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Message from the conference chairs

RTNS’07

It is our great pleasure to welcome you to the fifteenth Conference on Real-Time and Network
Systems (RTNS’07) in Nancy, France. The primary purpose of RTNS is to provide the
participants, academic researchers or practitioners, with a forum to disseminate their work and
discuss emerging lines of research in the area of real-time and network systems: real-time system
design and analysis, infrastructure and hardware for real-time systems, software technologies and
applications.

The first thirteenth issues of the conference were held within the “Real Time Systems” trade show in
Paris (at first, Palais des Congrés Porte Maillot, then Paris Expo, porte de Versailles). In 2005, it was
decided to make the conference independent of the exhibition, emphasize the role of Systems on
Networks (hence the transformation of the name from RTS to RTNS), and switch to English as the
official language of the conference.

In response to the call for papers, 42 papers were submitted, among which 22 were selected by the
international Program Committee. The presentation are organized in 6 sessions covering all major
aspects of real-time systems: task scheduling (2 sessions), scheduling and control, formal methods,
architecture and worst-case execution time estimation, real-time networks and distributed systems. In
addition to the contributed papers, the RTNS technical program has the privilege to include a keynote
talk by Professor Tei-Wei Kuo, from the National Taiwan University, who will share his views on the
challenging issues raised by the use of flash-memory storage systems in embedded real-time systems..
Furthermore, the second edition of the “Junior Researcher Workshop on Real-Time Computing” is
held in conjunction with RTNS, and is a good opportunity for young researchers to present and get
feedback on their ongoing work in a relaxed and stimulating atmosphere. All these presentations will
provide an excellent snapshot of the current research results and directions in the area of real-time
systems, and will certainly make RTNS a successful event.

Credit for the quality of the program is of course to be given to the authors who submitted high-quality
papers and the program committee members and external referees who gave their time and offer their
expertise to provide excellent reviews (at least three per paper). We are sincerely grateful to all of
them.

RTNS’07 would not be possible without the generous contribution of many volunteers and
institutions. First, we would like to express our sincere gratitude to our sponsors for their
financial support : Conseil Genéral de Meuthe et Moselle, Conseil Régional de Lorraine,
Communauté Urbaine du Grand Nancy, Université Henri Poincaré, Institut National
Polytechnique de Lorraine and LORIA and INRIA Lorraine. We are thankful to Pascal Mary for
authorizing us to use his nice picture of “place Stanislas” for the proceedings and web site (many
others are available at www.laplusbelleplacedumonde.com). Finally, we are most grateful to the local
organizing committee that helped to organize the conference. Let us hope for a bright future in the
RTNS conference series !

Nicolas Navet, INRIA-Loria, Nancy, France
Francgoise Simonot-Lion, LORIA-INPL, Nancy, France
General co-chairs

Isabelle Puaut, University of Rennes / IRISA, France
Program chair
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Keynote presentation

RTNS’07

Implementation and Challenging Issues of
Flash-Memory Storage Systems

Tei-Wei Kuo
National Taiwan University

Flash memory is widely adopted in the implementations of storage systems, due to its nature in
excellent performance, good power efficiency, and superb vibration tolerance. However, engineers
face tremendous challenges in system implementations, especially when the capacity of flash memory
is expected to increase significantly in the coming years. This talk will address the implementation
issues of flash-memory storage systems, such as performance and management overheads. Summary
on existing solutions will be presented, and future challenges will also be addressed.

Prof. Tei-Wei Kuo received the B.S.E. degree in Computer Science and Information
Engineering from National Taiwan University in Taipei, Taiwan, ROC, in 1986. He
received the M.S. and Ph.D. degrees in Computer Sciences from the University of
Texas at Austin in 1990 and 1994, respectively. He is currently a Professor and the
Chairman of the Department of Computer Science and Information Engineering,
National Taiwan University. Since February 2006, he also serves as a Deputy Dean of
the National Taiwan University. His research interests include embedded systems, real-
time operating systems, and real-time database systems. He has over 140 technical papers published or
been accepted in journals and conferences and a number of patents. Prof. Kuo works closely with the
industry and serves as a review committee member of several government agencies and
research/development institutes in Taiwan.

Dr. Kuo serves as the Program Chair of IEEE Real-Time Systems Symposium (RTSS) in 2007 and a
Program Co-Chair of the IEEE Real-Time Technology and Applications Symposium (RTAS) in 2001.
He is also an Associate Editor of several journals, such as the Journal of Real-Time Systems (since
1998) and IEEE Transactions on Industrial Informatics (since 2007). Dr. Kuo also serves as the
Steering Committee Chair of IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA) since 2005. He is an Executive Committee member of the IEEE
Technical Committee on Real-Time Systems (TC-RTS) since 2005. Dr. Kuo received several
prestigious research awards in Taiwan, including the Distinguished Research Award from the ROC
National Science Council in 2003, and the ROC Ten Outstanding Young Persons Award in 2004 in
the category of scientific research and development.
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The Timed Abstract State Machine Language: An Executable Specification
Language for Reactive Real-Time Systems

Martin Ouimet, Kristina Lundqvist, and Mikael Nolin
Embedded Systems Laboratory
Massachusetts Institute of Technology
Cambridge, MA, 02139, USA
{mouimet, kristina} @mit.edu, mikael.nolin@mdh.se

Abstract

We present a novel language for specifying real-time
systems. The language addresses a key challenge in the
design and analysis of real-time systems, namely the inte-
gration of functional and non-functional properties into a
single specification language. The non-functional proper-
ties that can be expressed in the language include timing
behavior and resource consumption. The language en-
ables the creation of executable specifications with well-
defined execution semantics, abstraction mechanisms, and
composition semantics. The language is based on the the-
ory of abstract state machines. Extensions to the theory
of abstract state machines are presented to enable the
explicit specification of non-functional properties along-
side functional properties. The theory is also extended
to define the execution semantics for the hierarchical and
parallel composition of specifications. The features of
the specification language are demonstrated using a light
switch example and the Production Cell case study.

1 Introduction

The benefits and drawbacks of using formal methods
have been documented heavily [10, 13]. Cited benefits
include the detection of defects early in the engineering
cycle, precise and concise specifications , and automated
analysis [29]. Cited drawbacks include the heavy use of
arcane mathematical notations, the lack of scalability of
most methods, and the large investment typically required
to use formal methods [13]. Besides the negative conno-
tation that the term “formal methods” has taken in some
circles, the benefits of unambiguous specifications and au-
tomated analysis during the early phases of the lifecycle
have been generally accepted [5].

In the design and development of reactive real-time
systems, the design and specification problem is more
challenging than for traditional interactive systems be-
cause both functional behavior and non-functional behav-
ior are part of the system’s utility and must be specified
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precisely and concisely [9]. Furthermore, the specifica-
tion and analysis of system designs is often performed
at various levels of abstraction [17]. For example, the
non-functional properties of system architectures can be
specified and analyzed using an Architecture Descrip-
tion Language (ADL) such as the Society of Automotive
Engineers’ Architecture Analysis and Design Language
(AADL) [28]. At the software application level, func-
tional behavior can be specified and analyzed using state-
transition systems such as finite state automata [18] or
Petri nets [11]. Timing behavior can be specified and ana-
lyzed at either level using special purpose languages such
as real-time logic or through specialized methods such as
rate-monotonic analysis [12]. The need for multiple lan-
guages to specify and analyze system behavior can be ex-
pensive and error-prone because there is no formal con-
nection between the different specifications resulting from
the use of multiple languages [17]. This situation leads to
redundant specifications that may not be consistent with
one another.

This paper introduces the Timed Abstract State Ma-
chine (TASM) specification language, a novel specifica-
tion language that removes the need to use many other
specification languages. More specifically, TASM incor-
porates the specification of functional and non-functional
behavior into a unified formalism. Furthermore, TASM is
based on the theory of abstract state machines, a method
for system design that can be applied at various levels of
abstraction [8]. The TASM language has formal seman-
tics, which makes its meaning precise and enables exe-
cutable specifications.

The motivations and benefits of using Abstract State
Machines (ASM), formerly known as evolving algebras,
for hardware and software design have been documented
in [6]. On the practical-side, ASMs have been used suc-
cessfully on a wide range of applications, ranging from
hardware-software systems to high-level system design
[8]. Furthermore, there is enough evidence to believe that
ASMs could provide a literate specification language, that
is, a language that is understandable and usable without
extensive mathematical training [13].



The anecdotal evidence supporting the success of the
ASM method [6] suggests that tailoring the formalism to
the area of reactive real-time systems could achieve sim-
ilar benefits. The work presented in this paper extends
the ASM formalism to make it amenable to real-time sys-
tem specification. More specifically, the ASM formalism
is extended to enable the explicit specification of timing
behavior and resource consumption behavior. The result-
ing specification language, The Timed Abstract State Ma-
chine (TASM) language enables the specification of func-
tional and non-functional properties into a unified formal-
ism. The TASM language provides executable specifica-
tions that can express both sequential and concurrent be-
havior.

This paper is divided into five sections in addition
to this Introduction. The following section situates the
present work in relation to other research on similar top-
ics. The abstract state machine formalism is introduced in
section 3. Section 4 explains the modifications that have
been made to the presented formalism to make it amenable
to specification of real-time systems. Each extension is il-
lustrated through the use of a light switch example. Sec-
tion 5 provides a more substantial example of the feature
of the TASM language through the production cell case
study [19]. Finally, the Conclusion and Future Work sec-
tion, Section 6, summarizes the contributions of the re-
search and explains the additions that are to come in future
development.

2 Related Work

In the academic community, there are numerous math-
ematical formalisms that have been proposed for specify-
ing and analyzing real-time systems. The formalism pre-
sented in this paper is similar to the timed transition sys-
tems formalism presented in [16]. The two formalisms
differ in the concurrency semantics since timed transition
systems adopt an interleaving model whereas ASM the-
ory adopts a general model of concurrency [8]. The most
popular formalisms developed in academia can be classi-
fied into three main families: automata, process algebra,
and Petri nets [3].

In the automata family, timed automata are finite state
automata extended with real-valued clocks and communi-
cation channels. The formalism has been used on a vari-
ety of applications and is the formalism used in the model
checker UPPAAL [18]. The formalism is well-suited for
analysis by model-checking, but the lack of structuring
mechanisms makes abstraction and encapsulation difficult
to achieve [4]. Statecharts and the associated tool STATE-
MATE [15] augment automata with structuring mecha-
nisms (superstates). Statecharts also include time con-
cepts through the use of delays and timers.

In the Petri net family, a large number of variations on
the traditional Petri net model have been developed, in-
cluding various models of time [11]. Non-determinism
is an essential part of Petri nets, which makes Petri net
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unsuitable for the specification of safety-critical real-time
systems where predictability is of highest importance [4].

In the process algebra family, various offsprings of
Communicating Sequential Processes (CSP) [2] and the
Calculus of Communicating Systems (CCS) [20] have
been defined, including multiple versions of timed process
algebra [2]. However, in this formalism, it is difficult to
express non-functional properties other than time (e.g., re-
source consumption). Timed LOTOS (ET-LOTOS) [2] is
an example of a language from the process algebra family.
Other well known formalisms include the Synchronous
languages ESTEREL and LUSTRE [4].

In the industrial community, especially in the
aerospace and automotive industries, the Unified Mod-
eling Language (UML) [21] and the Architecture Anal-
ysis and Design Language (AADL) [28] have come to
dominate notational conventions. At its onset, UML did
not have formal semantics and remained a graphical lan-
guage with limited support for automated analysis. Since
its inception, many tools have defined their own seman-
tics for UML, but the international standard [21] still does
not contain a standard definition of the formal semantics.
AADL contains formal semantics but is still in the early
development stages, so it could not be completely eval-
uated. It is also unclear whether AADL can be used to
specify low level functional behavior or if it is only appli-
cable to architectural reasoning.

In the abstract state machine community, ASMs have
been used to model specific examples of real-time sys-
tems [7, 14]. Some extensions have been proposed to the
ASM theory to include timing characteristics [27] but the
extensions make no mention of how time is to be speci-
fied (only the theoretical semantics are proposed) and do
not address concurrency. The composition extensions for
ASMs presented in this paper are based on the XASM lan-
guage [1]. The XASM language does not include time
or resource specification and only deals with single agent
ASMs. The specification of resource consumption has not
been addressed in the ASM community.

3 The Abstract State Machine (ASM) For-
malism

The abstract state machine formalism revolves around
the concepts of an abstract machine and an abstract state.
System behavior is specified as the computing steps of the
abstract machine. A computing step is the atomic unit of
computation, defined as a set of parallel updates made to
global state. A state is defined as the values of all vari-
ables at a specific step. A machine executes a step by
yielding a set of state updates. A run, potentially infinite,
is a sequence of steps.

The following subsection presents the basic concepts
of ASM theory. For a complete description of the theory
of abstract state machines, the reader is referred to [8].
Our proposed extensions to the base theory are explained
in section 4.



3.1 Basic ASM Specification

The term specification is used to denote the complete
document that results from the process of writing down a
system design. This section introduces specifications that
contain only a single abstract state machine, also known
as basic or single-agent ASMs in the ASM community
[8].

A basic abstract state machine specification is made up
of two parts - an abstract state machine and an environ-
ment. The machine executes based on values in the en-
vironment and modifies values in the environment. The
environment consists of two parts - the set of environment
variables and the universe of types that variables can have.
In the TASM language all variables are strongly typed.
The machine consists of three parts - a set of monitored
variables, a set of controlled variables, and a set of rules.
The monitored variables are the variables in the environ-
ment that affect the machine execution. The controlled
variables are the variables in the environment that the ma-
chine affects. The set of rules are named predicates, writ-
ten in precondition-effect style, that express the state evo-
lution logic.

Formally, a specification ASM SPEC is a pair:

ASMSPEC = (E, ASM)
Where:

e F is the environment, which is a pair:

E=(EV,TU)
Where:
— E'V denotes the Environment Variables, a set of
typed variables
— TU is the Type Universe, a set of types that in-
cludes:
* Reals: RVU =R
« Integers: NVU ={...,-1,0,1,...}
* Boolean constants: BVU = {True, False}

* User-defined types: UDVU

e ASM is the machine, which is a triple:

ASM = (MV,CV, R)
Where:

— MV is the set of Monitored Variables = {muv |
mv € EV and mu is read-only in R}

— CV is the set of Controlled Variables = {cv | cv
€ EV and cv is read-write in R}

— R is the set of Rules = {(n, 7) | n is a name
and r is a rule of the form if C then A where C
is an expression that evaluates to an element in
BVU and A is an action}
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An action A is a sequence of one or more updates to
environment variables, also called an effect expression, of
the form v := vu where v € C'V and vu is an expression
that evaluates to an element in the type of v.

Updates to environment variables are organized in
steps, where each step corresponds to a rule execution.
In the rest of this paper, the terms step execution and rule
execution are used interchangeably. A rule is enabled if
its guarding condition, C, evaluates to the boolean value
True. The update set for the ith step, denoted Uj, is de-
fined as the collection of all updates to controlled variables
for the step. An update set U; will contain O or more pairs
(cv, v) of assignments of values to controlled variables.

A run of a basic ASM is defined by a sequence of up-
date sets.

3.1.1 Light Switch Example Version 1

A small example is presented to illustrate some of the fea-
tures of the TASM language. Here the example shows a
basic ASM specification describing the logic for switch-
ing a light on or off based on whether a switch is up or
down. The specification is divided into sections, identi-
fied by capital letters followed by a colon. Comments in
the specification are preceded by the escape sequence ““//

i)

ENVIRONMENT :

USER-DEFINED TYPES:

light_status = {ON, OFF}

switch_status := {UP, DOWN}
VARIABLES:

light_status 1light OFF

switch_status switch DOWN

MAIN MACHINE:

MONITORED VARIABLES:
switch

CONTROLLED VARIABLES:

light
RULES:
R1l: Turn On
if light = OFF and switch = UP then
light := ON
R2: Turn Off
if light = ON and switch = DOWN then
light := OFF

A sample run with the initial environment ((light,
OFF), (switch, U P)) yields one update set:

Uy = ((light, ON))

After the step has finished executing, the environment
becomes: ((light, ON), (switch, U P)).



4 The Timed Abstract State Machine Lan-
guage

Here we describe the TASM language. We do this by
introducing a series of modifications and extensions to the
ASM formalism from Section 3.

4.1 Time

The TASM approach to time specification is to spec-
ify the duration of a rule execution. In the TASM world,
this means that each step will last a finite amount of time
before an update set is applied to the environment. Syn-
tactically, time gets specified for each rule in the form of
an annotation. The specification of time can take the form
of a single value ¢, or can be specified as an interval [t,,,r,,
tmaz)- The lack of a time annotation for a rule is assumed
to mean ¢t = 0. Semantically, a time annotation is inter-
preted as a value € R. If a time annotation is specified
as an interval, the rule execution will last an amount %;
where t; is taken randomly from the interval, which is in-
terpreted as a closed interval on R. The approach uses
relative time between steps since each step will have a fi-
nite duration. The total time for a run of a given machine
is simply the summation of the individual step times over
the run. The time extensions are formally detailed in the
following section, and the example from the previous sec-
tion is extended to include time annotations.

4.2 Resources

The specification of non-functional properties includes
timing characteristics as well as resource consumption
properties. A resource is defined as a global quantity
that has a finite size. Power, memory, and communica-
tion bandwidth are examples of resources. Resources are
used by the machine when the machine executes rules.

Because resources are global quantities, they are de-
fined at the environment level. The environment E is ex-
tended to reflect the definition of resources:

E = (EV,TU, ER)
Where:

e EV and T'U remained unchanged from Section 3.1
e ER is the set of named resources:

— ER = {(rn, rs) | rn is the resource name, and
rs is the resource size, a value € R}

Similarly to time specification, syntactically, each rule
specifies how much of a given resource it consumes. The
specification of resource consumption takes the form of
an annotation, where the resource usage is specified ei-
ther as an interval or as a single value. The omission of
a resource consumption annotation is assumed to mean
zero resource consumption. The semantics of resource
usage are assumed to be volatile, that is, usage lasts only
through the step duration. For example, if a rule consumes
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128 kiloBytes of memory, the total memory usage will be
increased by 128 kiloBytes during the step duration and
will be decreased by 128 kiloBytes after the update set
has been applied to the environment.

Formally, a rule R of a machine ASM is extended to
reflect time and resource annotations:

R = (n,t,RR,7r)
Where:

e 1 and r are defined in Section 3.1

e ¢ denotes the duration of the rule execution and can
be a single value € R or a closed interval on R

e RR is the set of resources used by the rule where
each element is of the form (rr, ra) where rr € ER
is the resource name and ra is the resource amount
consumed, specified either as a single value € R or
as a closed interval on R

When a machine executes a step, the update set that is
produced will contain the duration of the step, as well as
the amounts of resources that were consumed during the
step execution. We use the special symbol L to denote
the absence of an annotation, for either a time annotation
or a resource annotation. The role of the L symbol will
become important in Section 4.3 and Section 4.4. Update
sets are extended to include the duration of the step, t € R
U {L} and a set of resource usage pairs rc = (rr, rac) €
RC where rr is the resource name and rac € RU {_L} is
a single value denoting the amount of resource usage for
the step. If a resource is specified as an interval, rac is a
value randomly selected from the interval.

The symbol T'RU; is used to denote the timed update
set, with resource usages, of the ith step of a machine,
where ¢; is the step duration, RC; is the set of consumed
resources, and Uj; is the set of updates to variables from
section 3.1:

TRU; = (t;, RC;,U;)

For the remainder of this paper, the term update set
refers to an update set of the T'RU; form.

4.2.1 Light Switch Example Version 2

The light switch example from the previous section is ex-
tended with time annotations and resource annotations.
The sample resource is memory. For brevity, only the
modified rules of the main machine are shown. The re-
mainders of the specification are the same as in Version
1.

R1:
t =

memory :=

if light
light

Turn On

[4,
512
OFF and switch =
ON

10]

UP then

R2: Turn Off



t 6

memory [128, 256]
if light = ON and switch = DOWN then
light := OFF

A sample run with the initial environment ((light,
OFF), (switch, UP)) yields the following update set:

TRU; = (5, ((memory, 512)), ((light, ON)))

The duration of 5 time units was randomly selected
from the interval [4, 10].

4.3 Hierarchical Composition

The examples given so far have dealt only with a sin-
gle sequential ASM. However, for more complex sys-
tems, structuring mechanisms are required to partition
large specifications into smaller ones. The partitioning
enables bottom-up or top-down construction of specifica-
tions and creates opportunities for reuse. The composi-
tion mechanisms included in the language are based on the
XASM language [1]. In the XASM language, an ASM can
use other ASMs in rule effects in two different ways - as
a sub ASM or as a function ASM. A sub ASM is a ma-
chine that is used to structure specifications. A function
ASM is a machine that takes a set of inputs and returns a
single value as output, similarly to a function in program-
ming languages. These two concepts enable abstraction
of specifications by hiding details inside of auxiliary ma-
chines.

The definition of a sub ASM is similar to the previous
definition of machine ASM:

SASM = (n, MV,CV, R)

Where 7 is the machine name, unique in the specifi-
cation, and other tuple members have the same definition
as mentioned in previous sections. The execution and ter-
mination semantics of a sub ASM are different than those
of a main ASM. When a sub ASM is invoked, one of its
enabled rules is selected, it yields an update set, and it
terminates.

The definition of a function ASM is slightly different.
Instead of specifying monitored and controlled variables,
a function ASM specifies the number and types of the in-
puts and the type of the output:

FASM = (n,IV,0OV, R)
Where:
e n is the machine name, unique in the specification

e [V isa set of named inputs (tvn, ¢t) where ivn is the
input name, unique in IV, and it € T'U is its type.

e OV is a pair (oun, ot) specifying the output where
ovn is the name of the output and ot € T'U is its type

e R is the set of rules with the same definition as pre-
viously stated, but with the restriction that it only op-
erates on variables in IV and OV.

19

A function ASM cannot modify the environment and
must derive its output solely from its inputs. The only
side-effect of a function ASM is time and resource con-
sumption.

A specification, ASM SPEC, is extended to include
the auxiliary ASMs:

ASMSPEC = (E,AASM, ASM)
Where:

e F is the environment

o AASM is a set of auxiliary ASMs (both sub ASMs
and function ASMs)

e ASM is the main machine

Semantically, hierarchical composition is achieved
through the composition of update sets. A rule execu-
tion can utilize sub machines and function machines in
its effect expression. Each effect expression produces an
update set, and those update sets are composed together
to yield a cumulative update set to be applied to the envi-
ronment. To define the semantics of hierarchical composi-
tion, we utilize the semantic domain R U { L} introduced
in Section 4.2. The special value L is used to denote the
absence of an annotation, for either a time annotation or a
resource annotation.

We define two composition operators, ® and &, to
achieve hierarchical composition. The ® operator is used
to perform the composition of update sets produced by ef-
fect expressions within the same rule:

TRU, ® TRUy = (tl,RC’l, U1) & (tQ,RCQ,UQ)
= (tl ® tg,RCl & RCQ, U, U Ug)

The ® operator is commutative and associative. The
semantics of effect expressions within the same rule are
that they happen in parallel. This means that the time an-
notations will be composed to reflect the duration of the
longest update set:

t ifto =1
b1 ®ta =1 t2 ifty =1
max(ti,te) otherwise

The composition of resources also follows the seman-
tics of parallel execution of effect expressions within the
same rule. The @ operator is distributed over the set of
resources:

RCy ® RCy = (re11y .., 7C1n) ® (rean, -

= (’I"Cll ® rcai, . .

. TCap)

L TClp ® TCop)

= ((rr11,7ac11) ® (rra1,racsy), . ..,
(rrin,Tac1n) ® (rran, race,))

= ((rr11,rac; ® racay), ...

((Trl’ru racin ® Tac?n))



In the TASM language, resources are assumed to be
additive, that is, parallel consumption of amounts r; and
ro of the same resource yields a total consumption r; +
T9:

racy if racy = L
racy @ racy = { racs ifrac; = L
racy + racy otherwise

Intuitively, the cumulative duration of a rule effect will
be the longest time of an individual effect, the resource
consumption will be the summation of the consumptions
from individual effects, and the cumulative updates to
variables will be the union of the updates from individual
effects.

The & operator is used to perform composition of up-
date sets between a parent machine and a child machine.
A parent machine is defined as a machine that uses an aux-
iliary machine in at least one of its rules’ effect expression.
A child machine is defined as an auxiliary machine that is
being used by another machine. For composition that in-
volves a hierarchy of multiple levels, a machine can play
both the role of parent and the role of child. An exam-
ple of multi-level composition is given at the end of this
Section. To define the operator, we use the subscript p
to denote the update set generated by the parent machine,
and the subscript ¢ to denote the update set generated by
the child machine:

TRU, ® TRU. = (t,,RCp,U,) & (tc, RC., U,)
= (tp @ te, RCp, ® RC., U, UU,)
The & operator is not commutative, but it is associative.
The duration of the rule execution will be determined by

the parent, if a time annotation exists in the parent. Other-

wise, it will be determined by the child:

te ift,=_1

tp S tc — c B
t, otherwise

The distribution of the & operator over the set of con-
sumed resources is the same as for the ® operator:
RC, ® RC. = (rcp1y .-, TCpn) ® (TCc1y - -+, Cen)
= (rcp1 B reet,. .., TCpn B TCen)
= ((rrp1, racp1) ® (rre1,race)s - - -,
(Trpn7racpn)GB(TTcn>TaCcn))
= ((rrp1, racpr @ racer), ...
((rrpn, TaCp, B Tacer))
The resources consumed by the rule execution will be

determined by the parent, if a resource annotation exists in
the parent. Otherwise, it will be determined by the child:
rac, ifrac, =1
rac, @G rac. = .
rac, otherwise

Intuitively, the composition between parent update sets
and child update sets is such that the parent machine over-
rides the child machine. If the parent machine has anno-
tations, those annotations override the annotations from

child machines. If a parent machine doesn’t have an an-
notation, then its behavior is defined by the annotations of
the auxiliary machines it uses.

