
Industrial practices of real-time scheduling
Nicolas Navet

nicolas.navet@uni.lu

1

Colloquium “1972-2012:

40 years of research in

real-time scheduling”,

journées scientifiques de

l’Université de Nantes,

June 8, 2012.

mailto:nicolas.navet@uni.lu

Outline

Gap
between

research and
industry

(Some)
Scheduling

practices in the
industry

Zoom on
automotive &

avionics
systems

Timing
verification

techniques &
models

2

There is a gap between research results

and industrial practices

 “Support for any real-time scheduling algorithm or locking

protocol developed with the last twenty years is practically

non-existent in both commercial and open-source RTOS” -
J. Andersson & Mollison in 2011 [1]

 Not the case in other fields as comp. architecture, graphics

 True for scheduling policies, resource sharing protocols,

task activation(!), schedulability analysis - mono &

multiprocessor, w/wo low-power constraint

 Time needed to actually apply RMA, TTA, CAN analysis …

3

Many reasons for that…
 End-users do not acknowledge they can benefit from state-

of-the-art scheduling techniques

 Too much effort wrt short term benefits: learning theory &

changing practices

 Research results not made easy to understand

 Models studied do not suit the needs, e.g.:

 Task models: e.g, multiprocessor systems, I/O access, etc

 Traffic models for networks: need for segmented message,

aperiodic traffic, mixed transmission model, etc

 Communication stack models : FIFO waiting queues, limited

number of transmission buffers, delays in refilling buffers, limits of

drivers, etc

 Tool support is weak or expensive, integration weak with

OS and compilers 4

Specific reason: WCET (over)estimation

 Scheduling results (mainly) relies on WCET assumptions

WCET estimations are conservative (typically +30%)

with today’s HW, how to reach >75% CPU load level ?

 (at least) 2 ways out of that:

• More analyzable hardware

• Scheduling framework relying on statistical

measurements: both methodology and techniques

needed

5

In some systems, gap is or should

become narrower

 Systems subject to certification : e.g. AFDX networking

When resource usage optimization is an industrial

requirement: e.g. automotive Electronic Control Units &

buses.

 Technology requires state-of-the-art techniques: many-

core systems, 3D chips, low-power

 Model-Driven Development: hide the complexity from the

users

6

(SOME) SCHEDULING PRACTICES IN

INDUSTRY

7

Many RTS are simple enough to not need

an OS (1/2)

for (;;) {

if (packet_received) { // set by communication controller

Process_data();

Packet_received = 0; }

} Polled loop

for (;;) {

task_1(); // functions are tasks here

task_2(); // tasks can communicate through global variables

…

task_n();

task_2();

}

static cyclic scheduling
within the main function

8

Many RTS are simple enough to not need

an OS (2/2)

void main() {

init();

while (TRUE) ; // wait for some interrupt to occur

}

void intr_1() // interrupt handler (IH) will execute task_1

{ save(context);

task_1();

restore(context);

}

void intr_2()

{ save(context);

task_2();

restore(context);

}

Interrupt driven systems

9

Types of scheduling

1. Time-triggered / static cyclic scheduling: Arinc653, TTP,

FlexRay (static seg.)

2. Processor sharing: RR, GPS, WFQ

3. Priority driven:

1. fixed priority scheduling: FPP, CAN

2. dynamic priority scheduling: EDF

 Partitioned versus migrating algorithms in multiprocessor

systems

Complex systems tend to use multi-layered /

hierarchical scheduling solutions

often static-cyclic + static priority
10

From federated to integrated architectures:

complexity moves from HW to software platforms

 Automotive in the 90s: one function per ECU

 Avionics before : federated architectures with

independent units hosting one function each

 Not sustainable with the increasing # of functions: cables

(up to 2km in cars, >100km in aircrafts), # nodes, overall

complexity

Today: Independent functions / multi-source software

running on standardized execution platforms: e.g.

Arinc653, Autosar

Upcoming: powerful multi-processor stations

interconnected by high-speed backbones

11

Automotive systems
Complex and heterogeneous

architectures with strong

real-time constraints

BMW 7 series (figure from [2])

70 ECUs, 2500 signals,

>6 comm. protocols, number of

variants, etc

0

5

10

15

20

25

30

35

40

45

X4-2000 X4-2003 D2 2004 D2 TG D25 X3 X6-2005 X7-2007 W2

PF3

CAN LAS

info-div

LIN

CAN CAR

CAN CONF

CAN I/S

ECUs and buses in some PSA

projects between 2000 and 2010 [3]

12

Avionics systems [10,11,14]

A380 AFDX

architecture
Figure from [11]

Realistic AFDX network from Thales [10]

104 end-systems 8x2 routers 4 prio levels 974 data flows

6501 latency

constraints

Constraints:

from 1 to 30ms

Period: from 2 to 60ms

13

Research issues for the RT community

• End-to-end scheduling with

heterogeneous resources

• Hierarchical scheduling, esp. in

multicore systems

• Predictable HW multicore platforms

• Mixed-criticality scheduling

• Incremental validation / certification

14

Typical automotive scheduling setup [13]

