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s Entropy Rate : uncertainty remaining in the
next information produced given knowledge of
the past = measure of predictability

m Questions :
m Do stocks exhibit differing entropy rates?
m Does low entropy imply profitability of TA?

s Methodology :
m NYSE US 100 Stocks - daily data - 2000-2006
m TA rules induced using Genetic Programming



m Active field of research in neuroscience

s Maximum-likehood ("Plug-in”):
m empirical distribution of fixed length word
= not suited to capture long/medium term
dependencies
m Compression-based techniques :
s Lempel-Ziv algorithm, Context-Tree Weighting

m fast convergence rate - suited to long/medium
term dependencies



m Kontoyannis et al 1998
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Performance ot the estimat

m Experiments :

s Uniformly distributed r.v. in {1,2,..,8} -
theoretical entropy =-3>°_,1/8log,p =3 b.p.c.

m Boost C++ random generator
s Sample of size 10000

honr = 2.96

> Note 1 : with sample of size 100000, hsy = 2.99

» Note 2 : with standard C rand() function and
sample size = 10000, hgps = 2.77
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= Log ratio between closing prices: 14 = In(

= Discretization : {r;} e R - {4;} € N
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= Discretization is tricky — 2 problems:

= How many bins? (size of the alphabet)

= How many values in each bin?

= Guideline : maximize entropy with a number of
bins in link with the sample size
= Here .

= alphabet of size 8

* same number of values in each bin
(“homogeneous partitioning”)



Density
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2.68 2.70

Mean = Median = 2.75
Max = 2.79
Min = 2.68

Rand() boost = 2.9

NB : a normal distribution of same mean and standard deviation is
plotted for comparison.
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Highest entropy
time series

Lowest entropy
time series

Symbol  Entropy
OXY 2.789
VLO 2.787
MRO 2.785
BAX 2.78
WAG 2.776
Symbol  Entropy

TWX 2.677
EMC 2.694
C 2.712
JPM 2.716
GE 2.723
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Lowest entropy time series

TWX  EMC C JPM  GE

m 0

2 1 18.06 1421 139 11.82 11.67
3 1 2267 19.54 18.76 16.46 16.34
5 1 34.18 29.17 2812 26.80 24.21

Highest entropy time series

m § OXY VLO MRO BAX WAG
2 1  5.66 4.17 6.69 8.13 7.45
3 1 661 5.35 9.40 11.11 8.89
5 1  9.04 6.88 13.08 15.31  11.17

> Null that log price changes are i.i.d. always rejected at 1% level
but - whatever BDS parameters - rejection is much stronger for
high-entropy stocks
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» Up to a lag 100, there are 2.7 x more autocorrelations outside
the 99% confidence bands for the lowest entropy stocks than for

the highest entropy stocks
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Part 2 : does low entropy
Imply better profitability
of TA?

Addressed here: are GP-induced
rules more efficient on low-entropy
stocks ?
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s Buy and Hold is not a good benchmark
m GP is compared with lottery trading (LT) of

m same frequency : avg nb of transactions
m same intensity : time during which a position is held

s Implementation of LT: random sequences

with the right characteristics, e.qg:
0,0,1,1,1,0,0,0,0,0,1,1,1,1,1,1,0,0,1,1,0,1,0,0,0,0,0,0,1,1,1,1,1,1,...

m GP>LT ? LT>GP ? Student’s t-test at 95%
confidence level — 20 GP runs / 1000 LT runs
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m Data preprocessed with 100-days MA

m Trading systems:

m Entry (long): GP induced rule with a classical
set of functions / terminals

m EXxit:
m Stop loss : 5%
m Profit target : 10%
m 90-days stop
m Fitness: net return - Initial equity: 100K$
- position sizing : 100%
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GP net profits LT net profits GP>LT? LT>GP?
OXY 15.5K$ 14K'$ No No
VLO TK$ 11.5K$ No No
MRO 15K$ 18.5K$ No No
BAX 24K $ 13K$ Yes No
WAG 6K$ —0.5K$ Yes No

GP is always profitable

LT is never better than GP (at a 95% confidence

level)

GP outperforms LT 2 times out of 5 (at a 95%

confidence level)

17



GP net profits LT net profits GP>LT? LT>GP?

TWX —9K$ —1.5K$ No Yes
EMC —16.5K$ —11K$ No Yes
C 15K$ 18.5K$ No No
JPM 6K$ 10K$ No No
GFE —0.5K$ 0.5K$ No No

GP is never better than LT (at a 95% confidence
level)

LT outperforms GP 2 times out of 5 (at a 95%
confidence level)
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m GP is not good when training period is very
different from out-of-sample e.g.

_ Typical low
entropy stock (EMC)

2000 2006
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m The 2 cases where GP outperforms LT : training
quite similar to out-of-sample
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conclusions

s EOD NYSE time series have high but
differing entropies

m There are (weak) temporal dependencies
m Here, more predictable # less risks

m GP works well if training is similar to out-
of-sample
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m Higher predictability level can be observed
at intraday timeframe (what about higher
timeframes?)

m Experiments needed with stocks less
similar than the ones from NYSE US 100

m Predictability tells us about the existence
of temporal patterns — but how easy /
difficult to discover them ??
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