Figure 1 shows a hierarchy of machines for an sample
rule execution. Each numbered square represents a ma-
chine. Machine ”1” represents the rule of the main ma-
chine being executed; all other squares represent either
sub machines or function machines used to derive the up-
date set returned by the main machine. Machine 3" is
an example of a machine that plays the role of parent (of
machine ”7”’) and child (of machine ”’1”).

1
[ i 1
2 3 4

—— |

5 6 7

Figure 1. Hierarchical composition

Each machine generates an update set T'RU;, where
1 is the machine number. The derivation of the returned
update set is done in a bottom-up fashion, where T'RU,..;
is the update set returned by the main machine:

TRU,.t =TRU; ® ( (TRU; ® (TRUs ® TRUg))®
(TRUs @ TRU7)®
TRU,)

4.3.1 Light Switch Example Version 3

The example from the previous sections is extended to il-
lustrate the use of auxiliary ASMs. The example has been
extended with a function ASM and a sub ASM.

FUNCTION MACHINE:
TURN_ON

SUB MACHINE:
TURN_OFF

INPUT VARIABLES:
switch_status ss

MONITORED VARIABLES:
switch

OUTPUT VARIABLE:
light_status 1s

CONTROLLED VARIABLES:
light

RULES: RULES:

R1: Turn On

|
|
|
|
|
|
|
|
|
|
|
| R1l: Turn Off
|
|
|
|
|
|
|
|

t := [4, 10] t 1= 6
memory := 128
if ss = UP then if switch = DOWN then
ls := ON light := OFF
R2: Else R2: Else
else then else then
ls := OFF skip

The two modified rules of the main machine are shown
below:

R1: Turn On
t =1
if light = OFF and switch = UP then
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light := TURN_ON(switch) //uses fASM
R2: Turn Off
memory := 1024

if light = ON and switch = DOWN then
TURN_OFF () //uses sASM

The first step of two sample runs are shown below:

e Initial environment: ((light, OFF), (switch, UP))
Update set: (1, ((memory, 128)), ((light, ON)))

e Initial environment: ((light, ON), (switch, DOWN))
Update set: (6, ((memory, 1024)), ((light, OFF)))

The first sample run invokes the function ASM and ob-
tains the step duration from the main ASM definition and
the resource consumption from the function ASM. The
second sample run obtains the variable updates and rule
duration from the sub ASM and the resource consumption
from the main ASM.

4.4 Parallel Composition

To enable specification of multiple parallel activities in
a system, the TASM language allows parallel composition
of multiple abstract state machines. Parallel composition
is enabled through the definition of multiple top-level ma-
chines, called main machines. Formally, the specification
ASMSPEC is extended to include a set of main ma-
chines M ASM as opposed to the single main machine
ASM for basic ASM specifications:

ASMSPEC = (E,AASM,MASM)
Where:

e F is the environment

e AASM is a set of auxiliary ASMs (both sub ASMs
and function ASMs)

e MASM is a set of main machines ASM that exe-
cute in parallel

The definition of a main machine ASM is the same
as from previous sections. Other definitions also remain
unchanged.

The semantics of parallel composition regards the syn-
chronization of the main machines with respect to the
global progression of time. We define tb, the global time
of a run, as a monotonically increasing function over R.
Machines execute steps that last a finite amount of time,
expressed through the duration ¢; of the produced update
set. The time of generation, tg;, of an update set is the
value of tb when the update set is generated. The time of
application, ta;, of an update set for a given machine is
defined as tg; + t;, that is, the value of tb when the update
set will be applied. A machine whose update set, gener-
ated at global time tg,, lasts ¢, will be busy until tb = tg,
+ t,. While it is busy, the machine cannot perform other
steps. In the meantime, other machines who are not busy
are free to perform steps. This informal definition gives
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rise to update sets no longer constrained by step number,
but constrained by time. Parallel composition, combined
with time annotations, enables the specification of both
synchronous and asynchronous systems.

We define the operator ® for parallel composition of
update sets. For a set of update sets T'RU, generated dur-
ing the same step by ¢ different main machines:

TRU, ® TRU; = (tl,RCl, Up)® (tQ,RCQ,UQ)

(tl,R01®RCQ,U1) ift; < tg
= (tQ, RCl ® RCQ, UQ) ift;1 >t
(ﬁl,Rcl(DRCQ,UlUUQ) ift; =to

The operator ® is both commutative and associative.
The distribution of the © operator over the set of resource
consumptions is the same as for the ® and & operators:

RCy ® RCy = (req1, ..., re1n) © (reat, ..., rcan)
= (re11 ©rean, ..., rCin © reay)
= ((rr11,raci1) © (rrag,racsy), .. .,
(rrip,racin) © (rrap, raca,))
= ((rri1,raci; ®racay), ...

((TTITM racin © Tac?n))

The parallel composition of resources is assumed to be
additive, as in the case of hierarchical composition using
the ® operator:

racy if racy = L
racy ® racey = { racs if rac; = L
racy + racy otherwise

At each global step of the simulation, a list of pending
update sets are kept in an ordered list, sorted by time of
application. At each global step of the simulation, the up-
date set at the front of the list is composed in parallel with
other update sets, using the © operator and the resulting
update set is applied to the environment. Once an update
set is applied to the environment, the step is completed and
the global time of the simulation progresses according to
the duration of the applied update set.

To enable communication between different machines,
the TASM language provides synchronization channels,
in the style of the Calculus of Communication Systems
(CCS) [20]. A synchronization channel is defined as a
global object, uniquely identified by its name, that is used
by two machines to synchronize. When using a commu-
nication channel, one machine plays the role of sender
and the other machine plays the role of receiver. The
syntax for using a communication channel is based on
CCS. For an example communication channel named =,
a sender would use 2! to send a notification and a receiver
would use x7 to receive a notification. For more details on
the features of the TASM language, the reader is referred
to [22].



Component Action Duration | Power
Feed Move block 5 500
Deposit Move block 5 500
Robot Rotate 30° 1 1000
Robot Drop a block 1 1000
Robot Pickup a block 1 1000
Press Stamp a block 11 1500

Table 1. Durative actions

5 Production Cell Example

This section illustrates the features of the TASM lan-
guage through the modeling of a more substantial exam-
ple, the production cell case study [19]. The production
cell consists of a series of components that need to be co-
ordinated to achieve a common goal. The purpose of the
production cell system is to stamp blocks. Blocks come
into the system from the loader, which puts the block on
the feed belt. Once the block reaches the end of the feed
belt, the robot can pick up the block and insert it into the
press, where the block is stamped. Once the block has
been stamped, the robot can pick up the block from the
press and unload it on the deposit belt, at which point the
stamped block is carried out of the system. The schematic
view of the production cell system is shown in Figure 2.

E_' —
Deposit Belt 4
ArmB
>
Robot
¥ 1 s
I ArmA
EE——
1 |

Loader Feed Belt

Figure 2. Top view of the production cell

All components operate concurrently and must be syn-
chronized to achieve the system’s goal. The robot has two
arms, arm A and arm B, which move in tandem and can
pick up and drop blocks in parallel. For example, the robot
can drop a block in the press while picking up a block
from the feed. A controller coordinates the actions of the
system by sending commands to the robot.

Some simplifications and extensions have been made
to the original problem definition [19]. For example, the
elevating rotatory table has been omitted. The original ex-
ample has been extended to reflect the reality that certain
actions are durative, that is, they last a finite amount of
time. The example has also been extended to include a re-
source, power consumption. The list of durative actions,
with their power consumptions, are shown in Table 1.

All other actions are assumed to be instantaneous and
are assumed to consume no power. In the TASM model,
each component of the production cell is modeled as a
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main machine. The model also contains a main machine
for the controller. Sub machines and function machines
are used, mostly to structure the actions of the robot. The
robot waits for a command from the controller and then
executes that command before waiting for another com-
mand. Listing 1 shows the first rule of the submachine
that updates the robot’s position. Listing 2 shows the sec-
ond rule of the main machine Feed, which carries a block
from the loader to the robot. The time annotation specifies
the amount of time that it takes for the block to travel from
the loader to the robot.

Listing 1 Rule 1 of submachine UPDATE_POSITION

R1: Rotate CW
{

t
power

1;
1000;

rotatecw then
:= rotateClockwise();

if command =
robot_angle

armapos := armPosition (ARM_A_FEED_ANGLE,
ARM_A_DEPOSIT_ANGLE,
ARM_A_PRESS_ANGLE,
rotateClockwise());

armbpos := armPosition (ARM_B_FEED_ANGLE,

ARM_B_DEPOSIT_ANGLE,
ARM_B_PRESS_ANGLE,
rotateClockwise());

Due to lack of space, other rules and other component
specifications are omitted; the complete list of machines
is shown in Table 2.

Listing 2 Rule 2 of main machine Feed

R2:

{
t
power

Block goes to end of belt
= 5;
:= 500;

if feed_belt = loaded then
feed_block := available;
feed_sensor!;

We use these two listings to illustrate the seman-
tics of parallel composition. For a partial initial envi-
ronment ((feed_belt, loaded), (command, rotatecw),
(robot_angle, 30), (armapos, intransit), (armbpos,
intransit)) with the two main machines Feed and Robot
with associated auxiliary machines, two update sets are
generated by the main machines:

TRUfpeed,1 =(5, ((power, 500)),((feed_block, available))
TRUgobot,1 =(1, ((power, 1000)), ((robot_angle, 0.0),
(armapos, at feed), (armbpos, atpress)))
The parallel composition of these two update sets
yields the environment described below. For brevity, only

the environment variables whose values are changed are
shown. The time t denotes the global simulation time:

o t < 1: (((power, 1500)), )
o t=1: (((power, 1500)), ((feed_block, available)))



Name Type Purpose

Controller Main Sends commands to the robot
Loader Main Loads blocks onto the feed belt
Feed Main Carries blocks from the loader
Robot Main Processes commands

Press Main Stamps blocks

Deposit Main Carries blocks out of the system
allEmpty Function | Determines whether the robot is loaded
armPosition Function | Returns the position of an arm
rotateClockwise Function | Changes the robot angle by +30°
rotateCounterClockwise Function | Changes the robot angle by -30°
DROP_ARM_A Sub Drop a block from arm A
DROP_ARM_B Sub Drop a block from arm B
DROP_BLOCKS Sub Invokes the drop submachines
EXECUTE_.COMMAND Sub Executes a command
PICK_UP_.ARM_A Sub Picks up a block with arm A
PICK_UP_ARM_B Sub Picks up a block with arm B
PICK_UP_.BLOCKS Sub Invokes the pick up submachines
UPDATE_POSITION Sub Updates the angle of the robot

Table 2. List of all machines used in the pro-
duction cell model

e 1 <t < 5: (((power, 1000)), 0)

et = 5 (((power, 1000)), ((robot_angle, 0.0),
(armapos, at feed), (armbpos, atpress))

e t > 5: (((power, 0)), ()

The complete model, including all the components,
was run for a scenario where the loader fed a total of 5
blocks into the system, with the initial state shown in Fig-
ure 2. It took a total of 219 simulation steps and 103 time
units for all 5 blocks to go through the system, given the
controller strategy.

6 Conclusion and Future Work

The contributions of this paper span two different ar-
eas. On the theoretical side, the paper presents extensions
to the ASM formalism to facilitate the specification of
real-time systems. The specification includes both func-
tional and non-functional properties, integrated into a uni-
fied formalism. The incorporation of timing, resource, and
functional behavior into a single language fills an impor-
tant need of the real-time system community [9, 17]. This
is achieved both for basic TASM specifications and for the
composition of specifications. The resulting formalism
keeps the same theoretical foundations of ASM theory but
is better suited for modeling real-time systems because of
the support to explicitly state resource consumption and
timing behavior. On the practical side, this paper defines a
formalism that has the potential of being both formal and
usable. By basing the formalism on the theory of abstract
state machines, the purpose is to bring the stated benefits
of using abstract state machines to the designers of reac-
tive real-time systems.

On the theoretical side, verification techniques and
test-case generation techniques are currently being sur-
veyed and studied to understand how these capabilities
could be applied to the proposed language. Prelimi-
nary results suggest leveraging existing verification tools

23

(e.g., UPPAAL [18]) by defining semantic preserving for-
mal mappings between the TASM language and the for-
malisms of existing verification tools [25]. On the prac-
tical side, the TASM language is the first step towards a
framework for validation and verification of high-integrity
embedded systems [24]. The language will serve as the
basis for the framework and an associated toolset to write
and analyze real-time system specifications is being devel-
oped [23]. The TASM language will be incorporated into
a suite of tools that will be used to verify timing and re-
source consumption behavior of embedded real-time sys-
tems [26].
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Abstract The latter are rigorously analyzed using TINA[8], the
Time Petri net analyzer developed by LAAS-CNRS.
Real-time systems not only interact with their envi- The paper is organized as follows. Section 2 presents
ronment and hopefully deliver their expected outputs on RT-LOTOS. Section 3 explains the expected benefits of
time. Unlike transformational systems, they may be inter- adding a suspend/resume operator to RT-LOTOS. Sec-
rupted at any time while keeping the capacity to restart tion 4 presents SWTPN. Section 5 discusses RT-LOTOS
later on without loosing their state information. There- to SWTPN translation, it includes a formal proof. Section
fore, a real-time system specification language should in- 6 presents three examples. Section 7 surveys related work.
clude a suspend/resume capability. In this paper, we pro- Section 8 concludes the paper and outlines future work.
pose to extend the timed process algebra RT-LOTOS with
a suspend/resume operator. Extended RT-LOTOS speci?2 RT-LOTOS
fications are translated to Stopwatch Time Petri nets that
may be analyzed using the TINA tool. We define an RT- Real-Time LOTOS, or RT-LOTOS for short, is a
LOTOS to SWTPN translation pattern. A formal proof is timed extension of the ISO-based formal description
included. Case studies show the interest of our proposaltechnique LOTOS (Language of Temporal Ordering of
for preemptive systems specification and verification. Specification)[20]. LOTOS relies on the CCS process
algebra and inherits a multiple rendez-vous mechanism
from Hoare’s CSP. RT-LOTOS enables explicit and se-
1 Introduction mantically well-founded description of temporal mecha-
nisms. Three generic temporal operators have been added
A wealth of formal models have been proposed in the to LOTOS: First, a deterministic delay expressed by the
literature to describe and analyze real-time systems. Fewdelay operator. For instancelelay(d)makes it possible
of them enable explicit description of suspend/resume op-t0 delay a procesB for a certain amount of timd. Sec-
erations. Examples include Stopwatch Time Petri nets[6] ©nd, a non-deterministic delay expressed by letency
and Stopwatch automata[11]. As a timed process algebraoperator. For instancégtency(l)makes it possible to de-
RT-LOTOS[13] also makes it possible to describe impor- 2y a process for a value that is non-deterministically se-
tant features of real-time systems (e.g., parallelism, re-lected in [0, I]. Its usefulness and efficiency have been
action to stimuli from the environment, delay, temporal demonstrated in [12]. The third temporal operator is a
indeterminism). RT-LOTOS supportsdisrupt operator time-limited offer associated with an action. For instance,
which allows a proces® to suspend another proceBs g{t} allows one to limit the amount of time allocated to
for ever. Suspension in RT-LOTOS is hence reduced to offer an actiora. _
unvecoverable aborton. Clearly, RT-LOTOS misses re-  H1e 0loling processe andPL usyte the use of
sume capabilities. This weakness is inherited from (un-
timed) LOTOS. In [15] it is shown that LOTOS misses process P[a]: exit:= process PL[a]: exit=
some mechanisms to deal with suspend/resume behaviors,46(2)af5h exit delay(2)latency(6)a{Shexit
. . . . endproc endproc
This paper’s contribution is to extend RT-LOTOS with
a suspend/resumeperator. The proposed extension is Process starts with a 2 time units delay. Once the delay
given a formal semantics without disturbing the seman- expires, actiore is offered to the environment during 5
tic model of RT-LOTOS. It is worth to be noticed that time units. If the process’s environment does not synchro-
discussion goes beyond language aspects. The challengeize ona before this deadline, a time violation occurs and
is to have extended RT-LOTOS specifications effectively the process transforms intbop Proces$L differs from
model checked. We propose to translate RT-LOTOS spec-P, for it contains datencyoperator. Actiora is delayed
ifications into Stopwatch Time Petri nets (SWTPN)[6]. by a minimum delay of 2 units of time and a maximum
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delay of 8 units of time (in case tHatencygoes to its
maximum value). From the environment’s point of view,
if the latency lastd time units, the process behaves like infinite sequence of 'open; close’ actions will follow Ma-
delay(2+)a{5-1} (cf. the left part of Figure 1). Of course, chine’s interruption.

if the duration of the latency goes beyond 5 units of time, a The use of the parallel composition operdtdowould not

model that kind of behavior. Machine[[] Cover]...] al-
lows Machine to be suspended, but not to be resumed. An

temporal violation occurs and proce®k transforms into
stof(cf. the right part of Figure 1).

h@wf} sy )

0 2 [ i 7 0 2 78

Figure 1. Delay, latency and Limited offering

be more appropriate, since the resulting interleaving of ac-
tions in Machinel[...] ||| Cover]...], does not ensure that

Cover will terminate before Machine is resumed

Another solution is to adopt a state-oriented style. Us-
ing the choicg] and the enabling> operators, we explic-
itly define all the possible suspending points in Machine
(actions are indivisible). For this sake the behavior of Ma-
chine is changed as follows:

Process Machine2[start,b_wash,e_wash,open,close]
‘exit
((start; exit)

The originality and interest of the latency operator is [(Cover[open, close] >> (start; exit)))
more obvious when one combines that operator with the >>((b_wash; exit)

hiding operator. In LOTOS, hiding allows one to trans-

form an externabbservableaction into aninternal one.

[I(Cover[open, close] >> (b_wash; exit)))
>>((e_wash; exit)
[I(Cover[open, close] >> (e_wash; exit)))

In RT-LOTOS, hiding has the form of a renaming opera- endproc

tor which renames actiominto i(a). In most timed exten-

The definition of Cover has also to be changed to a

sions of LOTOS, hiding implies urgency. It thus removes non recursive one. This is to avoid an infinite sequence of
any time indeterminism inherent to the limited time offer- Cover’s actions and to ensure Machine actually resumes.

ing. In RT-LOTOS, a hidden action is urgess$ soon as
it is no longer delayed by some latency operatbet us,
e.g., consider the RT-LOTOS behaviuide a in PL
where actiora is hidden in procesBL. If [ is the duration
of the latencyj(a) will necessarilyoccur at date + 1, if
I < 5. (cf. Figure 2). But, if { > 5), a temporal violation
occurs (similarly to the situation where actianwas an
observable action).

i.l’n)
0 2 I 7

Figure 2. Hiding in RT-LOTOS

3 An RT-LOTOS Suspend/Resume opera-
tor

3.1 Rationale

However this 'contortion’ lowers the readability and com-
positionality of the specification (although Machine is a
simple sequence of actions) and allows only three times
the ‘open; close’ sequence.

Lﬁ-t us now consider a timed extension of the washing ma-
chine.

Hide b_wash, e_wash in

process Machine[start,b_wash, e_wash]: exit:=
start;delay(1,2)b_wash;delay(40,70)e_wash;exit
endproc

After the occurrence of stai,wash is delayed by a 1 up

to 2 units delay. Washing takes between 40 and 70 units
of time. Actionsb_wash ande_wash are internalized and
therefore urgent. In this revisited specification, it is im-
possible to define all the suspension points because we are
considering a dense time model. Moreover using a spec-
ification technique based on the modification of the sus-
pended behavior (Machine2) is no longer possible; it does
not preserve the timing constraints in the original Machine
process. Let us consider the following behavior expressed
In state-oriented fashion:

(delay(1,2)b_wash; exit)

Is RT-LOTOS well-suited to specify that a process ex- [I(Cover[open,close]>>delay(1,2)b_wash; exit)
ecution may be stopped and resumed later on? To answer

that question, let us consider the behavior of a simplified

The choice offered between the two alternatives is

washing machine. It is made up of two processes namedresolved in the interaction with the environment. Cover is

Machine and Cover, respectively.

process Machine[start,b_wash,e_wash]:exit:=
start; b_wash; e_wash; exit

endproc

process Cover[open, close]: exit:=

open; close; Cover[open,close]

endproc

executed if the environment offetgen, unlessb_wash

is executed (after a delay between 1 and 2 units of time).
Until the choice is resolved the two alternatives age
similarly. Let us now suppose the environment offers
action open after 1 unit of time, which leads to the
following execution:

Machine may be suspended by Cover at any time during(delay(l 2p_wash...) ] (Cover[open, closep ..) >

its execution, and resumed after the completion of each

Cover instance (each instance of Cover yieldsagen;
close’action sequence).

The RT-LOTOS disrupf> operator is not appropriate to

Cover|...]
—

(delay(0,1y_wash...) [] (Cover[open, close} ...)
(delay(1,2b_wash; exit)

1||| may be seen as a non deterministic solution to model coroutines.

26



After the elapsing of 1 unit of timeb_wash must
be enabled at most after 1 time unit.
behavior, after the completion of process Covetyash

has to wait for a delay between 1 and 2 units of time,

execution, then Q can no longer be executed.
Rule 3 defines control passing between P and Q at the

In the resulting occurrence of one of the first actions of Q.

Rule 4 and rule 5 say that Q is the only active behavior.
The suspended behavior P can not perform any action

whereas 1 unit of time of this delay has already elapsed (rule 4). Further, it cannot age (rule 5).

(the timing context is not restored).

3.2 Syntax and Semantics of the Suspend/Resume
operator

Section 3.1 pointed out that RT-LOTOS lacks a mech-

anism for a modular description, of a procddsvhose

Rule 6 permits the resuming &f. As soon a%) executes
action g, P is resumed and) is restarted. Instead of
writing P < g] Q, we could have writtelP<¢](Q,Q°),
where the operan@’ is used to keep the initial sate of
Q. We then writeP< ¢](Q, Q%)L P[g>>(Q°, Q).

Rule 7 says that regarding timefgbehaves as3 (the

temporal evolution can be suspended and then resumed aaging of P induces the aging Q).

the same point.

One could think that we are missing some rule, to de-

To remedy to this situation we propose to add a fine the behavior oP< ¢]@Q whenQ terminates success-

suspend/resume operator to RT-LOTOS. It is repre-
sented by [p> (g being the gate used to resume), which is
a mix between the disrupt- and the enabling> opera-
tors (we extend> to handle resumptionP[g>>Q models
the possible suspension of main behaWday Q, Q is ex-
ecuted till it terminates or executes actignin the last
case, the control returns to procéssn the same point it
has been suspended. This special gatenot fixed syn-

fully, in order to get rid of the suspended behavigrbut
the termination of) is supported by rule 4 where the sus-
pended behavior is kept (this is not a problem, sigte
cannot do any action after its termination, therefBrean-

not be resumed). Moreover, if this termination is captured
by an enabling, all the whole behavidP« ¢]Q) is for-
gotten.

tactically in the operator, and the user is free to use any4 Time Petri Nets with Stopwatches

gate name.

Special attention is provided to give the proposed ex-

Interruptions and suspend/resume operations are com-

tension a simple semantics, which further suits abstractmon mechanisms in real-time systems. Several modeling
reasoning. We follow on the recommendation made formalisms allowing description of behaviors which can

in [5] on providing preemption primitives at first-class be suspended and resumed with a memory of their sta-
level and with full orthogonality to other concurrency tus have been proposed in the literature. [11] proposes a

and communication primitives. The behavior (Bi@) is
formally defined using Plotkin-style structural semantics
(SOS rules).

We introduce the following semantic operaterg].
The latter expresses thatas been suspended Qy This

subclass of Linear Hybrid Automata (LHA) :Stopwatch
Automata (SWA). In SWA the derivative of a variable
in a location is either 0 or 1, to account for a computa-
tion progress and suspension. [11] proves that SWA with
hidden delays are as expressive as LHA. The reachabil-

operator appears only at the semantic level. It may not beity problem for this class of automata is undecidable[2].

used in RT-LOTOS specifications.
In the following Gp denotes the set of observable and
hidden gates oP.

) PL;P’
P[g%gfpl[g>>Q
2 P;ﬂi’f
Plg>Q—P’
39—
P[g>>Qa*>1/:’<<9]Q/
4) Q*{:Q
P<<9]Qt*>P<<9]Q/
5 Q—;Q/
P<<9]Qg—’1/3<<g]Q'
6) Q*;Q
P<<91Q%P[?>>Q/
7 P;’P&Q*’Q/
Plg>»>Q—P'[g>Q’

a € Gp\{exit}

a € Go\{g}

Rule 1 defines the normal execution of P. It says
that after any actiom of P, Q is still given the chance to
suspend P (Q is still active).

