-div

LIN

CAN CAR

CAN CONF

CAN I/S

# ECUs and buses in some PSA 

projects between 2000 and 2010 [3]

12



Avionics systems [10,11,14]

A380 AFDX 

architecture 
Figure from [11]

Realistic AFDX network from Thales [10]

104 end-systems 8x2 routers 4 prio levels 974 data flows

6501 latency

constraints

Constraints:

from 1 to 30ms

Period: from 2 to 60ms
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Research issues for the RT community

• End-to-end scheduling with 

heterogeneous resources

• Hierarchical scheduling, esp. in 

multicore systems

• Predictable HW multicore platforms 

• Mixed-criticality scheduling

• Incremental validation / certification
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Typical automotive scheduling setup [13]

Goal: schedule hundreds of software modules (“runnables”) on a 

(multicore) ECU so as to minimize peaks of load

Two sub-problems

Partitioning : allocating

each runnable to a core

Build schedule table: 

schedule the execution 

of the runnables on 

each core

Main objective

Feasibility

Avoid load peaks

‣ Criteria: max load

Example schedule: CPU load over time on 

a dual-core processor
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Two-level scheduling 

1. Static-cyclic for runnables within tasks

2. Priority driven (static) among tasks

Possible additional requirements:

 Precedence constraints between runnables

 Several sequencer tasks :

• memory protection at the task level

• not all runnables require the same priority

 Incremental scheduling wo changing execution orders

 Sequencer tasks may be or not synchronized / driven by 

different clocks (time vs RPM)

 Synchronization between task and message scheduling 

might be needed
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Three level scheduling with an hypervisor! 

[3,4]

Hypervisor

Telematics & 
Multimedia networks 
(wired / wireless )

Networks for 
real-time control 
(CAN, FlexRay, Lin)  

Third level : scheduling of the 

Virtual Machines and hypervisor 

activities  (e.g. drivers)
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Hierarchical scheduling in avionics

Task 1.2

Task 1.3

Application 1 Application 2

Task 1.1 Task 2.1

Task 2.2

priority

driven 

preemptive

static cyclic

non preemptive
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TIMING VERIFICATION:  

TECHNIQUES & MODELS
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Timing verification 

techniques 

 By construction: Time-Triggered Architecture

 Schedulability tests / utilization bounds

 Response time analysis

• Single resource : e.g. critical instant, 

• Several resources interconnected: holistic, event-

stream, … 

 Network Calculus

 Model checking

Deterministic resource + bounded 
workload  timing verification 

feasible  

Exact analysis usually out of 
reach for end-to-end constraints 
in large (asynchronous) systems
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Illustration: AFDX network analysed with 

Network Calculus state-of-the-art [10] 
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What about simulation? not for maximum 

latencies – exp. on CAN networks from [12]

Difference 

WCRT vs

simulation 

max:

avg: 25%

max: 45%
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Bridging the gap to realistic timing models [8]

Hardware models

Software models (producer, sender, 
receiver, device drivers, etc) 

Error models (reboot,errors)

Traffic models incl. 
aperiodic

1

2

3

4

Aperiodic traces

Higher load → less margin 
→ more accurate models
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Analyses for safety critical systems : simple, 

peer-reviewed and documented

- 25

 Flawed analyses are dangerous in safety critical 

systems but (fine-grained) analyses are complex and 

error prone. Remember “CAN analysis refuted, 

revisited, etc” [6] ?! 

 Implemented analysis have to make simplifications esp. 

in a heterogeneous systems (and tools do not 

document that well)

 Solutions ? 

• peer-review of the WCRT analyses is needed

• coarse-grained / conservative but simple models as far as 

possible:  e.g., [5,6] vs [9]

• no black-box software: at least documentation of 

implemented analyses, ideally open-source 

• cross-validation between tools on benchmarks



Conclusions

Large and growing body of techniques & models 

but there is a gap between research and 

industry practices

Multiprocessor scheduling not mastered yet, 

diverse realities, HW still evolving

MDE calls for automatic synthesis, configuration 

& deployment, with time being one facet 
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