Goal: schedule hundreds of software modules (“runnables”) on a

(multicore) ECU so as to minimize peaks of load

Two sub-problems

Partitioning : allocating

each runnable to a core

Build schedule table:

schedule the execution

of the runnables on

each core

Main objective

Feasibility

Avoid load peaks

‣ Criteria: max load

Example schedule: CPU load over time on

a dual-core processor

15

0 5 10 15 20 25 30 35 40

R1 R4
R

2
R3 R1 R1 R1

R

2

R

2

R

2
R3 R4

R1

R4

R

2

R3

Runnables

• Period : runnable execution must be

strictly periodic

• WCET: Worst-Case Execution Time

(in ms)

• Initial Offset: start time of the slot where

the first runnable instance is executed

• Core allocation constraint [optional]

• Colocation constraint [optional]

Sequencer task

Ttic Slots Tcycle

P1=10

C1=2

O1=0

P2=10

C2=1

O2=5

P3=20

C3=3

O3=5

P4=20

C4=2

O4=15

Scheduling model: runnables, tics, slots,

offsets and schedule cycles

16

Two-level scheduling

1. Static-cyclic for runnables within tasks

2. Priority driven (static) among tasks

Possible additional requirements:

 Precedence constraints between runnables

 Several sequencer tasks :

• memory protection at the task level

• not all runnables require the same priority

 Incremental scheduling wo changing execution orders

 Sequencer tasks may be or not synchronized / driven by

different clocks (time vs RPM)

 Synchronization between task and message scheduling

might be needed
17

Three level scheduling with an hypervisor!

[3,4]

Hypervisor

Telematics &
Multimedia networks
(wired / wireless)

Networks for
real-time control
(CAN, FlexRay, Lin)

Third level : scheduling of the

Virtual Machines and hypervisor

activities (e.g. drivers)

0 5 10 15 20 25 30 35 40

R

1

R

4

R

2

R

3

R

1

R

1

R

1

R

2

R

2

R

2

R

3

R

4

0 5 10 15 20 25 30 35 40

R

1

R

4

R

2

R

3

R

1

R

1

R

1

R

2

R

2

R

2

R

3

R

4

…

runnables

tasks

18

Hierarchical scheduling in avionics

Task 1.2

Task 1.3

Application 1 Application 2

Task 1.1 Task 2.1

Task 2.2

priority

driven

preemptive

static cyclic

non preemptive

19

figure from [11] and [14]

TIMING VERIFICATION:

TECHNIQUES & MODELS

20

Timing verification

techniques

 By construction: Time-Triggered Architecture

 Schedulability tests / utilization bounds

 Response time analysis

• Single resource : e.g. critical instant,

• Several resources interconnected: holistic, event-

stream, …

 Network Calculus

 Model checking

Deterministic resource + bounded
workload timing verification

feasible

Exact analysis usually out of
reach for end-to-end constraints
in large (asynchronous) systems

21

Illustration: AFDX network analysed with

Network Calculus state-of-the-art [10]

0

2000

4000

6000

8000

10000

12000

1
1

7
5

3
4

9
5

2
3

6
9

7
8

7
1

1
0

4
5

1
2

1
9

1
3

9
3

1
5

6
7

1
7

4
1

1
9

1
5

2
0

8
9

2
2

6
3

2
4

3
7

2
6

1
1

2
7

8
5

2
9

5
9

3
1

3
3

3
3

0
7

3
4

8
1

3
6

5
5

3
8

2
9

4
0

0
3

4
1

7
7

4
3

5
1

4
5

2
5

4
6

9
9

4
8

7
3

5
0

4
7

5
2

2
1

5
3

9
5

5
5

6
9

5
7

4
3

5
9

1
7

6
0

9
1

6
2

6
5

6
4

3
9

UPP Lower Bound
Lower

bound

Network

Calculus

Virtual links by increasing latencies

(Thales realistic configuration)

Latencies

(us)

Upper-bound on

the overestimation:

only 16% on

average

over 100

configurations

22

What about simulation? not for maximum

latencies – exp. on CAN networks from [12]

Difference

WCRT vs

simulation

max:

avg: 25%

max: 45%

23

Bridging the gap to realistic timing models [8]

Hardware models

Software models (producer, sender,
receiver, device drivers, etc)

Error models (reboot,errors)

Traffic models incl.
aperiodic

1

2

3

4

Aperiodic traces

Higher load → less margin
→ more accurate models

24

Analyses for safety critical systems : simple,

peer-reviewed and documented

- 25

 Flawed analyses are dangerous in safety critical

systems but (fine-grained) analyses are complex and

error prone. Remember “CAN analysis refuted,

revisited, etc” [6] ?!