As no expressive enough decidable subclass of SWA has
been identified, [11] proposes an 'over-approximating’ al-
gorithm for model checking safety property of SWA. The
approach is based on a DBM encoding of state classes.
The authors admit that such an over-approximation is of-
ten too coarse.
Several extensions of Time Petri nets (TPN)[23] have
been proposed for modeling action suspension and
resumption[10] Scheduling-TPNs[25] where resources
and priorities primitives are added to the original TPN
model. In Inhibitor Hyperarc TPNs (IHTPN’s)[26], spe-
cial inhibitor arcs are introduced to control the progress
of transitions. [6] proves that the state space reachabil-
ity problem of these extensions is undecidable even for
bounded net$. Efficient state space over-approximation
methods are available for all these extensions. As for SWA
the overapproximation obtained is often too coarse.

In this paper, we consider a TPN model[23] extended
with suspend/resume capabilities[6]. SwTPN'’s extend

2The state space reachability problem of bounded Petri nets and

Rule 2 says that if P has successfully completed its bounded Time Petri nets is known to be decidable.
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TPN’'s with stopwatch arcs that control transitons 5 Translating the Suspend/Resume RT-
progress. LOTOS operator to SWTPN

Definiton 1. A Stopwatch Time Petri net is Two verification techniques have been developed for
a tuple (PT,Pre Post,Sw,mo,IS)  where  RT-LOTOS specifications. The first one is implemented
(P,T, Pre, Post,mo,1S) is a Time Petri net and by thertl tool. The latter compiles an RT-LOTOS spec-
Sw: T — P — N is a function called the stopwatch ification into a Timed automata and generates a minimal
incidence function. Sw associates an integer with each reachability graph. A more efficient technique was pro-
(p,t) € P x T. Values greater than 0 are represented by posed in [28][27]. An RT-LOTOS specification is trans-

special arcs, called stopwatch arcs (possibly weighted).|ated into a Time Petri net using thé2tpn tool, and veri-
They are represented with diamond shaped arrows. Notefied using a Time Petri net analyzer.

that these arcs do not convey tokens. As usual, atransition  Unfortunately neither Timed automata nor Time Petri

t is enabled at markingn iff m > pre(t). In addition, a  net can represent clocks whose progression can be sus-
transition enabled at is active iffm > Sw(t), otherwise  pended and later resumed at the same point. Hence none
it is said suspended. Figure 3 shows a Stopwatch Timeof these models can be used as intermediate model for ver-
Petri net. The arc from placg, to transitiont; is @ ifying the RT-LOTOS extension proposed in this paper.
stopwatch arc (grey shadowed diamond) of weight 1. The This is why we investigate a translation from RT-LOTOS

to SWTPNs. This opens avenues to verification based on
state space analysis methods proposed in [6]. The pro-
posed translation method can be seen as providing RT-
LOTOS terms with a SWTPN semantics. On this net se-
mantics depends the quality of our translation. As defined
in [24] a good net semantics should satisfy the 'retriev-
ability’ principle. Accordingly, we must not introduce any
auxiliary transitions into the resulting SWTPN. By defin-
ing a one to one mapping of actions between RT-LOTOS
and SWTPN we guarantee that a run of a system under de-
sign will necessarily lead to the same execution sequence
in both the RT-LOTOS term and in its associated SWTPN.
Moreover, the proposed RT-LOTCsispend/resumep-
erator is compositional. It is then inevitable, during the

Figure 3. SWTPN example

firing of ¢, will freeze the timing evolution of,. £, will  translation process, to consider SWTPNs as composable
be fireable when its total enabling time reaches 2 time entities. Unfortunately, SWTPN miss such a structuring
units. If we replace the stopwatch arc by a norpralarc,  facilities. To fill this gap, we introduce the concept®-

to will never be fired because of the continuous enabling Componengs a basic building block.

condition®

[6] proves that space reachability is undecidable for g5 1 Stopwatch Component

SwTPN’s, even when bounded. In [6] the authors adapted  p Sw-Componentencapsulates a labeled SwTPN
the algorithm published in [7]. This construction yields yhich describes its behavior. It is handled through its in-
exact state space abstraction, but as a consequence of thg faces and interactions points. $w-Componenper-
above undecidability result, boundedness of the SWTPNyrms an action by firing a corresponding transition. A

does not imply finiteness of the graph of state C|asses-SW-Componerinas two sets of labelsAct : the alpha-

To ensure termination on a class of bounded SWTPN's. ot of the componentTime: a set of three labels, in-

[6] proposes a new overapproximation method basedyoqyced to represent the intended temporal behavior of a
on quantization of the polyhedra representing temporal component. Atw label represents a temporal violation in
information in state classes. The exact behavior of the 4 time-limited offer. Adelay or latency label represents

SWTPN can be approximated as closely as desired; bothy geterministic delay or a non deterministic delay, respec-
the exact and approximate computation methods havetively.

been implemented in an exter_15|o_n of the TINA tooI_ [8]. A Sw-Component is graphically represented by a box con-
However, the exact characterizations of the behavior of taining a SWTPN (cf. Figure 4). The black-filled boxes at

a SwWTPN, obtained by the algorithm of [6] are finite the component boundary represent interaction points. A
in many practical cases, such as the experimentationsgken in the “out” place of a component means that the
reported in this paper. component has successfully completed its execution.

C =< X, Act, Lab, I, O > is aSw-Componenthere:

3in the TPN model, a transition t with an associated static interval .
[a,b] can be fired if it has 'continuously’ been enabled during at least’a’ ® X =< P, T, Pre, Post, Sw,mg, 1S5 > is a SWTPN.
time units, and it must fire if continuous enabling reaches ’b’ time units,
unless it conflicts with another transition. o Act = A,UARU{exit}. A, (Observable actions) and
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Figure 4. Sw-Component

A, (hidden actions) are finite, disjoints sets of transi-
tions labels.A, U {exit} represents the component’s
interaction points. During the translation procelss
andA;, will be used to model observable and hidden
RT-LOTOS actions, respectively.

Lab : T — (Act U Time) is a labelling func-
tion which labels each transition i with an ac-
tion name @Act) or with a time-event [ime =
{tv, delay, latency}). Let T4 (resp. T7""¢) be
the set of transitions whose label belongs Aot
(resp.Time).

1 C Pisanon empty set of places defining the input
interfaces of the component.

O C P is the output interface of the component. A
component has an output interface if it has a transi-
tion(s) labelled by exit. If sap is the outgoing place

of those transitions. Otherwise, = (.

Moreover, a set of invariants is associated with 8ve-
Components

[H1] The encapsulated SwWTPN contains no source
transition.

[H2] The encapsulated SWTPN is 1-bounded.

[H3] If all the ’input’ places are marked, all other places
areempty/ C M = M =1I).

[H4] If the out place is marked, all other places are empty
O£DNOCM=M=0).

H2 is called the "safe marking” property. This assumption
is made by most analysis methods.

5.2 Translation Pattern for the Suspend/Resume op-
erator

Let Cp be aSw-Componenassociated with an RT-
LOTOS behavioP. The set of first actions" A(Cp) is
defined in Appendix A.
We denote as usual, y = {t € T/post(t,p) > 1}
the set of outgoing transitions @f and by*p = {t €
T /pre(t,p) > 1} the set of incoming transitions of

In Figure 5,Cp(,s.q is the component wher€pr can
be suspended b§/, and then resumed at the same point.
To model this behavior we introduce a shared plaBelt
is connected with all transitions @fp with stopwatches
arcs of weight 1, except thevit transition (if there is one).

Vt € Tep lab(t) # exit = Sw(SR,t) = 1. If the SR
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Figure 5. Suspend/Resume pattern

place is unmarked, the execution@§ is suspended.
MoreoverCp is suspended at the occurrence of the first
action ofCp (SOS rule 3).SRis then an input place of
the first action ofCg.
After the successful termination 6fp, the latter can not
be suspended anymore, afig is deactivated ( SOS rule
2). HenceSRhas to be an input place for the 'exit’ transi-
tion of Cp. SR* = FA(CQ) UUsere, atab(t)=cait
After the execution of actiory in Cg, Cp is resumed
(SOS rule 6). For this, actiog restores the token iBR
The latter is an output place for thgtransition ofCy.
*SR={g}.
Finally, the output interfaces of the two components are
merged. Opgs.q = {out} if (Op # ¢V Oq # ¢).
Let us notice that if the alphabet of the componélat
does not include the special gajethe operator behaves
exactly as a disabling.

The definition ofCp ;. follows:

Cp[g>>Q =< Z ,Actp U ACtQ,
Plg>Q

Labp[g>>Q, Ip U IQ U {SR}, Op[g>>Q >

where : Z = <Pp[g>>Q,Tp[g>>Q,Prep[g>>Q,
Plg>Q

Postpgsq: Swpigsq:.mo, ISplgsq>
Pp[g>>Q =PpUPoU {SR} @] {out}\OQ\Op
TP[g>>Q =TpU TQ

Prepjgsq = Prep U Preg U

U

(teTp)ALab(t)=exit

U

teFA(CQ)

(SR, 1)

(SR,1)

U

Postp(gs.qg = Postp U Postg U

U (t,SR)

teTQALab(t)=g



Swpigsq = Swp U SwqU class graph of Figure 7. If we check the detailed textual
description of the class graph output by TINA, we can lo-

U L I(SR’ t) cate the following suspended transitionsart in class 1,
teTpALab(t)# exit b_wash in 12, e_wash in class 9 andlelay in classes 10
ISppgsq = ISpUISg and 13.

Moreover, a set of arcs is introduced to con-
nect the places inlg with the exit transition of Cp
(UtGTCPALab(t):,em/ApelQ (p,t)). The aim of these arcs
is to purgeCq. A purge is the operation which consists in
emptying the suspending componé&ry; from a remain-
ing tokens in its input interface after the successful termi-
nation ofC'p. Reciprocally, ifC terminates successfully, ;
Cp is purged. For readability reason we do not represent o <]
purgearcs in the above translation pattern. R

-start

- =

5.3 Proof of translation consistency

We prove that the translation preserves the RT-LOTOS
semantics of the new suspend/resume operator and that Figure 6. Washing-Machine SWTPN
the associate@w-Componenfcf. Figure 5) satisfies the
good properties (H1-H4).

The proof is made by induction: assuming that two
Sw-ComponenCp (respectivelyCg) are equivalentto
RT-LOTOS behaviors® (respectively@), we prove that
Cplg>q IS equivalent taP[g>(Q (the behavior over time
must be accounted for). Intuitiveli?[g>Q andCpys.q
are timed bisimilar iff they perform the same action at the
same time and reach bisimilar states.

More precisely, what we have to prove is that, from
each reachable state, if a time move (respectively an ac-
tion move) is possible iP[g>>Q , it is also possible in
Cplgsq and vice-versa. We then ensure that the proposed
translation preserves the sequences of possible actions as
well as the occurrence dates of these actions. The proof is
given in Appendix B.

6 Three case studies Figure 7. Washing-Machine class graph

Washing Machine: A system of three tasks: The suspend/resumeperator
The extended RT-LOTOS specification of the Washing- can be used for the modeling of scheduling problems in
Machine of section 3 follows: dense time semantics. The problem of real-time schedu-

Specification WM[start,open,close]:exit lability analysis involves establishing that a set of concur-
behavior hide b_wash, e_wasn in rent processes will always meet its deadlines when exe-
achine[start,b_wash,e_wash] . . . .
[close>> cuted under a particular scheduling discipline on a given
weoverfopenclose] system. A schedulability discipline can be described by
an RT-LOTOS specification which defines how a sched-
process Machine[start,b_wash,e_wash]:exit:= H H
start:delay(1.2)b. washdelay(40.70)e washiexit u_ler chooses among processes competing for processing
endproc time. The schedulability analysis is performed in two
o steps: First the RT-LOTOS specification is translated into
process Cover[open, close]: exit:= i i .
open; close; Cover[open,close] SWTPN, whose states space is generated using a Petri net
eﬁggggéc analyzer which further permits checking for missed dead-

lines. If no state with a missed deadline is reachable, then
Following the translation procedure proposed in sec- the system is schedulable.
tion 5 we obtain the SWTPN of Figure 6. Using the con- Let us consider the case study presented in [10].
struction that preserves markings arid. (Linear Tempo- controller controls three types of tasks by initiating a re-
ral Logic) properties, proposed in [6] we obtain the state questint;. The three tasks are executed on the same (and
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unique) processofl'asks andTask, are periodic witha  ure 8 might be not safe, but the timing constraints pre-
period of 150 (respectively 50) units of tim& asks is vent from the insertion of a new token i, ps or ps.

sporadic with a minimum interarrival time of 100'ask; None of place®,, p3 andps contains more than one to-

has priority over botlf'asks andTasks. Tasky has pri- ken in all possible computations, which means that the

ority overTasks. controller never initiates a task while its previous instance
The RT-LOTOS specification is given follows. is pending. In other words, none of th&sk; misses its

Specification Three_Tasks_System : noexit

behviour hide intl,int2,int3, endT1, endT2, endT3 in

(Controller [intl,int2,int3]
|[int1,int2,int3]|
((Task1[intl,endT1]

[endT2>> Task2[int2,endT2])
[endT3>> Task3[int3,endT3]))
where

process Controller [intl,int2,int3] :noexit :=
Launcherl[int1]
/Il Launcher2[int2]
|l Launcher3[int3]
where
process Launcherl[intl]: noexit :=
delay(50)(int1;stop
|| Launcherl[int1])
endproc

process Launcher2[int2]: noexit :=
delay(150,INF)(int2;stop

|l Launcher2[int2])
endproc

process Launcher3[int3]: noexit :=
delay(150)(int3;stop

|Il Launcher3[int3])
endproc
endproc

process Taskl[intl, endT1]:noexit:=
intl;delay(10,20)endT1; Taskl[intl, endT1]

deadline. Note that, quantitatives properties, like worst
case response time (WCRT) may be checked by adding
observers to the extended RT-LOTOS specification.

A Distributed Control system with Time-outs:

The description of the system is taken from [17]. The
latter consists of two sensors and a controller that gener-
ates control commands to a robot according to the sensors
readings (cf. Figure 9).

The two sensors share a single processor and the prior-
ity of sensor 2 for using the processor is higher than the
priority of sensorl. If sensorl loses the processor because
of preemption by sensor2, it can continue the construction
of its reading after the processor is released by sensor2.
Each sensor constructs a reading and sends the latter to
the controller. Each sensor takes 1 to 2 milliseconds of
CPU time to construct a reading. Once constructed, the
reading of sensorl expires if it is not delivered within 4
milliseconds and the reading of sensor 2 expires if it is not
delivered within 8 milliseconds. The Controller accepts a
reading from each sensor in either order and then sends
a command to the robot (signal action). The two sensors

endproc readings that are used to construct a robot command must

be received within 10 milliseconds, if not, the first sensor
reading is disregarded. The controller takes 3 to 5 mil-
liseconds to synthesize a robot command.

process Task2[int2, endT2]:noexit:=
int2;delay(18,28)endT2; Task2[int2, endT2]
endproc

process Task3[int3, endT3]:noexit:=
int3;delay(20,28)endT3; Task3[int3, endT3]

endproc Sensorl Sensor2
endspec

Figure 8 depicts the resulting SWTPN. For this exam- v 3
[Controllerl } [ Controller2 }

N

Figure 9. The robot controller architecture

From the extended RT-LOTOS specification of the
system we obtain a SWTPN with 38 places and 34
transitions. Using the construction of [6], TINA builds
in 80.59 secka state graph of 40 723 classes and 76 806
transitions.

ondril 7 {1001

endr2| o |[0,0]
Figure 8. 3-Tasks system SwTPN 7 Related Work

ple TINA builds a graph of 615 classes and 859 transi- E-LOTOS and ET-LOTOS: A suspend/resume oper-
tions. All the markings are safe (none of the places of the ator has been proposed for E-LOTOS[21]. An excep-
net contains more than one token), which implies schedu-tion is specified inside the operator for resuming. Let us

lability. Transitionsto, t2 andt; don't satisfy the prop- 4All the experiments described in this paper have been performed on
erty (m \*¢;) N ¢! = 0. As a consequence the net of Fig- a PC with 512 MB memory and a processor at 3.2 GHz.
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comment on the use of an exception for resuming. In on the same specification. However, schedulability analy-
E-LOTOS an exception is a visible urgent event. Note sis with the approach proposed in this paper, is limited to
that this definition violates the RT-LOTOS philosophy fixed priority policies. This is because priorities are en-
which states that one cannot enforce urgency on visiblecoded in the static operators of extended RT-LOTOS.
events. The only way to introduce urgency in RT-LOTOS A comparison of our work with existing approaches re-
is through thehide operator. Moreover, a systematic use lating process algebras and Petri nets[9][22][16] can be
of urgency for resuming may introduce unnecessary con-found in [27].

straints and thus may result on deadlock situations. We

think the specifier should have the freedom to specify 8 Conclusions

when urgency is needed for resuming.

In [18] the authors propose a suspend/resume operator The RT-L'OTOS formal description technique supports
for ET-LOTOS. It allows self suspension. A visible action thrée generic temporal operators that enable explicit and
g is used for both self suspension and resuming. How- semantlcally well-fom_mded description of real-t_|me mech-
ever an ambiguous interpretation of an occurrence of gatenisms and constraints. Nevertheless, real-time systems

g may produce undesirable effects in case of recursive be-description in RT-LOTOS has been hampered by the lack
haviours. of suspend/resunaperator.

A key issue is not addressed in [18] [21]. The problem In this paper, we propose 10 ex_tend RT'!‘OTOS with
.a suspend/resume operator g which permits to sus-

of suspension and resuming is addressed at the spem-end 2 behavior and to resume it later on. The proposed
fication level. The problem of verifying the resulting P Vi ume | ' prop

behaviours is not tackled. At the present knowledge of teiétneT)Sfl%T(tin?jzgnR?r-flf)émrglssimggf‘zf:Ziioic;rl;r;a;;;(ac)rlzci:s:
the authors, there is no analysis tools implemented for X

such extensions. Our approach proposes a translation im(%ussced. The p?r%erlp;fsents an ?termedlf\te Ievk()al tmodel:
SWTPN Thus extended RT-LOTOS specifications can W-t-o0mponent he ‘atier are Used as a gateway between

. . extended RT-LOTOS and Stopwatch Time Petri nets, a
ff I | check he TINA tool. ) '
effectively be model checked using the too new formalism supported by TINA [8].The use of an ex-

tended RT-LOTOS with auspend/resumeperator is il-

_ Schedulability AnalysisA large number of tech- | girated on three examples. The RT-LOTOS to SWTPN
hiques have been developed to model and solve SChequIfranslation procedure has now to be integrated into the

ing problems. in [19] timed automata have been used 10 5ty 10| [28]. The translation algorithm of thuisrupt

solve non-preemptive scheduling problems. in [1] Stop- e rat0r is easily adapted to handle extended RT-LOTOS
watch automata are used for solving preemptive SChedu"specifications.

ing problems. In this paper we use an algebraic way for tiq \vork is not limited to the verification of real-time

specifying a tasks system and a scheduling discipline. qyqomg directly specified in RT-LOTOS. The ultimate
Techniques for real time schedulability analysis that rely goal is to provide a more powerful verification environ-
on process algebra have already been published in [14][4]. ot for real-time systems modelled in TURTLE[3], a

These papers consider tasks as sequential Processes,a|-time UML profile built upon RT-LOTOS.
Schedulability analysis is performed either by reachability

analysis [14] or by checking a bisimulation-based equiva-
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2 Atime move in P[g>Q falls into two categories:

1. Time move into both processes P and Q (SOS rule

7). If atime move is possible in both processes, then
the first action of) (respectivelyC) is enabled but
has not occurred yet. By induction hypothesis a time
move is also possible i’ andCg. 'SR’(the only



introduced place) is an input place 6f,’s first ac-
tion. 'SR’ is then marked. Consequent{yp is not
suspendedCp can age, hence a time move in both
Cp andCy, is also possible ilUp;.¢-

2. A time move only on the suspending behavior Q
(SOS rule 5). P is suspended at the occurrence of
the first action of Q. If a time move is possible in
process Q, by induction hypothesis it is also possible
in Cq. 'SR’ is the unique newly introduced place in
Cplg>@- 'SR’ does not interfere with the evolution
of C¢ after the occurrence of its first action. Hence
in Cpgsq atime move is only possible i, .

R o R
— similarly to—

< the occurrence of action 'a’ i'p(,.¢ is either:

1. the occurrence of a first action of Q. (SOS rule 3) By
induction hypothesis, 'a’ is also possibledry. 'a’
is enabled irCq. 'SR’ is an input place fo€g’s first
action and 'SR’ is marked. Hence 'a’ is also possible
|n CP[Q>>Q'

2. ’a’is not a first action of Q. Q is active and P is sus-
pended (SOS rules 4). By induction hypothesis 'a’
is also possible ilg. 'SR’ is not marked after the
firing of Cg’s first action, but SR does not interfere
with the evolution olCy, (it serves as input place only
for the first action of Q). Hence, 'a’ is also possible

in Cprlg>q-

3. 'a’is an action of P. P is not suspended. By induction
hypothesis 'a’ is also possible @ip. 'SR’ is marked,
hence 'a’ is also possible @ p (.-

& similarly to %
(H1-H4) are trivially satisfied il pys.¢-
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Abstract

Usually, the notion of time introduces space explo-
sion problems during the generation of exhaustive tests,
so test-purpose-based approaches have been developed to
reduce the costs by testing (usually on the fly) the critical
parts of the specification. In this paper, we introduce a
test-purpose-based method which tests any behaviour and
temporal properties of a real-time system. This method
improves the fault detection in comparison with other sim-
ilar approaches by using a state-characterization-based
technique, which enables the detection of state faults on
implementations. An example is given with the MAP-DSM
protocol modelled with two clocks.
key words: Timed automata, conformance testing, test pur-
pose

1. Introduction

Computer applications are being increasingly involved
in critical, distributed and real-time systems. Their mal-
functioning may have catastrophic consequences for the
systems themselves, or for the ones who are using them.
Testing techniques are used to check various aspects of
such systems. Different categories of test can be found in
literature: performance testing, robustness testing, inter-
operability testing and conformance testing which will be
considered here.

Conformance testing consists in checking if the imple-
mentation is consistent with the specification by stimulat-
ing the implementation and observing its behaviour. Test
cases which consist of interaction sequences are applied
on the implementation via a test architecture [13, 23]. This
one describes the configuration in which the implemen-
tation is experimented, which includes at least the imple-
mentation interfaces (called PCO, point of control and ob-
servation) and the tester which executes the test cases to
establish the test verdict:

e pass: no error has been detected.

e fail: there is at least an error on the implementation.
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e inconclusive: pass and fail cannot be given (the test
cannot be performed).

Many testing methods have been proposed for gen-
erating automatically test cases from untimed systems
[30, 9, 24, 3] or timed ones [5, 13, 10, 22, 29]. Most
of the timed ones are exhaustive methods which gener-
ally transform specifications into larger automata (such as
region graphs [13, 23], grid automata [29, 12], or SEA
[19, 18]) to generate test cases on the complete speci-
fication. This kind of method is interesting and usable
with small systems but can end in a space explosion prob-
lem (usually obtained from state explosion) with larger
ones. So, others techniques called test-purpose-based ap-
proaches, have been proposed to test the most critical
systems parts. These ones check local implementation
parts from test requirements given by engineers, which are
called fest purposes. The conclusion of the test is given
here by checking the satisfaction of the test purpose in the
implementation.

Some test purpose based methods have been proposed
[7, 8, 20, 28, 18] to test timed systems. These ones
strongly reduce the test cost and can be generally used
in practice to test specification properties on implementa-
tions. However, faults like extra(missing) states and trans-
fer faults cannot be detected with the previous techniques.
Such faults can modify the system internal state (this one
becomes unknown and faulty), so detecting them is im-
portant.

In this paper, we introduce a test-purpose-based
method which can test the conformance and the robust-
ness of implementations, by testing any temporal or be-
haviour properties belonging to the specification (called
Accept properties), but also any other ones given by de-
signers (Refuse properties). The test case generation is
performed by a timed synchronous product which com-
bines the specification with the test purposes and prevents
state explosion. With this product, we obtain a graph
which includes the specification and the test purpose prop-
erties. Furthermore, to improve the fault detection, we use
a state-characterization-based approach to identify each
state visited in the implementation. So, missing and trans-
fer faults can be detected.



This article is structured as follow: Section 2 describes
the theoretical framework needed in this study. Section
3 provides an overview of testing methods, and a re-
lated works on timed testing with test purpose based ap-
proaches. Section 4 introduces the concept of Timed test
purposes. The testing method is described in Section 5.
We apply this one on a real system, which is a part of the
MAP-DSM protocol. Then, we give the fault coverage
of the method in Section 6. Finally, we give an overview
of an academic test tool, which implements this testing
method, in Section 7 and we conclude in Section 8.

2. Definitions

2.1. The Timed Input Output Automaton model

TIOA (Timed Input Output Automata) are graphs de-
scribing timed systems. This model, extended from the
timed automaton one [1], expresses time with a set of
clocks which can take real values (dense time represen-
tation) and by time constraints, called clock zones, com-
posed of time intervals sampling the time domain. Actions
of the system are modelled by symbols labelled on transi-
tions: input symbols, beginning with ”?” are given to the
system, and output ones, beginning with ”!” are observed
from it. A TIOA transition, labelled by an input symbol
?a, can be fired if the system receives ?a while its time
constraint is satisfied. In the same way, a TIOA transition,
labelled by an output symbol !a, is fired if !a is observed
from the system while the time constraint is satisfied.

