On Predictability and Profitability: Would AI induced Trading Rules be Sensitive to the Entropy of time Series

Nicolas NAVET – INRIA France <u>nnavet@loria.fr</u>

Shu-Heng CHEN – AIECON/NCCU Taiwan chchen@nccu.edu.tw

09/04/2008

RealTime-at-Work

RINRIA RTaW

Outline

 Entropy Rate : uncertainty remaining in the next information produced given knowledge of the past -> measure of predictability

Questions :

- Do stocks exhibit differing entropy rates?
- Does low entropy imply profitability of TA?
- Methodology :
 - NYSE US 100 Stocks daily data 2000-2006
 - TA rules induced using Genetic Programming

Estimating entropy

- Active field of research in neuroscience
- Maximum-likehood ("Plug-in"):
 - empirical distribution of fixed length word
 - not suited to capture long/medium term dependencies
- Compression-based techniques :
 - Lempel-Ziv algorithm, Context-Tree Weighting
 - fast convergence rate suited to long/medium term dependencies

Selected estimator

Kontoyannis et al 1998

$$\hat{h}_{SM} = \left(\frac{1}{n}\sum_{i=1}^{n}\Lambda_i\right)^{-1}\log_2 n$$

 $\Lambda_i\,$: length of the shortest string that does not appear in the <code>/</code> previous symbols

Performance of the estimator

Experiments :

- Uniformly distributed r.v. in $\{1,2,...,8\}$ theoretical entropy $= -\sum_{i=1}^{8} 1/8 \log_2 p = 3 \ b.p.c.$
- Boost C++ random generator
- Sample of size 10000

$$\hat{h}_{SM} = 2.96$$

Note 1 : with sample of size 100000, h_{SM} ≥ 2.99
Note 2 : with standard C rand() function and sample size = 10000, h_{SM} = 2.77

Preprocessing the data (1/2)

- Log ratio between closing prices: $r_t = ln(\frac{p_t}{n_{t-1}})$
- Discretization : $\{r_t\} \in \mathbb{R} \to \{A_t\} \in \mathbb{N}$

Preprocessing the data (2/2)

Discretization is tricky – 2 problems:

- How many bins? (size of the alphabet)
- How many values in each bin?
- Guideline : maximize entropy with a number of bins in link with the sample size
- Here :
 - alphabet of size 8

 same number of values in each bin ("homogeneous partitioning")

Entropy of NYSE US 100 stocks – period 2000-2006

Entropy is high but price time series are not random!

Stocks under study

	Symbol	Entropy
	OXY	2.789
Highest entropy time series	VLO	2.787
	MRO	2.785
	BAX	2.78
	WAG	2.776

	Symbol	Entropy
	TWX	2.677
Lowest entropy time series	EMC	2.694
	\mathbf{C}	2.712
	JPM	2.716
	GE	2.723

BDS tests: are daily log price changes i.i.d ?

Lowest entropy time series δ TWXEMCCGEJPMm2 1 18.0614.2113.911.82 11.673 1 22.6719.5418.7616.4616.3451 34.1829.1728.1226.8024.21

Highest entropy time series

\overline{m}	δ	OXY	VLO	MRO	BAX	WAG
2	1	5.66	4.17	6.69	8.13	7.45
3	1	6.61	5.35	9.40	11.11	8.89
5	1	9.04	6.88	13.08	15.31	11.17

Null that log price changes are i.i.d. always rejected at 1% level but - whatever BDS parameters - rejection is much stronger for high-entropy stocks

Autocorrelation analysis

> Up to a lag 100, there are 2.7 x more autocorrelations outside the 99% confidence bands for the lowest entropy stocks than for the highest entropy stocks

Part 2 : does low entropy imply better profitability of TA?

Addressed here: are GP-induced rules more efficient on low-entropy stocks ?

GP : the big picture

GP performance assessment

- Buy and Hold is not a good benchmark
- GP is compared with lottery trading (LT) of
 - same frequency : avg nb of transactions
 - same intensity : time during which a position is held
- Implementation of LT: random sequences with the right characteristics, e.g: 0,0,1,1,1,0,0,0,0,0,1,1,1,1,1,0,0,1,1,0,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,...
- GP>LT ? LT>GP ? Student's t-test at 95% confidence level – 20 GP runs / 1000 LT runs

Experimental setup

- Data preprocessed with 100-days MA
- Trading systems:
 - Entry (long): GP induced rule with a classical set of functions / terminals
 - Exit:
 - Stop loss : 5%
 - Profit target : 10%
 - 90-days stop
- Fitness: net return Initial equity: 100K\$
 - position sizing : 100%

Results: high entropy stocks

	GP net profits	LT net profits	GP>LT?	LT>GP?
OXY	15.5K\$	14K\$	No	No
VLO	7K\$	11.5K\$	No	No
MRO	15K\$	18.5K\$	No	No
BAX	24K\$	13K\$	Yes	No
WAG	6K\$	-0.5K\$	Yes	No

GP is always profitable

LT is never better than GP (at a 95% confidence level)

GP outperforms LT 2 times out of 5 (at a 95% confidence level)

Results: low entropy stocks

	GP net profits	LT net profits	GP>LT?	LT>GP?
TWX	-9K\$	-1.5K\$	No	Yes
EMC	-16.5K\$	-11K\$	No	Yes
C	15K\$	18.5K\$	No	No
JPM	6K\$	10K\$	No	No
GE	-0.5K\$	0.5K\$	No	No

GP is never better than LT (at a 95% confidence level)

LT outperforms GP 2 times out of 5 (at a 95% confidence level)

Explanations (1/2)

 GP is not good when training period is very different from out-of-sample e.g.

Explanations (2/2)

The 2 cases where GP outperforms LT : training quite similar to out-of-sample

Conclusions

- EOD NYSE time series have high but differing entropies
- There are (weak) temporal dependencies
- Here, more predictable ≠ less risks
- GP works well if training is similar to outof-sample

Perspectives

- Higher predictability level can be observed at intraday timeframe (what about higher timeframes?)
- Experiments needed with stocks less similar than the ones from NYSE US 100
- Predictability tells us about the existence of temporal patterns – but how easy / difficult to discover them ??