 Implemented analysis have to make simplifications esp.

in a heterogeneous systems (and tools do not

document that well)

 Solutions ?

• peer-review of the WCRT analyses is needed

• coarse-grained / conservative but simple models as far as

possible: e.g., [5,6] vs [9]

• no black-box software: at least documentation of

implemented analyses, ideally open-source

• cross-validation between tools on benchmarks

Conclusions

Large and growing body of techniques & models

but there is a gap between research and

industry practices

Multiprocessor scheduling not mastered yet,

diverse realities, HW still evolving

MDE calls for automatic synthesis, configuration

& deployment, with time being one facet

26

REFERENCES

[1] M.S. Mollison, J.H. Anderson, “Virtual Real-Time-Scheduling”, Seventh
International Workshop on Operating Systems Platforms for Embedded
Real-Time Applications, pp. 33-40, July 2011.

[2] H. Kellerman, G. Nemeth, J. Kostelezky, K. Barbehön, F. El-Dwaik, L.
Hochmuth, “BMW 7 Series architecture”, ATZextra, November 2008.

[3] N. Navet, B. Delord (PSA), M. Baumeister (Freescale), “Virtualization in
Automotive Embedded Systems : an Outlook”, talk at RTS Embedded
Systems 2010, Paris, France, March, 2010. Available at
http://nicolas.navet.eu

[4] N. Navet, “Automotive communication systems: from dependability to
security”, talk at the 1st Seminar on Vehicular Communications and
Applications (VCA 2011), Luxembourg, May 2011. Available at
http://nicolas.navet.eu

[5] R.I. Davis, S. Kollmann, V. Pollex, F. Slomka, "Controller Area
Network (CAN) Schedulability Analysis with FIFO queues”. In
proceedings 23rd Euromicro Conference on Real-Time Systems
(ECRTS), pages 45-56, July 2011.

[6] R. Davis, N. Navet, "Controller Area Network (CAN) Schedulability
Analysis for Messages with Arbitrary Deadlines in FIFO and Work-
Conserving Queues", Proc. of the 9th IEEE International Workshop on
Factory Communication System (WFCS 2012), May 21-24, 2012,
Lemgo/Detmold, Germany. Available at http://nicolas.navet.eu

[7] R. Davis, A. Burn, R. Bril, and J. Lukkien, “Controller Area Network
(CAN) schedulability analysis: Refuted, revisited and revised”, Real-
Time Systems, vol. 35, pp. 239–272, 2007.

27

http://nicolas.navet.eu/
http://nicolas.navet.eu/
http://nicolas.navet.eu/

REFERENCES

[8] N. Navet, H. Perrault, “CAN in Automotive Applications: a Look
Forward“, 13th International CAN Conference, Hambach, Germany,
March 5-6, 2012. Available at http://nicolas.navet.eu

[9] D. Khan, R. Davis, N. Navet, “Schedulability analysis of CAN with non-
abortable transmission requests“, 16th IEEE International Conference
on Emerging Technologies and Factory Automation (ETFA 2011),
Toulouse, France, September 2011. Available at http://nicolas.navet.eu

[10] M. Boyer, N. Navet, M. Fumey, “Experimental assessment of timing
verification techniques for AFDX“, Embedded Real-Time Software and
Systems (ERTS 2012), Toulouse, France, February 1-3, 2012. Available
at http://nicolas.navet.eu

[11] J.B. Itier, “A380 Integrated Modular Avionics”, http://www.artist-
embedded.org/docs/Events/2007/IMA/Slides/ARTIST2_IMA_Itier.pdf,
ARTIST2 meeting on Integrated Modular Avionics, 2007.

[12] P. Meumeu-Yomsi, D. Bertrand, N. Navet, R. Davis, “Controller Area
Network (CAN): Response Time Analysis with Offsets”, 9th IEEE
International Workshop on Factory Communication System (WFCS
2012), May 21-24, 2012, Lemgo/Detmold, Germany.

[13] N. Navet, A. Monot, B. Bavoux, F. Simonot-Lion, “Multi-source
Software on Multicore Automotive ECUs – Combining Runnable
sequencing with task scheduling“, IEEE Transactions on Industrial
Electronics, vol 59, n°10, 2012. Available at http://nicolas.navet.eu

[14] S. Duarte Penna, “Networking in Modern Avionics: Challenges and
Opportunities”, RTN 2011.

28

http://nicolas.navet.eu/
http://nicolas.navet.eu/
http://nicolas.navet.eu/
http://www.artist-embedded.org/docs/Events/2007/IMA/Slides/ARTIST2_IMA_Itier.pdf
http://www.artist-embedded.org/docs/Events/2007/IMA/Slides/ARTIST2_IMA_Itier.pdf
http://www.artist-embedded.org/docs/Events/2007/IMA/Slides/ARTIST2_IMA_Itier.pdf
http://nicolas.navet.eu/