Definition 1 (Clock zone) A clock zone Z over a clock
set Cis a tuple < Z(x1),...Z(xy) > of intervals such
that card(Z) = card(C) and Z(x;) = [a; b;] is a time
interval for the clock x;, with a; € R™, b; € {IRT, 00}.
If X; is the clock value of the clock x;, we say that a clock
valuationv = (X4, ..., X,,) satisfies Z, denoted v |= Z iff
X; € Z(x;), withl <i<mn.

For two clock zones Z and Z', we denote some operators:

e ZNZ' ={v|vEZandv = Z'}

0 2/2' = {v|vE 2}/ |V | 2}
Definition 2 (Timed Input Output Automata (TIOA))
ATIOA Aisatuple < X 4,54, 594, Cy,Eq > where:

e Y4 is a finite alphabet composed of input symbols
and of output symbols,

e S, is afinite set of states, 521 is the initial one,
o (4 is afinite set of clocks,

o Ey is the finite transition set. A tuple (s,s',a,\, Z)
models a transition from the state s to s’ labelled by
the symbol a. The set A\ € Cy gathers the clocks
which are reset while firing the transition, and Z =<
Z(1), ..., Z(N) >(n=card(c.)) I8 a clock zone.

A TIOA example, modelling a MAP-DSM part, is
given in Figure 1. Among the protocols used with GSM
(Global system for Mobile communication), nine proto-
cols are grouped into the MAP (Mobile application part).
Each one corresponds to a specific service component.
The Dialog State Machine (DSM) manages dialogs be-
tween MAP services and their instantiations (opening,
closing...). A DSM description can be found in [6]. The
specification of Figure 1, describes the request of the MAP
service by an user(?I3). This one can invoke several MAP
requests (?14) which aim to start some services (!103). A
dialog can be accepted then established or it can be aban-
doned (105 or 109).

If we consider the transition (T'mp2, IDLE,!09,

{X Y} < X4 4oo[ Y4 400[ >), the two clocks 2 and y
must have an greater value than 4 so that the system pro-
duces the symbol '09. After this execution ,  and y are
reset.

X[4 +inf[
109 Y4 +inf{
X.=0
Y.=0

X[2 +inf[
Y[0 +inf[

105

212
Y[0 +inf{

Dialog
pending

Wait for
User
Request

X[2 +inf{
Y[0 +inf{

X[0 +infl
Y[o 2p17
Y.=0

103
X[02]
Y[0 +inf[

214
X[02]
Y[0 +inf[

103
X[03]
Y[0 +inf[

214
X[02]
Y[0 +inf[

101 : tc_u_abort_req;terminated
103 : service_invoked

105 : tc_ind_req;terminated

106 : tc_continue_req

109 : map_p_abort;terminated

211 : map_u_abort_req
212 : tc_begin_ind

213 : map_open_req
2?14 :map_req

2?17 : map_open_rsp
2111 : map_delimiter_rsp
2113 : tc_continue_ind
2114 : tc_end_ind

2115 : tc_p_abort_ind
2116 : tc_p_abort_ind

Figure 1. A TIOA

2.2, Fault model

The fault model is a set of potential faults (untimed
and timed ones) that can be detected on implementations
by the testing process. For the TIOA semantic, the fault
model can be found in [13, 12]. This one is composed of:

e QOutput faults: An implementation produces
an output fault, for a specification transition
(s,8',la,\, Z), if it does not respond with the ex-
pected output symbol la.

e Transfer faults: An implementation produces a
transfer fault if from a state, it goes into a state dif-
ferent from the expected one by accepting an input
symbol or by giving an output one.
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o Extra state faults: An implementation is said to
have an extra (missing) state if its number of states
must be reduced (increased) to be equal to the num-
ber of states of the specification.

e Time constraint widening fault: Such a fault oc-
curs if the implementation does not respect the time
delay granted by a specification clock constraint, that
is if the upper (or lower) bound of a clock constraint
is higher (smaller) in the implementation. This fault
may occur on input or output symbols: for an output
one, the implementation does not respond in the ex-
pected delay given by the specification, for an input
symbol, the implementation accepts the input symbol
in delays wider than the one given by the specifica-
tion.

o Time constraint restriction fault: This fault occurs
only with input symbols. An implementation pro-
duces this fault if it rejects an expected input symbol
in delays satisfying the clock constraint given by the
specification. In this case, the clock constraint of the
implementation is more restrictive than the specifica-
tion one. Since output symbol cannot be controlled
by the system environment, an implementation that
produces an output symbol in a more restrictive de-
lay than the one specified is seen as a valid restriction
of the specification.

3. Related Works

In the literature, testing methods can be grouped into
two categories:

o the exhaustive testing methods, which involve gen-
eration of test cases on the complete specification,
execution of the test cases on the implementation and
analysis of the test results. To describe the set of cor-
rect implementations, a conformance relation is first
defined, then test cases are given or generated from
the specification to check if the relation is satisfied or
not. Some works about timed systems testing can be
found here [5, 13, 22, 29, 12].

e the non exhaustive testing methods [7, 8, 21, 20,
28, 11, 18, 2, 14], which aims to test local parts of
implementations. This concept aims to check if a
set of properties, called a test purpose, can be exe-
cuted on an implementation during the testing pro-
cess. Test purpose can be either manually given by
designers, or can be automatically generated [7, 17].
Then, test cases are generally generated from the test
purposes and from some specification parts, reduc-
ing the specification exploration in comparison with
exhaustive methods (reducing in the same time the
test costs). Finally, test cases are executed on the im-
plementation to observe its reactions and to give a
verdict [28].
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In [8, 20], the authors use time automata to model
the specification and the test purpose. Test cases are
generated by synchronizing the specification with the
test purpose and by extracting the paths which con-
tain all the test purpose properties. During the syn-
chronization, a reachability analysis is performed to
keep only the reachable transitions. This method
needs for each transition a resolution of linear in-
equalities and also a DFS algorithm to search some
clocks constraints. The number of inequalities is pro-
portional with the number of clocks and the transi-
tions they constrained, consequently the resolution is
generally costly.

In [28], the specification and the test purpose, mod-
elled with timed automata are translated into region
graphs to sample the time domain into polyhedrons.
The test cases are generated by synchronizing the
specification region graph and the test purpose one.
Each region clock of the region graph is accessible
from the initial one, so a final test case can be com-
pletely executed on implementations. However, the
region graph generation is costly and can suffer from
state explosion.

In [18], the test tool TGV [15] has been extended
to test timed systems. This method can test non de-
terministic systems and takes into account the quies-
cence of states. Test purposes and specification are
translated into non real time automata (SEA), then
the TGV method is adapted and used to generate test
cases.

In [2], the authors use specifications and test pur-
poses modelled by TIOA. Then, they search for a
feasible path which match the specification and the
test purpose with a DFS algorithm.

In [14], test purposes are modelled by Message Se-
quence Charts (MSC). These ones are converted into
TIOA. Then, the specification and test purposes are
converted into grid automata. Finally, test cases are
generated by using the synchronous product defined
in [8].

In this paper, we propose a new test purpose defini-
tion to generate test cases which can test the conformance
of timed system as well as their robustness by defining
Refuse properties, that is test purpose properties which do
not belong to the initial specification. So these ones can
simulate the execution of different failures, like byzantine
or scheduling ones, in order to check if the system can still
respond correctly despite these errors. We do not trans-
late timed automata into larger models to apply existing
untimed test purpose methods on them [28, 18, 14]. We
define a new timed synchronization product on timed au-
tomata which also takes into account Refuse properties.
We also propose to improve the fault detection by enabling
the detection of the missing state and transfer faults. We
adapt a state characterization based approach, defined in



[26] for region graphs, to identify each system state with
observable action sequences. With this state identifica-
tion, missing and transfer faults can be detected.

Before describing the test case generation, we present
our definition of timed test purposes.

4. Timed test purpose

Test purposes are graphs describing the requirements
that engineers wish to test on the system implementation.
These requirements can be specification properties which
should be satisfied in the implementation during tests. We
call them Accept properties. But, test purposes could also
be constructed with properties which do not belong to the
specification, that we call Refuse properties. These ones
can be used to test the system robustness by checking if
the system responds correctly despite the execution of un-
specified actions.

So, we define that a Timed Test Purpose is a TIOA
whose the states are either labelled by ”accept” or “'refuse”
to model that transitions are composed of accept or refuse
properties. An accept transition of the test purpose must
exist in the specification. Its clock zone may be however
more restrictive than the specification one.

Definition 3 (A Timed Test Purpose) Let S =< Xg,
SS,S(S),C’S,ES > be a TIOA describing a specifica-
tion. A timed test purpose TP is a TIOA < Ygp, Sgp,
soﬂy, Cyop, Igp, Egp > where:

o Cyp C Cs,

e Syp C Sg X accept,refuse is a set of states such
that each state s' € Sy is labelled either by:

- ACCEPT: if s is the initial state
of TP, or if V(s,8,a,\2) €
Egp,3(s1,82,a, Ao, Zo) € Egsuchas Z C

Z2, s € {(s1,accept),(s1,refuse)},s’
(82, accept)

— REFUSE: otherwise

Definition 4 (Accept and Refuse transition) We call a
transition (s,s',a,\, Z) an accept transition iff s’ is la-
belled by ACCEPT. We call it a REFUSE transition other-
wise.

A timed test purpose example is given in Figure 2. This
one checks if after having a dialog accepted (?17), a dialog
can be established (106) during a more restrictive clock
zone than the specification one.

Test purposes for testing the system robustness

Robustness aims to check the system behaviour under
the influence of external errors (byzantine failure, bus er-
ror, scheduling problem, ...). Mutations are generally in-
jected into test cases to simulate these errors. Some well-
known mutations can be found in [16]:
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Dialog
Pending
Accept

Dialog
Accepted
Accept

Dialog
Establish
Accept

X[O +inf[
Y[0 2]
Y.=0

X[3 +inf[
Y[O +inf]

Figure 2. A test purpose example for the
MAP-DSM protocol

1. Replacing an input action, to simulation that an un-
expected action is received by the system from its
external environment.

2. Changing the instant of an input action occurrence to
simulate that the good input action is received later
than expected

3. Exchanging two input actions to simulate an schedul-
ing problem with external components to the system

4. Adding an unexpected action to simulate that an ex-
ternal component has send an additional action to the
system.

5. Removing an action to simulate the lost of a informa-
tion

Refuse properties are used here to model mutations,
which are injected into test purposes and finally into test
cases. Refuse properties can be added to test purposes by
hands for specifying a precise error, or can be generated
by some methods [16, 27]. The test purpose example of
Figure 3 contains a refuse property which check that dur-
ing the establishment of a connection between the MAP
server and a service provider (?I11 !06), the dialog can-
not be aborted (?7116=tc_p_abort_ind). The action ?I16 is
an unexpected action for the system. The test purpose also
checks that the system continue to establish the dialog de-
spite ordering the abort.

Dialog
Pending
Accept

Dialog
Accepted
Accept

TMP3
Accept

X[2 +inf[
Y[O +inf[

X[2 +inf[
Y[O +inf[

X[0 +inf[
Y[0 2]
Y.=0

106

X[2 +inf[
Y[O +inf[

Dialog
Establish
Accept

Figure 3. A test purpose with refuse proper-
ties



5. Test case generation

5.1. Testing hypotheses

Some assumptions are required on the implementation
under test and on the specification. The “Implementation
Reset” and "Determinism” hypotheses are required to ex-
ecute the test cases. Indeed, without reset function, the
tester cannot execute several test cases on the implemen-
tation, and if the implementation is nondeterministic, it
may be uncontrollable and thus not testable. The two last
hypotheses are required for using a state characterization
based approach. These ones ensure and allow to identify
each specification state.

Implementation Reset After each test, implementations
can be reset to the initial state.

Determinism The specification must be timed determin-
istic on the set of alphabet. 1. from any state, we can-
not have two outgoing transitions labelled with the
same symbol. 2. we cannot have an outgoing transi-
tion, labelled with an input symbol and an outgoing
transition labelled with an output one, whose the tim-
ing constraints are satisfied simultaneously. These
properties ensure that a determined implementation
path can be covered during the tests.

Minimality The specification must be minimal on the
state set.

Completely specified system The specification must be
completely specified on the set of input symbols
(each input symbol is enabled from each state).

Remark 5 To complete a specification on the set of
input symbols, we propose to add a trap state S
and to complete each state s with outgoing transitions
(s,su, 71, \,G) from s to s,. These transitions model
the external actions refused by A and improve the observ-
ability and the controllability of the specification. So, the
complete TIOA UP 4 =< Zyop,, Sup,, SOUTPA ,Cup s
Iup,, Bup, >, derived from A can be obtained with
these rules:

o Yyup, =24, Sup, =SaU{su}
. S%gaﬂ =359, Cup, = Cau,

o Iyp, = IqU{Z | Vs € Sa(s, s, I,\,Z) ¢
Ep,Z' =<0 4+ o0[...[0 + oo[>}
U{Z' | 3s"inSa(s,s',7I,\,Z) € Exq,Z' =< [0 +
ol..[0 + ool /2},

o Eyp, Ea U {(s,s,,?2I,N,Z") | Vs €
Suls, s, 2INZ) & Eg N = 0,2 =< [0 +
00[...[0 + oo[>}

U{(s, 80,21, X, Z") | 3s'inSa(s,s',7I,\,Z) €
Ea,A=0,Z" =<[0 + 00[...[0 + o[> /Z}
U{(su, su, P11, A\, Z) |7l € £ 4}
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Test purposes are often composed of some specifica-
tion actions, but not of complete specification action se-
quences [8, 28, 11, 18, 2, 14]. Test purposes may also
be inconsistent with the specification, especially when we
use refuse properties. So, test purposes based methods
generally synchronise the test purpose with the specifi-
cation to obtain paths which can be completely executed
from the initial system path. Moreover, our testing method
needs a state characterization based step to detect missing
and transfer faults. So, these two steps are first presented
below:

5.2. Timed Synchronous Product

The timed synchronous product aims to combine a test
purpose and a specification to obtain paths which can
be executed on the implementation. In comparison with
the timed synchronous product that we have defined in
[28] for region graph models, this one takes into account
Refuse properties and injects them into the final test cases.

. .. A, Zs .
Consider two transitions, s; —— Sp of a spec1ﬁca-

tion 8 and s} AZre, sh of a timed test purpose TP, la-
belled with the same symbol ”A”. By synchronizing them,
we generate different clock zones, depending on Zg and
Zqgp. The different kinds of synchronized clock zones are:

o PASS clock zone: The clock zone Z),s, gathers the
values which satisfy the execution of the two tran-
sitions, that is the ones which belong to Zs N Zgyop.
If the transition is executed in this clock zone during
the test, the test purpose transition is satisfied.

o INCONCLUSIVE clock zone: The clock zone
Zinconclusive Tepresents the values which satisfy the
execution of the specification transition, but not the
execution of the test purpose one. INCONCLUSIVE
clock zones ensure that test cases can be executed on
implementations, even though the test purpose can-
not be satisfied. INCONCLUSIVE clock zones al-
low to give an inconclusive result, that means some
specification properties have been tested instead of

the test purpose ones. Z;pconclusive CONtains values
of Zg /Zpass .

e FAIL clock zone: The FAIL clock zones represent
the values which do not satisfy the execution of the
specification transition. In this case, if the transition
is executed in a FAIL clock zone during the test, the
implementation is faulty.

Figure 4 shows an example of synchronized clock
zones.

Now, we give the definition of the timed synchronous
product between a specification and a test purpose which
may contain refuse properties.

Definition 6 (Timed synchronous product) Let § =<
¥s,Ss, 59, Cs, Is, Es > and TP =< Xgp, Sgp, 594,
Cyp, IypEgsp > be two TIOA. The Timed Synchronous



Product between 8 and TP is a graph 8P =<
Ysp, S5, 49, Csp, Esp > defined by:

e Ygp C X UXgp, Ssp C S U Syp, 585 C 82,
Csp C Cs U Cyop,

o Fgop is the set of transitions

a,PASS(Z),INCONCLUSIVE(Z") .
S; Si+1, With

S; € Ssp, Si+1 € Ssp, Z a PASS clock zone and
Z'" an INCONCLUSIVE one. This set is constructed
with the following algorithm.

Algorithm

Input: T'(Test Purpose), S(Specification)
Output: S P(Synchronous Product)
BEGIN:
For each specification path P.S of S, and For each test purpose
path T'P containing in the same order the accept transition
symbols of T'P

AZrp

We scan each transition tp ——" tp’ of TP and each

B,Zg
transition s —=% s’ of PS
if the symbol A == B then
//the specification and the test purpose transitions are

synchromzed
if Label(tp’) == REFUSE then we add
sp 4 | sp’ to Esp
PASS(Zrp)
else we add

A ’
PASS(ZsNZrp),INCONCLUSIVE(Zs/Z7p)

synchronizing the test purpose and the specification
| endif
if the symbol A # B
/Ithe specification and the test purpose transitions cannot
be synchronized
if Label(tp') == ACCEPT then we add

B
sp —————— sp’ to Egpto reach a next
PASS(Zs)

synchronization
else
we scan PSS to find if a synchronization on the

symbol A with tp AZre, tp' is possible later

if it is possible, then we add sp S E——
PASS(Zg)

to reach this synchronization.

else we add sp

endif

| endif

if some PTP transitions are not used then we add them to F'sp
endif

END

4 s
PASS(Zrp)

We illustrate the timed synchronous product with this
simple example. Consider the path of Figure 5, derived
from the specification of Figure 1. This one is synchro-
nized with the test purpose of Figure 2. The timed syn-
chronous product is expressed in Figure 6.

Y Test purpose clock zone

- PASS clock zone

3 INCONCLUSIVE clock zone

|:| FAIL clock zone

Specification clock zone

Figure 4. An example of synchronized clock
zones with two clocks

IDLE Dialog Dialog 2111 Dialog
é {g ;{ Pending XY[U[0+|2r;f Accepted X [2 +infl X [2 +infl accepted
Y [0 +inf[ Y [0 +inf{

Figure 5. A specification path

5.3. State characterization set of TIOA

We have defined the state characterization based ap-
proach for region graphs in [26]. We have shown that the
identification of two states depends on output symbols,
which are observed during the system execution, and on
the moments of these observations, that is the clock zones,
for TIOA. So, to distinguish two TIOA states, we look for
a transition sequence which provides either different out-
put symbols, or the same ones with different clock zones
or both. A state s is characterized by a identification set
W if this one is composed of transition sequences which
distinguish s from the other states. Finally, the state char-
acterization set W is the union of the subsets W, which
characterize each state s;. This is formally described in
the following definition.

Definition 7 (Timed State Characterization Set 1)
Let JA = (Zg4,594,59 4. I9a, Eya) be a TIOA satis-
fying the hypotheses of Section 5.1. Two states S and
S" of JA are distinguished by a transition sequence
o = (th to, Al, A, Zl)(tnv tn+l, An, )\n, Zn), denoted
S D, S"iff

1. V(tg, ter1, Ar, Ak, Zi) (1 < k < n), with Ay, an out-

A1,\ 72y
5 .......

put symbol, we have a path S

Ap—1,Ak-1,Zk -1
Sy — Sy €

(Sks Skt1,Aks Ak, Z) € Ega,

2. Atk thgr, Ak, Ak, Zi) (1 < k < n), with Ay, an out-

Dialog 27 Dialog 2111 106 Dialog
Pending Accepted accepted
ACCEPT ACCEPT ACCEPT
PASS(X [0 1] PASS( X [0 +inf[
Y[02) Y[02)
X:=0 Y:=0

IDLE 212
ACCEPT

PASS( X [2 +inf[ PASS( X ]3 +infl
Y [0 +inf)) Y [0 +infD)
INCONCLUSIVE(
X2 3[
Y[0 +inff)

Figure 6. A synchronous product
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A1\, Z
put symbol, we have a path 8" —="271 S, ...
Ap_1Ak-1,Zk_
Sp_q —mRmREDIRL g € (Eg,q)k and

(Sks Skt1, Aks Ak, Zy) € Ega.

We denote W, the set of transition sequences allowing to
distinguish S € Sy from the other states of Sgq. Wg =
{o;|VS"#S € S94,5S Dy, S'}.

Finally, a Timed Characterization Set of JA, denoted Wy 4
equals to {Ws,,..Wg, }, with {S1,...,S.} = Sy4.

A general algorithm of state characterization set gener-
ation can be found in [26].

If we take back our synchronous product example
of Figure 6, the states can be distinguished with the
following state-characterization sets. By applying this set
to each pair of state, we always observe different output
symbols at different time values, so we can distinguish
them.

Wrnps = {(TMP3, Dialog_establish, {},!06,
< X2 400 Y[0 400] >)}

Wialog.accepted = {(Dialog_accepted, TM P3, 7111,
{1 < X2 4001Y[0 +00] >)(T'M P3, Dialog_establish,
106, {}7 < X[2 +oo]Yv[O ~+o0] >)}

Whialogpending = {(Dialog_pending, Dialog_esta-
blish, 7I7,{}, < X[o +00[Y[0 21)) (Dialog-accepted,
TMP3,7T11,{}, X2 400 Yo 400) >)(TMP3,
Dialog_establish,!06, {}, < X[2 4001 Y[0 +0c] >)}

Wipre = {(IDLE, Dialog_pending, 712, {},

< Xjo11Yjo 2[ >)(Dialog-pending, Dialog_establish,
I7,{}, < X0 400 Y[0 2| >)(Dialog_accepted, T M P3,
1L {}, < X2 40q) Yo 400) >)(TMP3,
Dialog_establish,!06,

{}7 < X[2 +oc]l/[0 +o0] >)}

Wialog.estabiish = {(Dialog-establish, TMP2,?I15,
{h < X4 400Y[0 +00] >)(TMP2,IDLE, 09,
{X Y}’ < X[4 +oo[}/[4 +oo[ >)}

5.4. The testing method

The testing method is composed of four steps. Steps
1 and 2 synchronize the test purpose with the specifica-
tion to generate paths, including the test purpose, which
can be executed on the implementation. Step 3 applies
a state-characterization-based approach on the synchro-
nized paths. Finally, step 4 performs a reachability analy-
sis on the paths obtained from the previous step and mod-
ify the clock zones to ensure that the test cases can be
completely executed on the implementation.

These test case generation steps are detailed below:

Let 8 be a TIOA, satisfying the previous hypotheses,
and TP be a timed test purpose. The test case generation
steps are:

o STEP1: Specification path search: We extract the
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specification paths which can be synchronized with
the test purpose. Instead of synchronizing all the
specification with the test purpose, we extract only
the needed. So, the transition sequences of 8, con-
taining in the same order all the Accept transition
symbols of the test purpose, are first extracted and
named 7'S1(8), ..., T'S(8). If this set is empty, the
process terminates and the following steps cannot be
performed. We use a DFS (Depth First Path Search)
algorithm to generate these paths. The path extrac-
tion is performed depth wise, so only one specifica-
tion local path is memorized at a time.

e STEP2: Timed synchronous product: Each transi-
tion sequence T'S;(8) is synchronized with TP, This
operation generates a graph S P, including TP and
respecting the temporal and behaviour properties of

S.

e STEP3: State characterization set generation:
Each state S; of SP is identified with Wg, (cf
Section 5.3). Then, we combine, with II, the
synchronous product and the state characterization
set: I = SP W = {p(si,sj,a,\ Z).0; |
Y(si,s5,a,\, Z) € Egp, p is a path of SP from
S0 to s, 0; € Ws_,» if s; is labelled by ACCEPT,
o; = 0 otherwise}. It’s the concatenation of a path
p (finished by its state s;) with the state characteriza-
tion set of s;. If we combine the synchronous product
example of Figure 6 and the state-characterization set
of Section 5.3, we obtain the paths of Figure 7.

o STEP4: Search of feasible paths: Test cases are fi-
nally all the feasible paths of II [2]. The feasibility
problem, for a given path p = t;..t,, aims to de-
termine if it exists a possible execution to reach the
transition ¢,,, and to generate the clock zones over p
for firing ¢,,. The approach, described in [2], adds a
global clock h and then performs a reachability anal-
ysis from the first and the last transitions of the initial
path. The obtained feasible path clock zones can be
modelled with the global clock h or with the clocks
used in the initial path. For example, the feasible
paths of the II set, illustrated in Figure 7, are given in
Figure 8. These ones are the final test cases.

Test cases are then executed on the implementation
from the initial state. Each input symbol is given to the im-
plementation at a clock valuation of its PASS clock zone.
If the system is not faulty, output symbols should be ob-
served at clock valuations of PASS clock zones as well.
So, by applying a test case transition t = (I,1’, A, A,
PASS(Z),INCONCLUSIVE(Z')) on the imple-
mentation I, we can observe some reactions, denoted
React(t) , and we can give a local verdict for the tran-
sition. React(t) =

o PASS,ction iff A is an output symbol and A is re-
ceived from the tester in the PASS clock zone, that is
at a clock value v |= Z,
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Figure 8. The test cases

o INCONCLUSIV Eyction if A is an input symbol
or if A is an output symbol and A is received from
the tester in the INCONCLUSIVE clock zone, that is
at a clock value v = 7/,

o F'AIL,ction otherwise.

Finally, by executing the test cases and observing the
implementation reactions, we can conclude on the success
or on the failure of the test:

Definition 8 (Verdict assignment) Ler I be a system un-
dertestand T = (11,1}, A1, \1, PASS(Z4),
INCONCLUSIVE(Z]))...(ln, ', A, M,
PASS(Z,),INCONCLUSIVE(Z!)) be a test case.
The verdict assignment V (I, T), obtained by applying T
on 1, is given by:

e Passiff vVt = (I;,1., A;, \i, PASS(Z,),
INCONCLUSIVE(Z])) € T, with A; an output
symbol, React(t) = PASSactions

o Inconclusive iff 3t = (1;,1;, A;, \i, PASS(Z;),
INCONCLUSIVE(Z])) € T, with A; an output
symbol, React(t) = INCONCLUSIV Eyction
and iﬁ‘Vt’ = (lj, l;, A]‘, /\j7 PASS(ZJ),
INCONCLUSIVE(Z})) € T, with Aj an output
symbol, React(t) # FAILqction,
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e Fuil otherwise

Method complexity: If N is the number of state and
K the number of transitions of the specification, the test
case generation complexity of our method is proportional
to C2 x N+ N % K + N + K. For the first step, we
use a DFS algorithm whose the complexity is proportional
to N + K. The timed synchronous product complexity
depends on the length of the paths to combine. In the
worst case, this length equals to NV and there is at most K
specification paths. So, the complexity of the synchronous
product is proportional to N x K. The step 3 complexity is
proportional to N2K [25]. In step 4, the search of feasible
paths is proportional to C'x C' x N [2], with C the number
of clocks.

6. Fault coverage of the proposed method

In this Section, we introduce the fault coverage of our
testing method. As a test purpose doesn’t test the whole
implementation of a system, the fault coverage is analyzed
on a implementation part, called I.oyereq. Furthermore,
to generate test cases, we use some specification paths,
needed for the timed synchronous product. Let Scopered
be the set of these paths. I.opereq corresponds to im-
plementation part tested by the test cases obtained from
Scovered-

o Output fault detection: Output faults can be easily
detected by firing all of the specification transitions.
According to our definition of the timed synchronous
product, each path of S.oyereq €xists completely in
at least one test case. Moreover, we suppose that
the system is deterministic. So, each transition of
I overed 18 tested during the testing process.

e Missing state fault detection: Extra(missing) state
faults are detected by checking if an extra or missing
state exists in the implementation. As our method
identifies each state, it can detect missing states on
I .overedq. Each state s; of Scopereq 18 identified in the
implementation and tested by test cases of the form
S0 TN 5;.Ws,, with p a path from the initial state sg
to s; and W, the subset allowing to identify s;. Con-
sequently, if a state is missing in I opereq at least one
test case cannot be completely executed.

o Transfer fault detection: Transfer faults can be easily
detected by identifying the states of the implemen-
tation. So, any state-identification based technique,
and particularly our method, detects transfer faults
on Icovered- Bach transition t = (S;, S, a, A, G) of
Scovered 18 tested by a test case of the form S LN

S; M S;.Ws,, with p a path from the ini-
tial state Sp to S; and W, the subset allowing to
characterize S;. Consequently, the arrival state of
the transition ¢ in the implementation is tested and

identified. So, transfer faults are detected.



o Time constraint widening fault detection: Time con-

straint widening faults are detected if at least an out-
put symbol is not received by the tester in the time
delay given by the specification. According to our
definition of the timed synchronous product, each
transition of Scopered 18 Visited during the testing pro-
cess by at least one test case. Consequently, a test
case transition (s, s’,a, A\, PASS(Z),
INCONCLUSIVE(Z")) labelled by an output
symbol, is tested by the tester which waits its receipt
during the PASS clock zone Z. If no output symbol is
received, a time constraint widening fault is detected
onl.

For input ones, the method checks them only at clock
valuations which belong to time delays given by the
specification. So, time constraint widening faults can
be detected with output symbols and not with input
ones on I(:ove'red-

Time constraint restriction fault detection: In prac-
tice, it is unfeasible to detect all of the time constraint
restriction faults. Consider a test case transition
(s,8',72a,PASS(Z),INCONCLUSIVE(Z")),
to detect the faults, the tester should send to the
implementation the input symbol ”?a” at all of the
bounds of Z which are for each clock x; the time
values a; and b; such that Z(x;) = [a;, b;]. Since
the clocks are uncontrollable, these bounds are not
necessary reached by the clocks.

A
y

| Mfinal

Vinit

»
|
X

Figure 9. Reaching all the clock region
bounds: a difficult issue

Consider the clock zone of the Figure 9. v;,,;+ repre-
sents the first clock valuation reached by the clocks
in Z during an execution. v;,;; is not a bound of Z.
So, if the implementation has a time constraint re-
striction fault between the bound of Z and v;,,;;, the
fault cannot be detected.

Consequently, we can detect such a fault if this one
occurs during the execution. In this case, consider a
test case p.(si, sj, 7a, A, PASS(Z),
INCONCLUSIVE(Z")).p' . Ws,. Let s; be the
implementation state reached by p and s; the one
reached by p.(s;, s;,a, A\, PASS(Z),
INCONCLUSIVE(Z").p'. If the implementa-
tion produces this fault, s; rejects the input sym-
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bol ”a” in delays given by Z. Therefore, the im-
plementation stays in its current state s;. Here, ei-
ther the implementation rejects p'.Wg, too, or ac-
cepts it. If p'.Wg, is rejected, the implementation
enters in a deadlock. Output symbols of p'.Wg,
are not observed so the time constraint restriction
fault is detected. If p’.Wg, is accepted by the im-
plementation, according to the hypotheses (Section
5.1), S is minimal and deterministic therefore there
exists an unique path from s; to sg, covered with
(siysj,a,\,PASS(Z),INCONCLUSIVE(Z"))
.p/ from s;. Thus, a state s; different from sj is
reached with p’ from s;. Since the state reached by
p’ is identified with Wy, , if this one is different from
sk an error is produced. So, in both cases, time con-
straint restriction faults are detected.

7. Prototype tool functionality

Interval Automata
Characterization

State Set
Generation

Test Purpose
based Method

Test Cases
in TTCN format

Test Purposes

Figure 10. The test tool TTCG

We have implemented the previous methodology in an
academic prototype tool, called TTCG (Timed Test Cases
Generation). The description of its architecture is illus-
trated in Figure 10. The prototype tool takes specifications
and test purpose modelled with TIOA. It is composed of
two parts: the first one produces the timed synchronous
product between the test purposes and some specifications
paths. The second one produces the W set generation.
The paths, obtained from the synchronous product and the
state characterization set, are then concatenated to finally
produce the test cases. These ones are given in TTCN or
in Poscript format.

This tool has been written with the language C, ex-
cepted the second part which has been written in Open-
MP to parallelize the W set generation. Clock zones mod-
elling and operators on clock zone have been implemented
with the Polylib library [31]. This one has a graphical in-
terface which allows the user to load TIOA and test pur-
poses. The amount of memory used depends on the spec-
ification. With the MAP-DSM specification (Figure 1),
this one does not exceed 10 Mb.

8. Conclusion

In this paper, we have proposed a test purpose based
approach which can test both the conformance and the ro-
bustness of implementations, by using test purposes com-
posed of Accept and Refuse properties. This method uses
a synchronous product between the specification and the
test purpose to generate on the fly test cases and a state
characterization based approach to improve the fault cov-
erage by enabling the detection of transfer faults and miss-



ing state faults. The complexity is polynomial so we be-
lieve that this one can be used in practice.

Our approach could be extended for testing others as-
pects of timed systems like interoperability. The quies-
cence of critical states [4] could be tested with specific
test purposes too, by checking if these states do not pro-
duce an output response without giving an input symbol.
Moreover, this property could help to distinguish pair of
states by considering the notion of quiescence as a special
sort of output observation. As a consequence, the length
of the state characterization set and so the test costs could
be reduced.

References

[11

(2]

(31

(4]

(6]

(71

(8]

91

[10]

(11]

[12]

[13]

R. Alur and D. Dill. A theory of timed automata. 7TCS,
126:183-235, 1994.

I. Berrada, R. Castanet, and P. Felix. A formal approach
for real-time test generation. In WRTES, satellite work-
shop of FME symposium, pages 5-16, 2003.

C. Besse, A. Cavalli, M. Kim, and F. Zaidi. Two methods
for interoperability tests generation. an application to the
tep/ip protocol. 2004.

L. B. Briones and E. Brinksma. A test generation frame-
work for quiescent real-time systems. In FATES04 (For-
mal Approached to Testing of Software),Kepler University
Linz, Austria, pages 71-85, 2004.

R. Cardel-Oliver and T. Glover. A practical and com-
plete algorithm for testing real-time systems. In Proc.
of the 5th. Formal Techniques in Real-Time and Fault-
Tolerant Systems, volume 1486 of LNCS, pages 251-261.
SpringerVerlag, 1998.

N. CARRERE. Dsm specification in lotos and test cases
generation. INT (French Telecommunication National In-
stitute), 2001.

R. Castanet, C. Chevrier, O. Kone, and B. L. Saec. An
Adaptive Test Sequence Generation Method for the User
Needs. In IWPTS’95, Evry, France, 1995.

R. Castanet, P. Laurencot, and O. Kone. On the Fly
Test Generation for Real Time Protocols. In International
Conference on Computer Communications and Networks,
Louisiane U.S.A, 1998.

T. Chow. Testing software design modeled by finite-state
machines. [EEE Trans. Softw. Eng., SE-4(3):178-187,
1978.

D. Clarke and 1. Lee. Automatic Generation of Tests for
Timing Constraints from Requirement. In International
Workshop on Object-Oriented Real-Time Dependable Sys-
tems, California. IEEE Computer Society Press, 1997.

A. En-Nouaary and R. Dssouli. A guided method for
testing timed input output automata. In 15th IFIP In-
ternational Conference, TestCom 2003, Sophia Antipolis,
France, pages 211-225, May 2003.

A. En-Nouaary, R. Dssouli, and F. Khendek. Timed wp-
method: Testing real-time systems. [EEE TRANSAC-
TIONS ON SOFTWARE ENGINEERING, Nov. 2002.

A. En-Nouaary, R. Dssouli, F. Khendek, and A. Elqortobi.
Timed test cases generation based on state characterization
technique. In /9th IEEE Real Time Systems Symposium
(RTSS’98) Madrid, Spain, 1998.

44

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

A. En-Nouaary and G. Liu. Timed test cases genera-
tion based on msc-2000 test purposes. In Workshop on
Integrated-reliability with Telecommunications and UML
Languages (WITUL’04), part of the 15th IEEE Interna-
tional Symposium on Software Reliability Engineering (1S-
SRE), Rennes, France, Nov. 2004.

J. C. Fernandez, C. Jard, T. Jron, and C. Viho. Using

on-the-fly verification techniques for the generation of test

suites. In CAV’96. LNCS 1102 Springer Verlag, 1996.

H. Fouchal, A. Rollet, and A. Tarhini. Robustness of
composed timed systems. In 37st Annual Conference on
Current Trends in Theory and Practice of Informatics,
Liptovsky Jan, Slovak Republic, Europe, volume 3381 of
LNCS, pages 155-164, Jan. 2005.

O. Henniger, M. Lu, and H. Ural. Automatic generation of
test purposes for testing distributed systems. In FATESO3
(Formal Approaches for Testing Software), Canada, pages
185-198, Oct. 2003.

A. Khoumsi, T. Jeron, and H. Marchand. Test cases gener-
ation for nondeterministic real-time systems. In FATESO3
(Formal Approaches for Testing Software), Canada, Oct.
2003.

A. Khoumsi and L. Ouedraogo. A new method for trans-
forming timed automata. In Brasilian Symposium on For-
mal Methods (SBMF), Recife, Brazil, Nov. 2004.

O. Kone. A local approach to the testing of real time sys-
tems. The computer journal, 44:435-447,2001.

O. Kone and R. castanet. Test generation for interwork-
ing sytems. Computer communications, Elsevier Science,
23:642-652, 1999.

B. Nielsen and A. Skou. Automated Test Generation from
Timed Automata. In TACASOI, vol. 2031 of LNCS, Gen-
ova, Italy, pages 343-357, 2001.

E. Petitjean and H. Fouchal. From Timed Automata to
Testable Untimeed Automata. In 24th IFAC/IFIP Inter-
national Workshop on Real-Time Programming, Schloss
Dagstuhl, Germany, 1999.

A. Petrenko, N. Yevtushenko, and G. v. Bochmann.
Testing Deterministic Implementations from Non-
deterministic FSM Specifications. In Proceedings of the
8th International Workshop on Test of Communicating
Systems IWTCS’96 (Darmstadt, Germany), Amsterdam,

september 1996. North-Holland.
S. Salva and P. Laurenot. Gnration de tests temporiss ori-

ente caractrisation d’tats. In Colloque Francophone de

l’ingénierie des Protocoles, CFIP, Oct. 2003.
S. Salva and P. Laurenot. A testing tool using the state

characterization approach for timed systems. In WRTES,

satellite workshop of FME symposium, 2003.
S. Salva and P. Laurenot. Gnration automatique dobjectifs

de test pour systmes temporiss. In Colloque Francophone

de l'ingénierie des Protocoles, CFIP, Bordeaux, 2005.

S. Salva, E. Petitjean, and H. Fouchal. A simple approach
to testing timed systems. In FATESOI (Formal Approaches
for Testing Software), a satellite workshop of CONCUR,
Aalborg, Denmark, Aug. 2001.

J. Springintveld, F. Vaandrager, and P. R. D’ Argenio. Test-
ing Timed Automata. TCS, 254(254):225-257, 2001.

J. Tretmans. Conformance testing with labelled transi-
tion systems: Implementation relations and test genera-
tion. Computer Networks and ISDN Systems, 29:49-79,
1996.

D. K. Wilde. A library for doing polyhedral operations.
Technical report, IRISA. http://icps.u-strasbg.fr/PolyLib/.



RTNS’07 — Session 2

Architectures and
Wworst-case execution time
estimation



46



Predictable Performance on Multithreaded Architectures for Streaming
Protocol Processing

Matthias Ivers, Bhavani Janarthanan, Rolf Ernst
{ivers,bhavani,ern¥@ida.ing.tu-bs.de

Abstract memory for data storage arranged as 32bit-registers or
32bit-wide register-like RAMs. The processor supports
Multithreaded architectures use processors with multi- up to 8 hardware threads scheduled in a cooperative
ple hardware-supported threads which enable the efficient (hon-preemptive) round-robin fashion (cooperative mul-
suspension of a running thread while it is waiting for a tithreading). These hardware threads share the common
long-latency operation to finish. Multithreading is con- instruction and data storage of thé&’.
ceived as the panacea to fill the ever-growing gap between The number ofuF available on an IXP processor
memory and processor speed. varies from 2uE's on an IXP-2325to 16 F's found on an
In the domain of hard real-time systems, multithreaded IXP-2855. Our design (see Figure 1) under consideration
architectures are hardly recognized as viable, as the pos- here is based on AE's, some coprocessors for hardware
sible gains of multithreading cannot be guaranteed eas- acceleration of macro functions and a specialized memory
ily, while the negative effect on worst-case execution time controller interfacing the system to 250 MHz SRAM.
cannot be bounded easily.
We developed a hard real-time system based on high-1.1 Real-time Predictability of the Processor
speed (1.4GHz) microprocessors which use multithread- ~ An important factor for the selection of thel as the
ing to allow high utilization despite long memory access processor of an architecture is its lean design and lack of
times. In this paper, we describe a method how to benefitheuristic features to speed-up the processing. he2
from multithreading while achieving good predictability.  does not feature branch predictors, out-of-order exegutio
units or even caches. The design uses a clean five stage
pipeline with virtually all relevant instructions taking a

1 Architecture single cycle per pipeline stage. Only a small set of in-
structions can result in pipeline stalls.

Architectures used in network processing share spe- All these facts account for the good analyzability of
cific features to support traditional routing applications the “core” execution time on these processors. The only
Commonly found are algorithmic hardware acceleration latency which cannot be precisely bounded statically, as
units for checksum calculations, cryptography, longest it varies too much, is the execution time of instructions
prefix matching. Furthermore scratch-pad memories andwhich involve the use of buses. The processor supports
intelligent memory controllers with direct memory ac- hardware-multithreading to achieve high utilizationsreve
cess (DMA), atomic read-modify-write (RMW) and even when the running software has to tolerate long latencies
linked list management support are used to improve sys-when transferring data to/from external units, , in particu
tem performance. lar external memory. The typical programming approach

For our application domain the acceleration units de- using theuE is to switch to a different thread while one
signed to speed-up TCP/IP or Ethernet processing are ofthread is waiting for a memory transaction. Due to the
nointerest. The features used by the design and critical forlarge memory transaction latency, it is efficient to switch
our methodology are the multithreaded high-speed RISCthreads several times during one transaction thereby inter
cores with their integrated control-stores and their @ftu  leaving the transactions without overloading the buses.
abundance of general purpose and memory transfer regis-
ters. 2 Application

The architecture used for the presented work is
based on Intel's network processors, the IXP-family.  Traditionally network processors support applications
The Intel series of IXP network processors is based onrynning on Ethernet, TCP/IP or higher layer protocols.
so-called,.E's (MicroEngines) which are programmable oyr objective is to implement the low-level control
RISC cores with integrated instruction memory and 6kB pjane of high-speed TDM telecommunication protocols

Lwork is in part supported by a grant from Intel and the Lowet®g which were never before implemented on a purel_y
Ministery of Economy programmable platform. In our case we adress the ubiqg-
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‘ Coprocessors

uitous standards SDH and SONET targeting line-speedstute the first 9 rows and 9 columns of the STM-1 frame
between 2.5Gbps and 10Gbps. and the higher order path overhead constitute the first col-
SDH and its counterpart SONET are the multiplexing umn of the VC.
standards formulated by ITU-T for optical telecommuni-
cation transport networks. They support the flexible and 2.1 Characterization
transparent transport of a mixture of protocols of différen  SDH/SONET is a low-level networking protocol and
line rates in their virtual containers (VC) and provide so- designed to be efficiently implemented in hardware using
phisticated features of OAM through performance moni- a set of mostly independent finite state machines.
toring and protection mechanisms. The standards for SDH  The protocol is designed in such a way that most con-
are specified in ITU-T G.707, network node interface for trol overhead can be processed completely in parallel with
the synchronous digital hierarchy [4]. very little interdependency between different controlfun
Figure 2 depicts the basic Synchronous Transporttions. This fact is key to the success of the presented anal-
Module (STM-1) format for SDH. The transmission time ysis method.
of a frame is 12hs corresponding to a rate of 8000 The finite state machines can be implemented in soft-
frames per second. The frame consists of overhead fieldsyare and are quite small in code size and execution time.
and a virtual container capacity accounting for a total The average number of instructions per control function
of 2430 bytes resulting in the basic line rate of 155.52 is very low: the largest control function executes at most
Mbps. Higher level signals are integer multiples of the 514 instruction on its longest path (average is below 100
base rate formed by byte interleaving and multiplexing. instructions/control function). As a comparison note that
A hierarchy up to 40 Gbps, STM-256/0C-768, has been the shortest deadline is in the order of 100,000 processor
defined. An STM-1 frame is arranged in 9 rows, each row cycles.
consisting of 270 bytes (columns). The VC transported  The slack (difference between deadline and required
in an STM-1 has its own frame structure with nine rows execution time) of the control functions seem to be quite
and 261 columns. There are three layers of overheadhigh at a first look. But we have to process many control
bytes in an STM frame. Regenerator section, multiplex functions at once (see below) aatl taskshave to meet
section and path as shown in Figure 2. The layers have aheir deadline. The standards define these deadlines to be
hierarchical relationship with each layer building on the hard with an extremely low fault probability. This is nec-
services provided by all the lower layers. The overhead essary to reach the high persistency required for the opti-
bytes provide information for synchronization, error mon- cal switching devices. This is completely different from
itoring, performance measures, tracing, status signaling IP protocols where packet loss and retransmission are ac-
fault detections, automatic protection functions, networ cepted.
administration and management. So, the main factor in the processing of SDH/SONET
Apart from the overhead bytes, the pointer bytes are is the sustainable throughput that must be reached. As
defined to indicate the phase alignment of the virtual con- higher line rates are achieved by byte-interleaving multi-
tainers within the STM frame. It is used to locate the start ple frames, the overhead increases dramatically with in-
of a virtual container embedded in an STM-frame and to creasing line speed. A 10Gbps signal has 41,472,000
adjust for dynamic frequency and phase variations of the overhead bytes per second. For that reason we want to
payload. The section, line and pointer overheads consti-maximize the reached throughput of the system while
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guaranteeing all deadlines.

alu[ -, x, -, 1
beq| labell# ]

.

3 Analysis
It is our objective to develop a performance analysis
for high-speed multithreaded architectures. To do that, we label1#:
start with an analysis that is aware of multithreading and e ™| sramix BASE. 0,11, Ctx_swap[sigli immed y, 10]
does recognize multithreading in a beneficial - still con- /
servative - way. "m
In a next step we’'ll introduca program transforma- IW
tion. First we'll reschedule the memory operations with
two effects: lowering the number of threads necessary to label2#:

nop

hide the latency and increasing the guaranteeable gain of
multithreading.

We're going to extend that approach naturally by loop Figure 4. Fragmentation & Threading
unrolling. Increasing the analytical gain of multithreagli
and, again, lowering the number of needed threads to hide
the latency.

or very deep pipelines. They are simple and lean in de-
sign, as the primary goal was to have a large number of
equal processors on a single chip.

3.1 Known WCET Analysis for Multithreaded Pro-
cessors

We implemented an execution time analysis for the
pnEv2-code based on previous work [1]. For the read-  For that reason the execution time of a basic block
ers convenience, we're sketching the essential parts of theyithout memory instructions can be estimated by sum-
analysis here. ming up all individual instructions execution time and

It starts with parsing the object files in order to gen- adding a constant architecture-specific overhead for each
erate a control flow graph (CFG) of the application (see basic block. For the Ev2 the overhead can be completely
Figure 3) [2] with basic blocks as nodes. hidden most of the time.

For a pair of basic blockéa, b) each path fromu to
b represents a possible execution of the program. There For nodes which access the memory the execution time
are graph algorithms which efficiently enumerate all paths has to be analyzed separately. There are methods to inte-
connecting two nodes. As the paths through the graphgrate the analysis of memory accesses and worst-case ex-
are possible traces through the real program, one can sayecution time [3]. This framework also supports the analy-
that these graph algorithms enumerate all traces of the prosis of parallel memory accesses and considers the effect of
gram. pipelined memories, or chip interconnects. The presented
method is orthogonal to the analysis of memory accesses.
For that reason and to present results comparable to [1],
we use the estimated upper bound of [1] and assume a
The execution time for normal basic blocks is easily de- memory access latency (including bus transfer) of 30 cy-
rived for architectures under consideration. The usedcles (for 233 MHzuE) and 120 cycles (for 1400 MHz
RISC processors does not have caches, branch predictorsE).

3.1.1 Defining Execution Time
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alu[ --, x, -, 10

alu[=-, x, -, 10] beq] label1# ]

beq[ labell#] ;go to labell if x==10

immed[y, 421 ; y=42
sram[ X, BASE, 0, 1], ctx_swap[sigl] ; read X from memory
br[ label2#] ; go to label2

labell#: immed[y, 42] labell#:

immed[y, 107 -... sram[ x, BASE, 0, 1], ctx_swap][sigl immed[y, 10 ]
br[ label2# ]

label2#: e

nop e

; do something

label2#:
nop

Figure 3. Assembly Code and Control Flow Graph

3.1.2 Obtaining the WCET The CFG is fragmented by disconnecting each yield node

) from its direct successor, as the scheduler of the processor
We transformed our program into a control flow graph and ;| hossibly execute other threads between a yield node
obtained execution times for the individual basic blocks. 5nq its direct successor. The result of this splitting and

To calculate the WCET of our code, we have to deSignatefragmentation can be seen in Figure 4.

a basic block where execution commences and a (possibly S
different) basic block where execution stops. Now each thread of the processor receives its own copy

Once start- and end-node are designated standard grapﬂf, the fragmented CFG and the yield nod(? is conn(_acted
algorithms are used to efficiently find a path connecting with the successor nodes of the next thread’s CFG. Itis not

start and end node with maximal accumulated execution®"Y connected to the copies of its own successor node,
time [2] but with all successor nodes of the following thread. The
' connection to all successor nodes is clearly depicted in

The used algorithm allows to add further restrictionson ~:
Figure 5.

the possible paths through the graph which makes it pos-
sible to model most semantic restrictions one can find in  The CFGs of the different threads are connected so
programs. We will make use of restrictions in the next sec- that paths through the graph resemble the possible traces
tion to eliminate impossible traces when analyzing multi- through all threads that the hardware scheduler can gener-
threading. ate. But the new interleaved CFG of all threads has lost
some of the original semantics of the program. In a multi-
threaded processor each suspended thread will resume ex-
ecution at instruction following the last executed instruc

Non-preemptive multithreading has to be considered dur-tion pefore the suspension. In the multithreaded CFG ev-
ing the evaluation of the WCET. A multithreaded proces- €Y Yield node is connected &l successor nodes of the
sor interleaves small traces of different threads in such "€t thread. The CFG does not enforce that a suspended
a way that previously unavoidable utilization gaps in the thread is resumed at _the_ correct position. For that reason
processing of one thread are filled with execution of a dif- @ additional constraint is added to our CFG. For every
ferent thread which is ready to run. This effect is benefi- P&Ir of nodes(a, b) wherea is a yield node and is the
cial as it uses previously stalling processing units. It can direct successor, we require that they are executed equally
be disadvantageous to the individual WCET, as the con-©ften (i-e. constraintz, = z;, wherez,, is the execution
currently running threads can block the processor while C0UNt of node).
the thread under consideration is already ready to execute. In [1] a strict round-robin scheduler is assumed. For
To enable the analysis of multithreaded architectures, that reason the CFG of Thread n points to nodes in Thread
basic blocks containing memory accesses with contextn+1 (modulo number of Threads). We present the com-
switch opportunities are identified and and split, so that plete CFG for a two-threaded setup in Figure 5. Yield
memory accesses with context switch opportunities con-nodes in Thread 0 transfer control to Thread 1 and yield
stitute an individual basic block. A basic block with a nodes in Thread 1 transfer control to Thread 0, just like a
context switch opportunity is also known as a yield node. non-preemptive round-robin schedule would do.

3.1.3 Interleaved Extension
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alu[ ——, x, -, 10|
beq[ labell# ]

alu[ ——, x, =, 10
beq[ labell# ]

J

3 mmedy, 421 Lo §
izu | § i : #:

labell#: - label1#: 1
sram[ x, BASE, 0, 1], ctx_swap[sig1] sram[ x, BASE, 0, 1], ctx_swap[mgl* immed[y, 10] |

immed[y, 10]
label2#:
nop

Figure 5. Example for two Threads

br[ label2# ]

T

label2#:
nop

3.1.4 Multithreading Gain cess multiple requests at once. So the results for two-

, . _ threaded executions have twice the throughput, as these
The benefits of a multithreaded architecture are based ONNCET for two parallel tasks are given. The results for

thelfact that (Tlxtﬁrnal transacnt())ns (e.g. merr:lorly accesiesgight threads assume that eight times the single-threaded
no longer stall the processor, but are in parallel to another,avioaq s processed.

thread. - Until now the CFG does not model this paral- It is noteworthy that the analysis results for single-

lelism. threaded execution are almost 100% precise. We found

th.) modeltthf p?r:allehsrln Wzgdg nelgatlve)l/_vhelghts (et?(- the estimates to be just slightly (5-22 cycles) higher than
ecution costs) to the newly added values. € negalivé,, o measured worst-case execution time. This indicates

weight equals the guaranteed parallelism of the threadsThat our model of the.Ev2 is very good
In Figure 6 the first (shaded) node models a memory ac- When looking at multithreaded execution, we can see

cess taking 30 cycles. The succeeding node of the nex . .
thread has an execution of 10 cycles. The 10 cycles aret[halt for the speed of 233 MHz the results do improve sig-

guaranteed to overlap with the 30 cycles of the memor. nificantly, while the analysis for the 1400 MHz machine
access, for that reason we substractio cycles when takizgzcannot be improved that much. Simulation runs show that

i : . : he real performance scales much better than the predicted
the edge connecting the yield node with the next th.read'performgnce. For the 8-thread analysis our guzranteed
The second memory access takes 30 cycles and is fOI-WCET is 3 times higher than the simulated WCET. From
lowed by an execution of 20 cycles. For this case, we _ . . ) )
can assume that 20 cycles are hidden. tmhfsfgge;hgz?;(ﬁi?;%V\é;rgs;%gigs'On that the methods

The final version of the algorithm does not only con- ’
g y Another interesting fact which can also be observed

sider the directly following execution node. As can be . 1lis that th hod d h
read in [1] the weight (execution cost) of the shortest (non- in [1] is that t € method does not support_more'; an two
threads. The eight-threaded results are 4 times higher than

tibl th to th t ti inti d.
preemptible) path to the next preemption point is use the 2 threaded results.

3.1.5 Experiments 3.2 Increasing the Multithreading Gain for Modern

In Table 1 we present the analysis results using the method Architectures
described by Crowley/Baer on our code. We present the  As seen in the experiments, the method does improve
results foru Ev2 running at its natural speed of 1400 MHz  the guaranteed performance when compared to a non-
and also an assumedsv2 running at 233 MHz - which  multithreading-aware solution. But the improvement is
is the frequency that is assumed in [1]. limited. The limitation stems from pessimism in the mod-
Each column of the table shows the result for a differ- eling of concurrency. Figure 6 shows an example (taken
ent control function defined in the SDH standard. Itis not from [1]) of the pessimism. Two threads execute on a core
necessary to discuss the details of these functions to evaland both access the memory. The analysis assumes that
uate the results. The first seven columns show results fortwo memory accesses do not occur in parallel and that the
the individual functions while the last column shows the memory access latency can only be hidden by the directly
results for the processing of all control functions at once. following block of code. This leads to a pessimism of 10
For the different number of threads we assume to pro- cycles as shown in Figure 6. A good measure for the effec-
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| [ B3 c2 F2IF3 Gl H4 1 NI ALL |

ME Speed: 233 MHZ
1 Thread| 295 49% 356 67% 142 68% 266 56% 371 53% 502 47% 941 54% 2735 b7%

2 Threads| 47862% 59081% 26972% 49261% 601 67% 844 56% 1646 62% 4649 6%

ME Speed: 1400 MHZ
1 Thread| 745 19% 716 33% 412 24% 626 24% 821 24% 1312 18% 2111 24% 6245 23%

2 Threads| 1414 21% 1396 34% 777 25% 1210 25% 153526% 2571 18% 3905 26% 65 PH%%

8 Threads| 5650 21% 5653 34% 3106 25% 4856 24% 6033 26% 10281 18% 15626 268295 25%

Table 1. Analysis of Original Code — Results show WCET in uE cycles and the associated pF-
utilization

| | B3 c2 F2/F3 Gl H4 J1 N1 ALL |
ME Speed: 1400 MHZ
1 Thread 646 25% 65037% 42023% 586 25% 603 27% 912 26% 1234 41% 4986|32%
2 Threads 1120 26% 110543% 79525% 1101 27% 1197 32% 1550 30% 2295 44%3 3382

Table 2. Analysis of Restructured Code — Results show WCET in wE cycles and the associated
wE-utilization

tiveness of a multithreaded system is the system’s utiliza-read all possibly needed data from background memory
tion. In the given example the actual utilization is 60%: a into private high-speed memory (internal scratch-pad or
total of 50 cycles response time split into 30 cycles execu- registers), while the last node is used to write all possibly
tiontime and 20 cyclesidle time. The estimated utilization updated values back to memory.
is 50%: a total of 60 cycles response time splitinto 30 cy-  Figure 9 shows an example of a control flow graph
cles execution, 10 cycles idle time and 20 cycles stalling both before (top) and after (bottom) rescheduling accesses
due to parallel memory accesses. to background memory. Memory accesses are shown as
The fact that the analysis cannot handle parallel mem-shaded nodes.
ory accesses from different threads is the reason why the In the original code, accesses to variables stored in
analysis does not exhibit any extra multithreading-gain fo background memory are replaced by accesses to registers
more than two threads. The same reason accounts for ther private memory. The entry node contains a series of
fact that the results of the 8-threaded setup are exactty fou load operations to prefetch all needed variables into regis
times higher than in the 2-threaded setup. ters, while the exit node contains a series of store opera-
The pessimism of the analysis can be aggravated bytions to write all used variables back to memory. We can
control flow succeeding a context switch operation. If the safely assume that this transformation does not change the
thread executing in parallel to the memory request hassemantics of the code as all affected memory locations are
variable control flow the shortest path is assumed to beused exclusively by the transformed function. Using that
taken when calculating the hidden latency (minimize hid- approach we implement a data cache in software.
den latency to be conservative) while the longest path can  The question of the code size to be optimized is still
be used to calculate the worst-case-execution time. Thisopen. The optimal size depends on the available high-
does clearly lead to overestimations. speed memory on theE's and the exact nature of the code
Given these observations we’ll restructure the pro- to be optimized.
gram’s control flow in order to improve analyzability. To As a granularity for the rescheduling of memory opera-
maximize the guaranteed hidden latency, we will restruc- tions we chose not to exceed a single iteration of our main
ture the code to show longer sequences of uninterrupteccontrol loop. In Figure 8 one can see the structured CFG
execution. We do this by concentrating prefetching and of our control application. The main loop is clearly visi-
write-back actions at specific nodes in the control flow ble and some distinct sub blocks that are part of the main
graph. loop. The blocks labeled “Process J1”, “Process B3” etc.
implement the control part of finite state machines. One
3.2.1 Rescheduling accesses can also see the basic blocks that contain a memory ac-
cess, they are drawn shaded.
For arbitrary programs we want to reschedule memory op-
erations in order to optimize the analytically guaranteed
utilization.
To reschedule the memory accesses, for simplicity we When concentrating the access to memory in a single or
introduce two new nodes at the beginning and at the endtwo central points in the program, it is usually not avoid-
of the function to be optimized. The first node is used to able to transfer data which will not be needed during the

3.2.2 Rescheduling of conditional accesses
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calculation. This fact seriously limits the scalability of
this approach: e.g. a program which accesses large arrays
with an unknown array index is likely not to be accessible
using this approach as the range of possibly used memory
locations is to big to prefetch.

If, however, the range is of small size prefetching mem-
ory can be a viable option even if unnecessary memory
transfers are initiated. Developing a method to automati-
cally decide when to apply this strategy is an open ques-
tion - for our target application we found the introduced
overhead to be reasonably small as can be seen in the anal-
ysis results.

3.2.3 Experiments

In Table 2 we show the results for the optimized code
running on a 1400 MHz:Ev2. Comparing these results
with the results of the original code, we can see consider-
able improvement for the single-threaded case. This im-
provement stems from the fact that several memory ac-
cesses were concentrated into a single node and are —
where applicable — transformed into a single burst-access
(which results into back-to-back transfers of the requkste
data). This method leads to a better system performance
and even more important a more precise estimation of the
memory access times. The better estimation of the mem-
ory access times is already achieved by rescheduling the
accesses - we do not need to transform the accesses in a
burst access to get a much better estimation of the memory
accesses. The main factor is that in a series of memory ac-
cesses that are executed back-to-back we can be sure that
not all of them will experience the worst-case-state of the
system [3].

The multithreading gain — which can be easily seen
when comparing the utilizations — is still limited, but big-
ger than in the original approach. Refer to Table 1 to see
that for thep Ev2 running at 1400 MHz most results ex-
perienced virtually no improvement by the multithreading
analysis.

Here, again, the guaranteed utilization is of key interest
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and can be seen to be much better than before. ALL
ME Speed: 1400 MHZ

3.3 Bigger Workload Units 1 Thread 2231 66%
2 Threads 3487 84%
Table 3. Results of Batch Approach

== .
results for the 1400 MHzE running the “ALL" bench-

mark in Table 1, Table 2 and Table 3. The same code was
previously guaranteed to execute in 11,956 cycles (25%
utilization) and now is guaranteed to execute in 9523 (33%
utilization) or even 3487 cycles (84% utilization) if the
main loop can be unrolled.

Identify type of data

Process J1

4  Future Work

The results presented in Table 2 are too pessimistic for
our system. We'd like to implement an improved analy-
sis for memory access times into this work to show that
the optimized code already provides a considerable multi-
v threading gain compared to the original code.

The original code has a distribution of memory ac-
cesses that limit the analytical multithreading gain in a
durable way, as the left-over blocks of code are too small

] ] to hide considerable memory latency.
Figure 8. Block Diagram of Control Flow In this paper we presented a work where we manually
optimized our code to improve the analysis. The opti-

To achieve more benefit with the presented method, mizing transformation itself is easily automated and in-
we'll increase the granularity even more by extending it tegrated into an optimizing compiler for multithreaded ar-
over multiple iterations of the main loop. Introducing a chitectures. Key questions are, however, how we can de-

very small buffering stage which allows to read multiple tect a situation where we can apply our optimization.
input data from the line interface at once, we can guaran-

tee to have one token of input data for each implementeds  conclusions

control function. As we have eight different control func-

tions within the main loop, we increase the numberofread e presented a method to optimize the guaranteed pro-
inputs to eight. Additionally we do no longer jump 10 & cessor utilization in a multithreaded architecture.

single function to process the incoming data, instead we  \pith state machines typically found in control applica-
serially process all control functions in a defined order and i we identified an important class of programs which
integrate the fetch/write-back nodes of all eight itenagio ;5 5ccessible to this approach.

into a single shared one. We can easily do this as the used T, guaranteed processor utilization (and thus perfor-

pEs offer plenty of scratch-pad/register storage mance) for the implemented application was increased by
a factor of three.

3.3.1 Experiments
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Table 3 gives the results for the processing of eight input
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aware analysis for this system. The reason is simple: the tithreaded Processors”, Proc. HPCA-9 WS on Net-
latency of the memory access and the latency of the exe-  \york Processors, 2003

cution on the processor have the same magnitude. Thus a
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second thread which already has its data ready in internal “Cache modeling for real-time software: Beyond di-
uE registers. rect mapped instruction caches”, Proc. IEEE Real
To show the improvement of this method over previ- Time Systems Symposium, 1996
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Abstract

Pfair scheduling is the only known optimal way for
scheduling recurrent real-time tasks on multiprocessors.
However, it causes significant overheads compared with
the traditional approaches due to frequent task preemp-
tions and migrations. Our approach makes the effective
use of the context cache which is the exclusive on-chip
memories of the hardware contexts to reduce overheads.
In this paper, we propose a context cache replacement al-
gorithm called Farthest Weight[1/2], which is more effec-
tive than traditional approaches. Simulation results show
that the context cache is effective to reduce these over-
heads, and the proposed algorithm reduces overheads half
as much as the case which is done by software.

1. Introduction

Processor performance has improved remarkably with
the advancement of technologies. However, ascending
heat and electricity consumption caused by these im-
provements become problematic. Accordingly, Simulta-
neous Multithreading [18] (SMT) and Chip Multiprocess-
ing [15] (CMP) have been watched with keen interest be-
cause of their thread level parallelism. Furthermore, it is
important for embedded systems to concern not only per-
formance but also electricity consumption. These proces-
sors are attractive for embedded systems. Most embedded
systems have the tasks which have their time constraints
such as the robot control or image processing.

Real-Time scheduling. There are two approaches to
schedule tasks when systems have multiple-contexts. In
this paper, we call execution units contexts likewise pro-
cessors, threads of SMT, or cores of CMP. In partitioning,
all the jobs generated by a task are always scheduled on
the same context. In global scheduling, on the other hand,
tasks are inserted to the global queue, and the context to
be scheduled is decided on time.

In partitioning, uniprocessor scheduling can be applied
to per-processor scheduling. Liu and Layland [12] showed
that Earliest Deadline First (EDF) is optimal on a unipro-
cessor. However, the assignment of tasks to processors
is a bin-packing problem which is NP-hard in the strong
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sense. Lopez et al. [13] showed that no partitioned ap-
proach can guarantee schedulability with total utilization
(or weight) over (M + 1)/2 on M processors.

In global scheduling, Dhall and Liu [9] show that tradi-
tional uniprocessor algorithms do not work well because
of the Dhall’s effect. Srinvasan and Baruah [17] pro-
posed EDF-US[M/(2M — 1)] to avoid the Dhall’s effect.
Baker [6] showed that EDF-US[z] guarantees worst-case
schedulable utilization of (M +1)/2. Andersson et al. [5]
showed that no static priority multiprocessor scheduling
algorithm can guarantee the utilization higher than M /2.

Proportionate-fair (Pfair) scheduling proposed by
Baruah et al. [7] optimally solves the problem of schedul-
ing periodic tasks on multiprocessor systems. PF [7], PD
[8], and PD? [3] are the optimal pfair scheduling algo-
rithms. EPDF [4] is optimal on one or two processors.
However, Pfair scheduling causes overheads due to fre-
quent task preemptions and migrations when this scheme
is applied to the process scheduling. Srinvansan et al. [16]
showed that PD? is competitive with EDF-FF (First Fit
i.e. a partitioning heuristic) even if the overheads are con-
sidered. Moreover, they presented that Pfair scheduling
provides many additional benefits.

The problem. Proofs of theoretical optimality of real-
time scheduling algorithms are mostly constructed on
some assumptions. One of these assumptions in some
cases is that there are no overheads. However, the over-
heads need to be considered on practical systems. The
overheads are absorbed the worst case execution time of
tasks to guarantee schedulability. If the overheads of the
system are significantly large, its performance is awfully
degraded. One of the origin of performance degradation
comes from the resource competitiveness. We propose an
effective use of context cache [19] to reduce the overhead
of context switching.

Contributions. The remainder of this paper is organized
as follows. In Section 2, we give an overview of the re-
lated work. The background on Pfair scheduling is pro-
vided in Section 3. In Section 4, the context cache and
its mechanism are described. In Section 5, we propose a
context cache replacement algorithm to reduce overheads.
In Section 6, we present the experimental results. Finally,
we present conclusions and future work in Section 7.
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Figure 1. Windows of a task 7" which has wt¢(T") = 8/11.

2. Related Work

Anderson and Srinivasan [3] presented ERfair schedul-
ing which is the work conserving version of Pfair schedul-
ing. ERfair scheduling differs from Pfair scheduling in the
sense that tasks can be executed early. In some cases, it
is possible to execute tasks without task preemptions or
migrations if a tasks can be executed early. However, if
the system utilization is high, the tasks can be hardly exe-
cuted early. Consequently, per task preemption or migra-
tion overheads have to be reduced.

Moir and Ramamurthy [14] showed the existence of
Pfair schedule for any feasible task sets without migra-
tion. Although it intends to schedule the tasks which have
resource restrictions, it can be possible to reduce the con-
text overheads because to fix the tasks on one processor
prevents the cache misses and TLB misses and so on.

Anderson and Calandrino [2] proposed a spread-
cognizant scheduling method to decrease the spreads in
Pfair scheduling and global EDF. The overheads caused
by the cache misses can be reduced by this method.

Many algorithms of memory and disk cache replace-
ment are performed [1, 10, 11]. These cache replacement
algorithms are on the assumption that cache accesses have
locality. Least Recently Used (LRU) and Least Frequently
Used (LFU) are the typical cache replacement algorithms.

To our best knowledge, no context cache replacement
algorithms are presented. The notion of context cache is
different from typical cache. Consequently, new replace-
ment algorithms for context cache are required. The de-
tails of context cache is shown in Section 4.

3. Pfair Scheduling

To show the overview of Pfair schedule, we give a real-
time system model. A real-time system is modeled as
the taskset 7 which is a set of periodic tasks to be exe-
cuted on M contexts. A task T (€ 7) is characterized by
two parameters, its worst case execution time 7'.e and its
period T.p. A task T requires T'.e times of contexts for
execution at every 7T.p interval. The ratio T.e/T.p, de-
noted wt(T), is called the weight (or utilization) of task
T, where 0 < wt(T) < 1. A task T is called light if
wt(T) < 1/2. The worst case execution time T'.e of light
task T' is smaller than a not execution time T.p — T.e.
Otherwise, a task 7" is called heavy. > .., wt(T') is the
weight of the taskset 7.
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In Pfair scheduling, context time is allocated in discrete
quanta. The time interval [t,¢ 4 1) is called a slot ¢. The
time ¢ means the start time of the slot ¢. Tasks can be ex-
ecuted on every contexts in one slot, however, simultane-
ous executions of a task on different contexts in one slot
are not permitted. The sequence of allocation over slots
defines a schedule S.

S:rxN—{0,1} (1)
where 7 is a task set and NN is the set of nonnegative in-
tegers. S(T,t) = 1 iff a task T is scheduled in slot ¢.
> wrer S(T,t) < M holds for all . A notion of lag
which is the difference between the ideal allocation and
actual allocation is defined as the following.

t—1
lag(T,t) = wt(T) -t — Y _ S(T,u) 2)
u=0
A schedule is defined to be Pfair iff
VTt =1 < lag(T,t) < 1). 3)

Informally, the allocation error must be less than one. To
satisfy Equation 3, tasks are divided into subtasks with
WCET = 1, denoted T}, where ¢ > 1. Each subtask has
its pseudo-release time and pseudo-deadline defined as the
following.

@[] o[

A subtask 77 has to be scheduled between r(7;) and d(T;)
called window of T;. Windows of a task 1" which has
wt(T) = 8/11 are shown in Figure 1.

The optimal algorithms, PF, PD, and PD2, give higher
priority to subtasks with earlier deadlines. However, ties
are broken with different manners. In these algorithms,
PD? is most efficient. A valid schedule S exists for a task
system 7 on M processors iff

Z wt(T) < M.

vTrer

1—1
wi(T)

“

®)

3.1. Scheduling Overheads

In Pfair scheduling, schedulers need to schedule all
contexts at each slot. Consequently, overheads of Pfair
scheduling are higher than traditional algorithms when
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Figure 3. The context cache on RMT Proces-
sor

Pfair scheduling is applied to process scheduling. Srini-
vasan et al. [16] showed the formulas of these overheads.
Furthermore, all the slots among contexts are assumed to
be synchronized, in Pfair scheduling. When the overheads
are large, the optimality of Pfair scheduling is dismissed.

There are two operations to schedule processes. First,
a scheduler must decide which task to be scheduled. Sec-
ond, a scheduler must swap hardware contexts. These
overheads reduce the time of task executions.In this sec-
tion, we focus on the overheads of context switches and
migrations. These overheads are divided into two origins.
First, one of these overheads is context switching itself.
To swap hardware context, many memory access instruc-
tions which have long latencies are required. Second, task
preemptions and migrations cause collisions of hardware
resources, like memory cache, TLB, and so on. Figure
2 shows an example of CMP architecture. When task mi-
grations occur, independent resources among contexts (L1
cache in Figure 2) are completely lost. When task preemp-
tions occur, shared resources among contexts (L2 cache in
Figure 2) are also competitive.

4. Context Cache

The context cache [19] is an exclusive on-chip mem-
ory for saving hardware contexts. It can save and restore
hardware contexts by software. On Responsive Multi-
threaded (RMT) Processor [19], a context switch takes
only 4 clocks by the context cache while it takes 590
clocks by software. In our best knowledge, RMT Pro-
cessor is the only processor in which context cache is im-
plemented. The context cache is not architecture oriented.
Therefore, it can be available on many systems.

RMT Processor is the prioritized 8-way SMT proces-
sor, which has 8 active threads and 32 cache threads. The
context cache of RMT Processor is shown in Figure 3. The
registers of active threads are connected to context cache
by exclusive bus. The state transition chart of threads of
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RMT Processor is shown in Figure 4. The state is changed
by software instructions. In this paper, we call executable
thread as active thread.

An example of context switch with the context cache
is shown in Figure 5. At line 19 in this figure, if there is
no empty entry of context cache, the evicted entries must
be selected. Since a hardware context has a lot of infor-
mation to be saved, the area size of context cache per 1
entry becomes larger than memory cache. It is difficult to
implement many entries to processors. Consequently, the
decision which entry should be evicted is important.

There is no need to leave the entry of the task which
is executed in context cache. Therefore, it is efficient for
context cache to swap active threads and cached threads.
This characteristic is different from memory cache and
disk cache. It is impossible to discuss the context cache
as the same rank with the memory cache and disk cache.

To compare the traditional context switch, the number
of context switch by software (i.e. by the load and store
instructions) denoted n(soft_switch), is defined

n(soft_load) + n(soft_save)

n(soft_switch) = 5 ,

(6)

where n(soft_load) is the number of restoring hardware
context by the load instructions and n(soft_save) is the
number of saving hardware context by the sfore instruc-
tions.

5. A Context Cache Replacement Algorithm

If all tasks are put in context cache, we can be always
given the benefit of the context cache. Otherwise, the task
assignment to context cache is important. An important
thing to remember is that the complexity of the context
cache replacement algorithms must be lower than context
switch itself.



Algorithm: ContextSwitch
1: Let A = {Ai,..., A} be the active threads
2: LetC = {C1,...} be the cached threads
3: Let P; be the prev context on A;
4: Let N; be the next context on A;
5:
6: for all 7 such that 1 < ¢ < M do
7. ifPZ #Nl then

8: if N; € C then

9: swap P; and N;
10: else if vacant entries of C exist then
11: if P; exists then
12: copy P; to context cache
13: end if
14: if IV; exists then
15: restore NV; from memory
16: end if
17: else
18: if P; exists then
19: if P; goes to C then
20: swap P; and evicted entry
21: end if
22: save current context to memory
23: end if
24: if IV; exists then
25: restore /V; from memory
26: end if
27: end if
28:  endif
29: end for

Figure 5. A concept example of context
switches on RMT Processor

5.1. Farthest Weight[1/2]

We propose Farthest Weight[1/2] (FW) context cache
replacement algorithm. FW evicts the tasks, in the context
cache, which have larger F'(T') in the following.

F(T) = [wt(T) — 1/ )

The most difference between FW and the traditional
replacement algorithms, such as LRU and LFU, is that FW
takes notice of the task parameter while LRU and LFU
takes notice of the cache entry parameters.

The behavior of FW, LRU, and LFU with scheduling
PD? are shown in Figure 6. The number of contexts,
context cache entries, and tasks are 1, 2, and 4, respec-
tively. The weights of the tasks are 1/3, 1/4, 1/8, and
1/10. The timing of the context switch by software are
shown in the lower part of the cached threads as Save(S)
and Load(L). Since, in LFU, ties are broken arbitrary if
some entries have the same frequency, the worst case is
shown in this figure. FW can assign the high priority to
the tasks which is frequently executed. In this example,
the number of software context switches of FW, LRU, and
LFU are 4.5, 5.5, and 6.5, respectively. The reason why
LFU can not effectively deal with this problem is that the
parameter compared by LFU comes from the value related

H B O []

wi(T)=1/3 wi(T)=1/4 wi(T)=1/8 wi(T)=1/10

NN e
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Figure 6. A comparison among FW, LRU,
and LFU

to the cache entries (not the tasks) because the cache en-
tries are changed by the frequent context swithing. If the
frequency considered by LFU gives to the tasks, we can
not dual with aperiodic tasks effectively.

5.2. The Effectiveness of FW

It is difficult to calculate the number of context
switches on-line. Therefore, a situation which makes
the number of context switches large needs to be sup-

posed. The worst case number of context switches in Pfair
scheduling (WCNCSP) is defined as follows.

Definition 1 (WCNCSP) The worst case number of con-
text switches in Pfair scheduling (WCNCSP) is the largest
number of context switches under the all schedule se-
quences in the time interval [0, lem(T.p)) with supposing
that no context switch occurs when the subtasks of one
task are assigned to consecutive slots.

In Pfair scheduling, the scheduling decisions are made
by priorities of subtasks. A task 7" which has higher prior-
ity blocks the other tasks which has lower priority than 7.
We refer this type of blocking as “schedule restriction”.

Lemma 1 C(T) < C'(T), where C(T) is the WCNCSP
of the task T when the task T suffers schedule restrictions
by the other tasks, and C'(T') is the WCNCSP of the task
T when the task T' does not suffer them.

Proof S C S', where the possible schedule set under
schedule restrictions is S, and the possible schedule set
under norestriction assumptions is S'. |

Lemma 1 shows that we need not to consider the other
tasks when we estimate the WCNCSP.

Theorem 1 In Pfair scheduling, the WCNCSP of the task
T is maximized when wt(T) = 1/2, where wt(T) is the
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Figure 7. Strict replacement method

weight of the task T'.
Proof Letn be anon-negative integer. Let the task T not
suffer schedule restriction from the other tasks.

When the task T is light, T.e < (T.p — T.e). There-
fore, there exists a schedule S which does not schedule
subtasks in consecutive slots. The WCNCSP is 2T.e in
time interval (n - T.p, (n + 1)T.p|. The WCNCSP per 1
slotis 2T.e/T.p = 2wt(T).

When the task T is heavy, T.e > (T.p — T'.e). There-
fore, there exists a schedule S which does not make
consecutive empty slots by the task. The WCNCSP is
2(T.p — T.e) in time interval (n - T.p, (n + 1)T.p|. The
WCNCSP per 1 slotis 2(T.p—T.e)/T.p = 2(1 —wt(T)).
Consequently, the WCNCSP of the task T is maximized
when wt(T) = 1/2. [ |

FW evicts the tasks, in the context cache, which is not
preempted frequently.

5.3. Replacement Methods

There are two replacement methods to be considered
as shown in Figure 7 and 8. The number in the active slots
and the context cache is the weight of the task in the entry.

In the first method, the context currently executed is
always housed to the cache as shown in Figure 7. This
method is called strict. In Figure 7, when the task which
has the weight 1/10 in the active slots finishes the execu-
tion of its subtask, it is saved to the context cache. The
task which has the weight 1/4 (i.e. the largest F'(T") in the
context cache) is evicted to the main memory.

In the second method, on the other hand, there exist the
possibilities that the context currently executed is housed
to memory as shown in Figure 8. This method is called
lazy. In Figure 8, when the task which has the weight 1/10
in the active slots finishes the execution of its subtask, it is
saved to the main memory because there is no task which
has larger F'(T") in the context cache than the task. On the
other hand, when the task which has the weight 1/3 fin-
ishes the execution of its subtask, it is saved to the context
cache. The task which has the weight 1/4 is evicted to the
main memory because |1/3 —1/2| < |1/4 —1/2|.

In the strict method, F'(T') of tasks in the context cache
are compared to decide which entry is evicted. On the
other hand, in lazy method, F'(T) of tasks in the context
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Figure 8. Lazy replacement method

cache and the context currently executed are compared.
The difference between FW and the traditional algorithms
such as LRU or LFU is the place of the parameter which
decides the evicted entry. While LRU and LFU compare
the parameters of the cache entries, FW compares the pa-
rameters of the tasks. The lazy method needs the param-
eters of tasks because the tasks in the active slots have no
value about the cache entries.

In the traditional cache system, strict method is widely
used because of its simplicity and efficiency. This is sim-
ple and efficient when the cache access has locality. How-
ever, in Pfair scheduling, the executions of tasks are dis-
persed. Consequently, the possibility that the entry of
the task which is now finished the execution is low. The
strict method make the context house to the context cache.
Therefore, in Pfair scheduling, lazy method is effective.

The behavior of strict method and lazy method, shown
in Figure 9. The number of the active threads, the con-
text cache entries, and the tasks are 1, 1, and 3, respec-
tively. The weights of the tasks are 1/3, 1/4, and 1/8, re-
spectively. The scheduling and context cache replacement
algorithms are PD? and FW, respectively. The timing of
the context switch by software are shown in the lower part
of the cached threads as Save(S) and Load(L). In this ex-
ample, the number of software context switch of Strict and
Lazy are 7.5 and 5.5, respectively.

6. Experimental Results

In this section, we show the effectiveness of the con-
text cache and the proposed algorithm FW. FW and the
traditional cache replacement algorithms such as LRU and
LFU are compared.
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Table 1. Simulation workloads

distribution M N cache entries  slot length
NO-1 normal 8 32 1ms
NO-01 normal 8 32 0.1ms
BI1-1 bimodal 8 32 Ims
BI1-01 bimodal 8 32 0.1ms

6.1. Experimental Setup
The metrics of experiments are the cache miss ratio and
the overhead ratio defined as follows.

n(soft_switch)
n(switch)

®)

miss ratio =

where n(soft_switch) and n(switch) are the number of
context switch by software (i.e. by the load and store in-
structions), and all the context switches (i.e. with cache
and without cache), respectively.

T (switch)

overhead ratio = L(sloD)

9

where T'(switch) and L(slot) are the duration of a context
switch and a slot length, respectively. The overhead ratio
changes large by the slot length.

The supposed environment is as follows. To our best
knowledge, the processor which is implemented the con-
text cache is only RMT Processor. The simulation param-
eters are decided by supposing RMT Processor. The fre-
quency of the processor is assumed 100MHz. There are
8 contexts and 32 context cache entries. The number of
clocks needed to switch a context is 590 by software and
4 by hardware. The time needed to switch context does
not include the operations of task queue.

The simulation uses the workloads shown in Table 1.
The simulation is conducted through each workload given
tasks which have different weights. The results are shown
only when the number of tasks is larger than the number
of the context cache entries. The algorithms compared are
LRU, LFU, FW, and FW-Lazy. The results which do not
use the context cache is shown as Software. The results
which are assumed that the number of context cache en-
tries are infinity is shown as Hardware.
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The tasksets are generated as follows. The arrival times
of all tasks are time 0. The period of tasks are selected in
integer [1,100]. The weights of tasks are normal distri-
bution or bimodal distribution. The weight of the taskset
exceeds the target weight, then the task is discarded and
a new task is generated. When the generation fails 100
times, the last task is generated. When the hyperperiod
of the tasksets overflow 24bit, the tasksets are rejected
because of time constraints. If the number of tasks are
smaller than the number of context cache entries, a new
taskset is generated. By these operations, 100 tasksets are
generated for each workload.

The tasksets whose weight have normal distribution are
generated. The weight of tasks is selected 0 < wt(T') <
min(1, V), where V is the target weight. The tasksets
whose weight have bimodal distribution is generated as
follows. The trial whose success ratio is 0.1 is done 100
times, and the number of success is divided 100.

The tasks are executed until the hyperperiod of the
tasksets. The hyperperiod of the tasksets is lem(VT.p).
The scheduling algorithm is PD2. When a task is executed
consecutive slots, the task is assigned to the same context.
The average of results are calculated for all 100 tasksets.

6.2. Experimental Environments

Since the number of tasks, context switches per 1 slot,
and cache miss ratio are the same between NO-10 and
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NO-01, BI1-10 and BI1-01, each result is shown as NO
and BII.

The number of tasks and context switches per 1slot is
shown in Figure 10 and 11. The number of tasks is larger
and larger while the weight of taskset is large in workload
BI1. The other way, in workload NO, the number of tasks
hardly changes. The number of context switches per 1 slot
is larger and larger while the weight of taskset is large.
However, the increase in BII is larger than in NO. When
the weight of taskset is 8, context switches occur in almost
all slots.

6.3. Cache Miss Ratio

The cache miss ratio on workload NO is shown in Fig-
ure 12. The miss ratio decreases while the weight of
taskset increases. Since the empty slot increases, the con-
secutive execution increases. The difference among con-
text cache replacement algorithms are none.

The cache miss ratio on workload BI1 is shown in Fig-
ure 13. The cache miss ratio increases while the weight
of taskset increases. When the weight of taskset is 8, the
cache miss ratio of LRU is almost 0.98. In BI1, the execu-
tions of tasks are dispersed. The cache miss ratio of FW
and FW-Lazy is about 0.51 and 0.50, respectively.
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6.4. Overhead Ratio

The overhead ratio of NO-10 and NO-01 are shown
in Figure 14 and 15, respectively. Most tasks are put in
context cache since the number of tasks are smaller than
that of BI1. The decrease of overhead ratio comes from
the fact that the empty slot is smaller and smaller while
the weight of taskset is large.

The overhead ratio of BI1-10 and BI1-01 are shown
in Figure 16 and 17, respectively. The number of context
switches per 1 slot is larger than that of NO. Consequently,
the overhead under BI1 is larger than that of NO. The re-
sults of LRU are closely related to Software. FW can de-
crease the overhead ratio larger than the other algorithms.

The implementations FW and FW-Lazy is almost
same. Therefore, FW-Lazy is the most efficient algorithm
compared with LRU, LFU, and FW.

7. Concluding Remarks

In this paper, we propose an effective use of the con-
text cache to reduce the overheads of Pfair scheduling on
multi-context environments. Additionally, we propose a
new context cache replacement algorithm called Farthest
Weight[1/2] (FW). FW evicts the task which is not fre-
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quentry preempted. Experimental results shows that FW
is effective against to the traditional cache replacement al-
gorithms such as LRU and LFU.

We have some future work. First, we want to com-
bine our approaches with the other works such as spread-
cognizant scheduling. Our algorithm is only based on the
task utilization. Second, the scheduling algorithm is con-
sidered to decide a replacement entry. For example, in
PD2, scheduling decisions are constructed by some fac-
tors such as pseudo-deadline, b-bit, and group deadline.
Finally, we implement our algorithm to practical systems.

Acknowledgement

This research is supported by CREST, JST.

References

[1] J. Alghazo, A. Akaaboune, and N. Botros. SF-LRU Cache
Replacement Algorithms. In Proc of the Records of the
2004 International Workshop on Memory Technology, De-
sign and Testing, pages 19-24, Aug. 2004.

[2] J. H. Anderson and J. M. Calandrino. Parallel Real-Time
Task Scheduling on Multicore Platforms. In Proc. of the

64

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

(19]

27th IEEE Real-Time Systems Symposium, pages 8§9—100,

Dec. 2006.
J. H. Anderson and A. Srinivasan. Early-Release Fair

Scheduling. In Proc. of the 12th Euromicro Conference

on Real-Time Systems, pages 35-43, June 2000.

J. H. Anderson and A. Srinvasan. Mixed Pfair/ERfair
Scheduling of Asynchronous Periodic Tasks. Journal of
Computer and System Sciences, 68(1):157-204, 1996.

B. Andersson, S. Baruah, and J. Jonsson. Static-priority
Scheduling on Multiprocessors. In Proc. of the 22nd
IEEE Real-Time Systems Symposium, pages 193-202,
Dec. 2001.

T. P. Baker. An Analysis of EDF Schedulability on a
Multiprocessor. IEEE Transactions on Parallel and Dis-

tributed Systems, 16(8):760-768, Aug. 2005.

S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A.
Varvel. Proportionate Progress: A Notion of Fairness in
Resource Allocation. Algorithmica, pages 600-625, 1996.
S. K. Baruah, J. E. Gehrke, and C. G. Plaxton. Fast
Scheduling of Periodic Tasks on Multiple Resources. In
Proc. of the 9th International Parallel Processing Sympo-
sium, pages 25-28, Apr. 1995.

S. K. Dhall and C. L. Liu. On a real-time scheduling prob-

lem. Operations Research, pages 127-140, 1978.
S. Jiang and X. Zhang. Making LRU Friendly to Weak

Locality Workloads: A Novel Replacement Algorithm to
Improve Buffer Cache Performance. IEEE Transactions

on Computers, 54(8):939-952, Aug. 2005.
D. Lee, J. Choi, J. Kim, S. H. Noh, S. L. Min, Y. Cho, and

C. S. Kim. LRFU: A Spectrum of Policies that Subsumes
the Least Recently Used and Least Frequently Used Poli-
cies. IEEE Transactions on Computers, 50(122):1352—
1361, Dec. 2001.

C. L. Liu and J. W. Layland. Scheduling Algorithms
for Multiprogramming in a Hard-Real-Time Environment.
Journal of the ACM, pages 46-61, Jan. 1973.

J. M. Lopez, M. Garcia, J. L. Diaz, and D. F. Garcia.
Worst-Case Utilization Bound for EDF Scheduling on
Real-Time Multiprocessor Systems. In Proc. of the 12th
Euromicro Conference on Real-Time Systems, pages 25—
33, 2000.

M. Moir and S. Ramamurthy. Pfair Scheduling of Fixed
and Migrating Periodic Tasks on Multiple Resources. In
Proc. of the 20th IEEE Real-Time Systems Symposium,
pages 294-303, Dec. 1999.

K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and
K. Chang. The Case for a Single Multiprocessor. In Proc.
of the 7th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems,
pages 2—11, Oct. 1996.

A. Srinivasan, P. Holman, J. H. Anderson, and S. Baruah.
The Case for Fair Multiprocessor Scheduling. In Proc.
of the International Parallel and Distributed Processing
Symposium, page 10, Apr. 2003.

A. Srinvasan and S. Baruah. Deadline-based Scheduling
of Periodic Task Systems on Multiprocessors. Information

Processing Letters, 84:93-98, May 2002.
D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simulta-

neous Multithreading: Maximizing On-Chip Parallelism.
In Proc. of the 22nd Annual International Symposium on

Computer Architecture, pages 392-403, June 1995.
N. Yamasaki. Responsive Multithreaded Processor for

Distributed Real-Time Systems. Journal of Robotics and
Mechatronics, 17(2):130-141, Apr. 2005.



Exact Cache Characterization by Experimental Parameter Extraction

Tobias John, Robert Baumgartl
Chemnitz University of Technology
Department of Computer Science

{tobias.john, robert.baumgartl} @cs.tu-chemnitz.de

Abstract pects from CPUs commonly found in off-the-shelf PC sys-
tems, a trend of integrating more and more x86-based pro-
Accurate estimation of worst case execution times cessors into embedded systems can be observed. PC CPUs
(WCET) is an increasingly complex issue in real-time sys- of today are embedded CPUs of tomorrow. Therefore, an
tems research. Unfortunately, many important details of exact characterization of the execution timing of current
latest processor architectures, e.g. processor caches andprocessors is a must.

branch predictors, are very scarcely documented or com-  There exist a variety of models and methods to calculate
pletely obscured. It is up to the research community to de-\WCET. However, those models incorporate architecture-
duce some of these parameters by performing experimentgpecific parameters that pose a problem if unknown. Unfor-
and interpreting available documentation accordingly. tunately, many important architectural details which influ-

This paper describes some new and unique techniquesnce timing are badly or not documented by the processor
on how to obtain parameters of the underlying (processor-) vendors.

cache architecture by a set of micro-benchmarks. By using
performance monitoring registers instead of relying on tim-
ing information influenced by the analyzed hardware and
employing a real-time executive as operating system envi-

It is up to the research community to deduce some
of these parameters by performing experiments and inter-
preting available documentation accordingly. As has been
pointed out before, this process is error-prone and can even

ronment we are able to obtain very precise measurement e, 4 44 contradicting information on certain processor types
sults. We describe methods to identify write miss and wr|te[ ]

hit policies. Further, for the first time, we describe methods Thi q i d uni hni
to deduce cache replacement strategies. During our exper- Is paper describes some new and unique techniques

iments, we observed different behavior in initial placement on how to obtain parameters of the underlying (processor-)

of cache data. Hence, we developed appropriate method§aChe architecture by a set of micro-benchmarks. By using

to characterize that aspect special performance monitoring registers instead of generic
We apply the micro-benchmarks to a set of processors,CyC|e counters we are able to obtain very precise measure-

discuss the obtained results and conclude underlying poli- :nent restjlts. %f ct(r)]urse, the'tan'alyzed'ptrocesshqu?rchltec—
cies and strategies. ure must provide these monitoring registers which some-

what narrows the applicability of our approach to current
CPU types. For the first time, we describe methods to de-
duce cache replacement strategies. During our experiments,
1. Introduction we observed different behavior in initial placement of cache
data. Hence, we developed appropriate methods to charac-

Accurate estimation of worst case execution times terize that aspect.
(WCET) is an increasingly complex issue in real-time sys-  The remainder of this document is structured as follows:
tems research. Architectural innovations in modern CPUsIn section 2 we describe relevant cache parameters and re-
do almost always optimize the average case behavior. Techfer to related work, when necessary. The following sec-
nologies as branch prediction, complex caching hierarchiestion describes our experimental setup in some detail and
and super-scalar execution render WCET estimation a muchdiscusses its advantages over existing solutions. Then, we
more difficult task than it used to be. describe experiments to distinguish between write-allocate

Although embedded system CPUs differ in several as- and write-no-allocate as well as between write-through and
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write-back policies. Further, we describe several experi- Line in Cache? Caching Policy

ments to deduce the used cache replacement strategy and e

SRR X ) . Write-Through
the initial filling behavior. In section 4 we apply the de- yes (Hit) Write-Back
scribed methodology to a range of Intel processors, discuss _” €-bac
the obtained results and conclude underlying policies and no (Miss) Write-Allocate
strategies. Section 5 summarizes our work and gives an out- Write-No-Allocate

look on future research.
Table 1: Caching Policies

2. Cache Parameter Basics

2.3. Replacement Strategies

Although quite some work has been done for WCET es-
timation in the large and cache modeling, comparatively ~ When the cache is warm and a miss happens, a cache
few publications exist in the field of experimental processor line must be replaced. Several replacement strategies do
cache characterization. Therefore, we give a brief overview exist, which are listed in table 2. A thorough description
on relevant caching parameters and list related work, whereand evaluation of these strategies can be found in [9].
adequate.

RND Random

2.1. Structural Cache Parameters RR/FIFO Round-Robin
LRU Least Recently Used
Structural cache parameters as cache Size 2%, line pLRUt Pseudo Least Recently Used (Tree-based)
length L = 2! and associativityl” = 2% can be estimated pLRUM Pseudo Least Recently Used (MRU-based)

experimentally. Several publications describe correspond-
ing methods and algorithms [12, 14]. Besides, information
on S, A, L can be gathered through evaluating the bits re-
turned by thecpuid instruction as it is done by tools like
cpuid [13]. Hence, estimation of these parameters is not
topic of this paper. We simple assume them to be known
and to be powers of two.

Table 2: Cache Replacement Strategies

Our paper focuses on LRU and its derivatives, however
the presented algorithms are easy to adapt and thus allow
the identification of other strategies, too.

To our knowledge, techniques to discover the replace-

ment strategies by experiments have not been described be-
2.2. Caching Policies fore.

Depending on a hit or miss, four different policies can be 2.4. Initial Fill Policy
distinguished for write accesses.

Writing a datum which is already in the cache can be  After an invalidation the ways of a cache must be filled
performed in two ways. On the one hand, the write could in a certain order. That order might or might not be based
be performed on both the datum in the cache and its copy inon the replacement policy. For precise cache modeling it is
main memory (“Write-Through”). The alternative approach important to understand how this initial placement is per-
is to perform the write operation only on the cache. The formed.
main memory copy is not updated until the corresponding  puring some experiments we discovered different initial
cache line is replaced (“Write-Back”). fill patterns for a pLRUt cache. One approach obviously

Similarly, writing a datum which is not in the cache can used the tree bits to store the data in a tree-based order
also be performed in two ways. Firstly, the datum could be (the data is stored the same way it is read). That means
written to main memory only (“Write-No-Allocate”). Alter-  the replacement mechanism is applied for initially filling
natively, the datum could be written to both main memory the cache. We refer to that behavior as “tree-based fill".
and cache to accelerate subsequent read accesses (“Writg+he other approach simply populated the cache in sequen-
Allocate”). Table 1 summarizes the policies. tial order. In that case the tree bits are ignored. We call this

Experimental methods to estimate these policies haveapproach “sequential fill”.
been published in [3] but are limited to the first level cache  Figures 1 and 2 illustrate both approaches. They show
only. Additionally, they are based on timing measurements a set of a 4-way cache before and after a line 'b’ has been
which are potentially imprecise as we argue in section 3.1. referenced. The cache contains a line 'a’ and is otherwise
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empty. The three squares denoted eithéot 'r ' symbol- more so-called Model Specific Registers (MSR) have to be
ize the tree bits which determine the path through the treeset up to describe the desired event and one of the avail-
(symbolized by arrows) pointing to the pLRU cache line of able performance monitoring counters has to be selected
this set. If tree-based filling is used, the tree bits are evalu-and configured to count the events in the specified way.
ated, the corresponding line (the 3rd in figure 1) is written  The following events must be monitored:

and the appropriate tree bits are updated (complemehted:

« r). Figure 2 illustrates sequentially filling empty cache  * L1 cache misses

lines. The tree bits are neither evaluated not modified, there-

fore no arrows are drawn. Here the line 'b’ is stored in the  * L2 cache misses

first free entry next to 'a’.
* L2 cache accesses

] [ . o : ,
| | | | | | ‘ | Using performance monitoring registers has the addi-
a a

readb) | | tional advantage of implicitly serializing execution flow.
\ This prevents inaccuracies introduced by instruction re-
] L]

read(b)
\ /E ordering. Obtaining execution timing by accessing the
time stamp counter (TSC) register requires additional ef-
[a | (b | : | [a ] b | | | forts concerning serialization and is therefore more complex
and error-prone.
Figure 1: Tree-based Fill Figure 2: Sequential Fill _ Asoperating system environment we used the RTAI real-
Of course, more and different initial fill policies may exist. time executive [2] for the following reasons: The micro-
We describe a methodology to identify the caching hit Penchmarks are executed as highest-prioritized RTAI tasks.
and miss policies as well as the replacement strategy. Fur-Therefore, timing influences by user-space programs as
ther, we describe, how the initial cache fill can be analyzed. Well as the Linux kernel itself are eliminated. In this system
All methodologies are based on a two-level, set-associativeconfiguration even interrupt processing can be postponed.

cache architecture as itis Comm0n|y used in today’s PC andFurther, because RTAI app|icati0ns execute in kernel mOde,
SEerver processors. no virtual-to-physical address conversion is necessary, ac-

cessing physical memory is straightforward, and timing in-
fluences of the translation lookaside buffer (TLB) are also
eliminated. Accessing hardware, especially manipulation
. of performance measurement registers is not restricted in
3.1. Experimental Setup kernel mode. To force caches to load a certain data set, it
is necessary to access physical main memory at arbitrary
Invariably, previously published methodologies for |ocations, which is straightforward in kernel mode.
cache parameter extraction rely on measuring execu- gxisting profiling tools for kernel space are usually based
tion times of small code fragments (often called micro- on gyerflowing counters. The obtained results are too im-
benchmarks) to differentiate.petween cache hits and misse%recise, hence we implemented routines for manipulating
and stress the good portability of that approach. On the performance monitoring registers by hand. This poses no
other hand one can argue that using execution timing in-major problem, because overall implementation complexity
formation for cache parameter extraction without know- s jow. Of course, by using RTAI we need to implement all
ing cache internals beforehand is somewhat risky. Influ- mjcro-benchmarks as Linux kernel modules which requires
ences of the at least partially unknown cache architectureg certain amount of system knowledge. We felt that this can
as well as the underlying operating system may spoil the be justified.
results. Therefore, we propose a different approach: use  cqjiecting and analyzing the obtained measurement data

hardware counters to monitor only the events (€. g. cachejg ot time-critical and can therefore be done in user mode
hits or misses) which are caused by the hardware to be aNpy means of standard tools.

alyzed. In this way, we do not need to interpret execution
times which are potentially influenced by a number of exter-
nal factors. Of course, our approach is limited to processors
which provide those monitoring capabilities. This includes . .
Intel processors starting from the Pentium model ([8]) and 3-2- INotational Conventions

AMD processors starting with the Athlon ([1]). Although

the events that can be counted differ between architectures, Instead of presenting C source code, we try to illustrate
the functionality and configuration is quite similar: one or our algorithms a bit more formally. Hopefully, this eases

3. Analysis Concepts

The resulting experimental setup ensures very precise re-
sults and a reasonable flexibility.
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Identifier Description [Wbinvd ]

W; Associativity W, = 2%4)

S Cache Size g = 2°%) 2. Writeto as many addresses as fit into L1.

L Line Length C=2h

a; Address Width [W”te(ﬂo) ]
A;,B;,... Datathatfills one Cache Way

Q0,Q4,... Datathat completely fills L1 3. Readfrom these addresses and count the L1 misses

Nmiss:

Table 3: Used Identifiers and Symbols

resetcounte(L1_MISS)
read(Qo)

first level cache =
Q= [A1,...,D] nmiss := read.counte(L1_MISS)

W, = 4 If Tiiss is (approximately) as_high as the number of ad-

dresses iif2q , write-no-allocate is used. On the other hand,
D, if nmiss IS €xactly or near zero, the data has been stored in
201 antries/sets L1 and a write-allocate policy has been identified.

Ay B; C

3.3.2. Cache Hit Policy

— L—>| The test for hit policies works with filled caches. If write-

through is used, any write operation of a date residing in
L1 is performed in both L1 and L2, whereas for write-back
only the contents of L1 is modified (the cache line is marked
dirty). The algorithmic idea of the micro-benchmark can be

porting and adapting the methods to newly evolving archi- described as follows. First, a full clean cache contents is
tectures. Table 3 summarizes the used identifiers. The indexeplaced and the number of needed L2 accesses is recorded.
i refers to the level of the cache. Second, the cache is filled again, then the cache contents is

Q; represents an arbitrary data set which completely fills modified and afterwards again completely replaced. The
L1. Some of the benchmarks need more than one such datfe€ded L2 accesses for that second replacement is again
set, therefore we index them by The addresses actually recorded. If both values are approximately equal, write-

referenced are arbitrarily chosen, but it must be guaranteedhrough is identified. Otherwise, if the replacement of a
that for any€2;, €2, no single data element is shared be- cache which has been written to requires twice the number

of L2 accesses needed for replacing a clean cache we can
that the line length conclude that a write-back policy is used.
Hence, the structure of the benchmark is as follows:

Figure 3: Cache Variables

tween both sets.

Itis common, although not necessary,
is identical for both cache levels. This document only cov-
ers the case wheig = [, = [. A set-associative cache has
2si—wi—l entries and thus an address width= s; —w; — 1.
Figure 3 illustrates some of the relevant parameters.

1. Fill L1 twice by accessing?, first and(2; afterwards,
replacingQg by €2, in L1.

. . . . read(2)
3.3. Analyzing Caching Policies Lrea d2,) }
3.3.1. Cache Miss Policy
. _ o _ _ . _ 2. Read(,.
The write miss policy is easy to obtain. The idea is to write (It must be loaded from L2 and replaces the modified

data to the cache and read that data afterwards. If the data  data sef2,). Count the L2 accessesnmods
is still in the cache, write-allocate is used. Accordingly, the

following steps must be performed: resetcountefL2 ACCESS)
read(2)

Nunmod .= read.countefL2_ACCESS)

1. Invalidate caches (atleast L1), so that no data is cached
by issuing an appropriate machine instruction.
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Because the data has not been modified, it can be reto obtain reliable results, whole cache ways must be re-
placed regardless of the applied policy and L2 accesseplaced. This can be achieved by carefully crafting the re-

should be nearly zero. placing accesses. Secondly, choosing characteristic input
data is not straightforward.
3. Repeat step 1 (fill L1 twice). Again, for reasons of simplicity the algorithm is ex-
As aresult, addressé®, are cached in L1. plained by means of an exemplary 4-way L1 cache. The
detailed structure looks as follows:
read(€2o) :
[reac(ﬂl) } 1. Invalidate caches.

(wbinvd )

4. Writeto the addresse®; in L1 (if L1 uses write-back

then L2 is not updated). 2. Fill L1 by readingway by way.

[Write(Ql) ]

read/A,)
5. Repeat step 3 (read addressgs) and count L2 ac- : = read(€2)
cessesimeg- Because the data has not modified this read(D)

time, nmog depends on the cache hit strategy.

3. Reload (ead) some of the ways already present in L1
resetcounte(L2_ACCESS) to make them the most recently accessed ones. We

read($2o) manipulate L1 history without altering its content.
Nnmod := read.countefL2_ACCESS)

read{Ai, ..., Di})
If 'mod > munmod it can be concluded that write-back is :
used. Ifnmog ~ nunmogWrite-through has been identified.

4. Load (ead) a “new” way E which replaces one of
{A4,...,D1} according to the replacement policy and
the current access history set up in step three.

3.4. Replacement Strategy

Identifying replacement strategies is somewhat more
complex than the tests described so far. The algorithmic
idea is to load the cache with a predefined content, caus-
ing replacement by accessing uncached data and analyzing
which data has been replaced. 5. Read, way by way and record L1 misses for each

Then we load the cache again with the predefined content ~ way to find out which one has been replaced.
but with a different access history, cause again replacement

[reacKEl) ]

and analyze, which data has been replaced this time. This rresetcounte(Ll,MISS) )
process is repeated until sufficient knowledge on replace- read(A)

ment has been accumulated and the replacement strategy na, .= read.countefL1_MISS)
can safely be identified. .
The. idea is similar to the black box apprpach in syste_m resetcounte(L1_MISS)
theory: feed the system to be analyzed with a known in- read(D,)
put, record the output and draw conclusions on the transfer .
function of the system that transforms inpytinto output *0: = EEL BN S J
z,. What we do is to provide several characteristic inputs
by varying the number and order of ways that are reloaded,Exactly one of{na,,...np,} has a significantly larger
identify which ways should be replaced according to the ap- value than the other three counters. The associated way has
plied strategy and compare those with the actually replacedbeen replaced under the given cache configuration.
ones. For the manipulation of the access history in step three
This methodology poses the two challenges: Firstly, al- we arbitrarily select the waysAB;, C; and access them
though replacement is performed line per line, measuringin different configurations which are depicted in column
single replacement events is nearly impossible. Therefore,“reload” of table 4. The selection is thoroughly arbitrary,
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different combinations (e.g.[8\;) are also possible, of Every way of L2 has to be at least as large as the whole
course. Therefore, the complete cache access history fot.1 cache. Applied to the exemplary 4-way cache used in
a single benchmark run consists of 8, C;, D; (column the preceding discussion that means: If ways have been
“load” in table 4) followed by one of the “reload” configu- loaded in the order 4 ..., D5 then L1 contains only B(if
rations. In the following discussion we omit the indices of as = a; + w;) but none of A, B, C,. Therefore, reload-
the cache ways because we concentrate solely on level ondng a way already present in L2 way really accesses L2 (and

The four rightmost columns of table 4 list the expected accordingly updates its history) and is not influenced by L1
way to be replaced in step four of the algorithm under the data. Figure 4 illustrates that fact. If the L2 ways have been
replacement strategies pLRUt with tree-based fill, pLRUt loaded in the order 4 B, C,, D2 and afterwards way £
with sequential fill, pLRUm and strict LRU (from left to  shall be reloaded, it is guaranteed that none of the addresses
right, respectively). Bold rows indicate different results de- C0.0 - C31.127 still reside in L1, because they have been
pending on the replacement strategy. overwritten when loading R

Obviously, not every input row is a characteristic input. ~ Yet there is still another simple method to test the re-
For instance, omitting the reload step completely does notplacement strategy: First the cache is filled with addresses
allow to identify any replacement strategy, because way A (2o. Afterwards exactly one “new” way is read and it is
is replaced invariably. Reloading with B is equally indif- ~ checked which way it replaces. Then the cache is filled
ferent. again with €y but this time two “new” ways are loaded

Clearly, it is possible to identify each of the four replace- and it is noted which two ways are replaced by them. This
ment strategies. For instance, the first run could reload ABC method is repeated until as many “new” ways are loaded as
(row eight) and therefore allows to differentiate between fit into the cache, that means until the whékg has been
tree-based pLRUt and LRU on one hand and sequential fillreplaced.
pLRUt and pLRUmM on the other hand. Depending on the With that incremental replacing of one W; = 2 ways
result of that initial benchmark run in the second run either of @ cache it can be observed which ways the pseudo LRU
C is reloaded (row five) to distinguish between sequential @lgorithm selects for replacement and this information can
fill pLRUt and pLRUm, or A is reloaded (row two) to dis- again be used to identify the replacement algorithm.
tinguish between sequential fill pLRUt and pLRUm. For The structure of this benchmark is as follows (again, we
our example cache configuration, two benchmark iterationsuse the 4-way-associative cache as demonstration example):

are needed to identify the used replacement strategy. 1. Invalidate caches.
Table 4: Cache Ways expected to (whinvd )
be replaced by different Replace-
ment Strategies 2. Fill L1 by reading way by way.
gLRUt - readA,)
o = : =
$ = % > : read($2)
Load Reload = & @ 3 read(D;)
ABCD i ACAAA 3. Load (read)one "new” way which replacesone of
ABCD A B C B B {A,....Di}.
ABCD B A C A A
ABCD AB C C C C (readEy) )
ABCD C B A A A 4. Read€2, way by way and record L1 misses for each
ABCD AC B B B B way to find out which one has been replaced.
ABCD BC b A A A (resetcountefL1_MISS) )
ABCD ABC D A A D

read(A;)
na, :=read.countefL1_MISS)

This technique also allows to identify newly-evolving re-
placement schemes which differ from well-known behavior.

To apply this micro-benchmark to the 2nd level cache resetcountefL1_MISS)
too, the following condition has to be met: read(D;)
a4y > ay + wy (7D, = read counteL1_MISS) )
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10.

13.

. Load (read)two "new” ways which replacawo of

L2

a31127 | Bariez | csiizr | psvizr
p28127 | p29.127 | p30127 | psrizz :» : ) 0
] ] ] [ ] | [ ]
D28.0 D29.0 D30.0 D31.0 e A0.0 B0.0 C0.0 D0.0
Figure 4: Sizing Relations L1 — L2, based on PII
Exactly one of{na, , ... np, } has a significantly larger 4. Experimental Results
value than the other three counters. The associated
way X has been replaced. The algorithms described in the previous section were
implemented as RTAI tasks and have been tested on several
- Repeat step 2. machines equipped with Intel Pentium II, Ill and 4 (with-
out Hyperthreading) processors running a ADEOS-patched
[reacXQo) ] Linux kernel version 2.6.8.1 with RTAI 3.1. The software

is freely available on request.

4.1. L1 Caching Policies

{A17 LERE Dl}
4.1.1. Cache Miss Policy
read(E;)
read(F;) Results on the Pentium I/l
512 lines can be stored in L1 and we encountered an
- Repeat step 4. average Ofimiss = 16 misses when reading L1. This miss

Two ways must experience significant misses. They raiio of 3.1 % indicates that a write-allocate policy is used.
have been replaced;, X,

Results on the Pentium 4

128 lines can be stored in L1 and we measured an av-
erage offimiss = 22 misses when exhaustively reading L1.
Whereas the absolute number of misses can be compared to
the preceding result the miss ratioldf.2 % is not as small
as on the Pentium Il/Ill. We believe that the smaller number
of lines is the reason for that increase. Because it is still

Repeat step 4.
Three ways must experience significant misses. They
have been replaced;, X», X3

Repeat step 4. negligible, we can conclude that write-allocation is used.
All ways were replacedX, Xo, X3, X4
Xr ={A1,B1,C1,D1}, k=1{1,2,3,4} 4.1.2. Cache Hit Policy

As explained before (cf. figure 4) this test can be applied Results on the Pentium I1/11l
to L2 too. Only address ranges have to be adapted:

As,...,Dy/As, ... Hs! have to be read to fill L2 and The performqnce monitpring of the Pentiumlll and Ill
Es,...,Hs/la,...,P,} are those “new” ways to replace Processors provides two different events potentially usable
present ways in the cache. as metric for L2ZACCESS: the cycles the L2 data bus is
busy and the number of L2 address strobes. We chose the
14-way/8-way L2 latter one and implemented micro-benchmarks described in
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section 3.3.2 for that event type. Table 5 presents the ob- Reloaded Way(s) Replaced Way
tained results.

- A

L2 addr strobes A B

Timod 2057 B A

Thunmod 1063 A B c

C B

Table 5: Results on Cache Hit Policy - A, C B
Pentium Il B.C D
A B,C D

Table 5 shows clearly that the modified data in the L1
cache has to be written back to L2 first, before it can be
replaced: twice as many L2 address strobes are necessary.
We can conclude that the first level cache of the Intel P6
family utilizes a write-back policy.

This fact is in accordance with Intel's article [4] which clude that the Pentium Il/Ill uses a tree-based pLRU strat-
describes differences between the Netburst architecture anegy with initial tree-based filling.

“Earlier Pentium Family Processors” (Pentium Pro, Il, III). Secondly, we implemented a similar test for Pentium

Accordingly, [11] is wrong in assigning a write-through [I/11l L2 cache, whose results are presented in table 8.
policy to the Pentium IIl.

Table 7: Results on L1 Replacement
Strategy — Pentium I

Reloaded Way(s) Replaced way

Results on the Pentium 4

- A
o A C

Unfortunately, the performance monitoring of the Pen-
tium 4 does not allow to count the same events as on earlier B C
processors. Therefore, we decided to take the front side bus A B C
(FSB) read and write operations as as indicator for L2 cache C A
accesses. Table 6 presents the measurement results. A C B
FSBreads FSB writes B, C A
nmod 128 0 AB.C A

Nunmod 129 0 Table 8 Results on L2 Replacement

Strategy — Pentium I

Table 6: Results on Cache Hit Policy —

Pentium 4 Obviously, in contrast to L1, the second level cache of

the Pentium Il and Ill uses a pLRULt strategy with sequential
Obviously, there is almost no difference whether the con- initial fill P 9y q

tent of L1 has been modified or not and the conclusion must The Intel Pentium Il Processor Developer's Manual [7]

be_ that the Netb_urst arc_:hi_te(_:ture uses a L1 _ca(_:he with 6\only states that pseudo-LRU is used for both caches, but

write-through policy. This is in accordance with informa- " \which type and initial behavior. Moreover, Sears [10]

tion in [4], [5] and [6]. is wrong with the conclusion that the processor uses a LRU
strategy.

4.2. Cache Replacement Strategies

Results on the Pentium 4
Results on the Pentium II/11
Identifying the replaced cache line in the L1 cache

Firstly, we applied several characteristic inputs to the re- proved to be more difficult. Figure 5 illustrates the mea-
placement benchmark described in section 3.4. The cachesured L1 misses for the individual reload configurations.
is 4-way-associative, therefore we could employ the input  Itis nearly impossible to identify a single replaced cache
data without modification. way for certain reload configurations (e. g. AB or AC). We

Table 7 shows the replaced cache way for every input believe, this behavior again results from the comparatively
data pattern. Comparing the results with table 4 we can condow number of only 32 cache sets.
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Figure 5: L1 Cache Misses for Replacement Strategy Benchmark — Pentium 4

Nevertheless, lacking a better one, we applied our de- * The reloading of A, B, C and the following reading of
scribed methodology and obtained the results depicted in ta- a new way | leads to an almost equal distribution of L2
ble 4. None of the four replacement strategies fully matches misses between all eight present ways A, ..., H.
the observed behavior, the closest one is pLRUt with tree-
based filling which deviates only in two cases.

Taking the above mentioned inaccuracies into account
it seems nevertheless reasonable to infer pLRUt with tree
based filling for Pentium 4 L1 cache.

'In all other input data configurations, the (single) replaced
“way can be identified easily by its high number of L2

misses.
Reloaded Way(s) Replaced Way Tree-based Fill The highlighted rows in Table 10 indicate differences in
the ways that should be replaced (3rd column) and those
- A A .
that actually are replaced (2nd column). With a reasonable
A B B degree of certainty we conclude that the L2 cache of the
B A A Pentium 4 uses a pLRUt policy with a tree-based filling,
A B C C too. Yet we must admit that we still do not understand fully
Pentium 4 level 2 cache replacement behavior. This is sub-
C A B :
ject of further research.
A C B B
B,C A D
AB,C D D Reloaded Way(s) Replaced Way Tree-based Fill
— A A
Table 9: Results on L1 Replacement A 5 B
Strategy — Pentium 4
B A A
L2 cache is 8-way associative on the Pentium 4, there- A B C,D C
fore the micro-benchmarks have to be adapted accordingly. C B B
The cache utilizes 1024 sets, therefore the event miscounts
; A C B B
do not play any role. However there are two mysterious
results we are not able to explain yet: B,C D D
A B,C ? D
* The reloading of two ways A, B and the following
reading of a new way | seems to eviobth ways C Table 10: Result on L2 Replacement
andD. It is important to note that not half the way C Strategy — Pentium 4

and D are purged from L2 to obtaomefree way, but
bothways C, D are freed!
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5. Conclusions and Future Work

We described methods to analyze the first and second (9]

level processor caches. In contrast to existing solutions
we do not use timing information to differentiate between
cache hits and cache misses. Instead we propose to directly
count relevant events using performance monitoring regis-

ters. Our methodology eliminates timing influences of the [11]

operating system and concurring applications.

We described micro-benchmarks to experimentally dis- [12]

cover cache miss and cache hit policies. Furthermore our
methodology allows to determine the replacement strategy
in detail. We are able to obtain information about the initial
cache filling.

We successfully applied our methodology to a range of

on caching behavior and falsified some other statements.
We discovered new details on Intel's cache behavior.

Currently we implement micro-benchmarks for a much
wider range of microprocessors especially for architec-
tures different from IA-32. We hope to precisely analyze
embedded processor’'s caching soon. Crafting the micro-
benchmarks manually is tedious work, therefore another re-
search focus is on (semi-)automatically generating bench-
mark code.

We feel that statements on branch predictors are equally
as fuzzy and contradicting as we experienced for cache be-
havior. Using our proved methodology first tests on that
matter have been carried out already.

The next step is to include cache performance param-
eters into our experimental setup. That way we are able
to quantify and compare cache performance of different ar-
chitectures. Finally, we hope to contribute towards precise
cache models for WCET estimation of complex processors.
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Abstract

Cache memories are crucial to obtain high performance
on contemporary computing systems. However, sometimes
they have been avoided in real-time systems dueto their lack
of determinism. Unfortunately, most of the published tech-
niques to attain predictability when using cache memories
are complex to apply, precluding their use on real applica-
tions. This paper proposes a memory hierarchy such that,
when combined with a careful pre-existing selection of the
instruction cache contents, it brings an easy way to abtain
predictable yet high-performanceresults. The purposeisto
make possible the use of instruction cachesin realistic real-
time systems, with the ease of usein mind. The hierarchy is
founded on a conventional instruction cache based scheme
plus a simple memory assist, whose operation offers a very
predictable behaviour and good performance thanks to the
addition of a dedicated locking state memory.

1 Introduction

J. V. Busquets-Mataix and A. Marti Campoy

Departamento de Informética de
Sistemas y Computadores
Universidad Politécnica de Valencia

Camino de Vera s/n., 46022 Valencia, Espafia

{vbusque, amarti}@disca.upv.es

ory hierarchy access times as well as the delays involved in
cache contents replacement it is necessary to know what its
contents are.

Using cache memories in fixed-priority preemptive mul-
titasking real-time systems presents two problems. The
first problem is to calculate thébrst-Case Execution Time
(WCET), due to intra-task or intrinsic interferencintrin-
sicinterference occurs when a task removes its own instruc-
tions from the instruction cach& ¢ache) due to conflict and
capacity misses. When the removed instructions are refer-
enced again, cache misses increase the execution time of
the task. This way, the delay caused by the I-cache inter-
ference must be included in the WCET calculation. The
second problem is to calculate thbrst-Case Response
Time (WCRT) due to inter-task or extrinsic interferendex-
trinsic interference occurs in preemptive multitask systems
when a task displaces instructions of any other lower pri-
ority tasks from the I-cache. When the preempted task re-
sumes execution, a burst of cache misses increases its exe-
cution time. Hence, this effect, called cache-refill pgnalt
or Cache-Related Preemption Delay (CRPD) must be con-
sidered in the schedulability analysis.

This work proposes

Contemporary computing systems include cache memo-
ries in their memory hierarchy to increase average system e a memory hierarchy that provides high performance

performance. In fact, cache memories are crucial to ob-
tain high performance when using modern microprocessors.
While trying to minimise the average execution times, the
contents of the cache memories vary according to the exe-
cution path. General-purpose systems benefit directly from ® the required schedulability analysis for such hierarchy;
this architectural improvement; however, minimising aver and

age execution times is not so important in real-time sys-
tems, where the worst-case response time is what matters
the most. Thus, due to their lack of determinism, sometimes
cache memories have been avoided in fixed-priority pre-
emptive multitasking real-time systems: when they are in-
corporated in such a system, in order to determine the mem-

coalesced with high predictability. The solution is to
be centred on instruction fetching since it represents
the highest number of memory accesses [15];

e some evaluation results and its analysis.
Results show that

e the proposed memory hierarchy is predictable and sim-
ple to analyse;
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e its performance exceeds that of the dynamic use of2.2 The memory hierarchy is used in a real-time
locking cache as given in [10]; and systems suitable manner.

e in many cases, its performance is about the same than
that obtained when using a conventional instruction
cache.

An alternative to fully exploit the inherent performance
advantage of cache memories while achieving predictabil-
ity is to work with unconventional memory hierarchies.

The remainder of the paper is organised as follows. Sec-In this case, instead of conventional cache memories, the
tion 2 introduces the problem and summarises some of thereal-time designers favour the use of either locking caches
solutions found in the literature. Section 3 describes the[10, 18, 25, 2, 17] or scratchpad memories [26, 27]. On the
proposed memory hierarchy, its requirements, a functionalone hand, locking caches are caches with the ability to lock
description of its operation and the schedulability arialys ~cache lines to prevent its replacement; blocks are loaded
Section 4 assesses the proposed memory hierarchy by coninto the locking cache and then they are locked. They are
paring it with the dynamic use of locking cache as given accessed through the same address space as the main mem-
in [10]. First predictability and prediction accuracy ase e ~ Ory. On the other hand, scratchpad memories are an alter-
amined by comparing estimated and simulated worst-casehative to I- or D-caches (data caches). They are small and
response times. Performance is evaluated by measuring theéxtremely fast SRAM memories (since they are usually lo-
worst-case processor utilisation. Some concluding resnark cated on-chip); they are mapped into the processor’s agldres
are given in Section 5. space and are addressed via an independent address space
that must be managed explicitly by software.

Regarding implementation, in both cases, during the de-
sign phase it is necessary to choose for every task in the task
] set which instruction blocks will be either loaded and then
_ Inorderto guarantee that every task in the task set meet§ycked into the locking cache or copied into the scratch-
|t§ deadline, real-time system designers may opt for threepad memory. The number of selected blocks per task must
different approaches: not exceed the capacity of either the locking cache or the
scratchpad memory (selecting which information is copied
into a scratchpad is very close to deciding which informa-

e Use the memory hierarchy in a real-time systems suit- ion has to be locked into a locking cache). Once the blocks

able manner. are chosen, it is possible to know how much time it would
take to fetch every instruction in the whole task set; there-

e Use a real-time systems aware memory hierarchy. fore, the access time to the corresponding memory hierar-

chy is thus predictable. At compile time, the assignment of

Each approach will be briefly summarised according to memory blocks to either the locking cache or the scratchpad
three different perspectives: architectural viewpoimipie-  has to be handled by hand or automatically using a compiler
mentation viewpoint and, run-time support viewpoint. and/or a linker. However, since scratchpad memories are
mapped in the processor's memory space, explicit modifi-

2.1 The memory hierarchy is used in a conven- cations in the code of tasks may be required to make control

tional manner. flow and address corrections.

To improve the execution performance of more than one

When using cache memories in a conventional way, thetask (as is desirable in a fixed-priority preemptive mustita
memory hierarchy is the same used in any conventional sys4ing real-time system), the contents of either the scratthpa
tem with cache memories; therefore, regarding implementa-or the locking cache memory should be changed at run-time
tion and run-time support, there is no need to implement any(dynamic use). Thus, in both cases, the subset of blocks se-
additional hardware or software modules. Instead, the real lected for every task should be loaded during system execu-
time system designer does his/her best to determine whethetion by a software routine, which is executed each time the
each memory reference causes a cache hit or a cache missgeal-time system designer judges convenient. Transfers to
This is done by using static analysis techniques. Some ofand from scratchpad memories are under software control
the techniques used for WCET calculation are data-flow while for locking caches this is transparent. While a task
analysis [13, 22], abstract interpretation [1], integeer is not preempted, it is necessary to ensure that the contents
programming techniques [6], or symbolic execution [7]; to of either the scratchpad or the locking cache will remain
tackle the WCRT estimation data-flow analysis is also used.unchanged. This way, extrinsic interference is eliminated
Unfortunately, the complexity of static analysis techmgu  while intrinsic interference can be bounded. In [10] using
may preclude their use in practical applications. locking instruction caches is proposed to cope with both ex-

2 Rationale

e Use the memory hierarchy in a conventional manner.
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trinsic and intrinsic interferences; in [25], the use ofdec  [28, 12] or a combination of hardware and software [19, 3].
ing D-caches is proposed to enhance predictability by in- Notice that the technique proposed in [5] introduces unpre-
serting locking/unlocking instructions: the cache is ledk  dictability for blocks that go to the shared pool.

whenever it is not possible to statically determine whether 14 improve predictability, [4] proposes to extend the

the memory references a datum inside the cache or not. Inache hardware and to introduce new instructions to con-
several cases, the dynamic use of locking I-caches effects,q| cache replacement (kill or keep cache blocks).
the same or better performance than using a conventional I-

cache [10]. In [27] by using scratchpads performance gains o e
comparable to that of caches are also obtained. Howeverlions of setassociative cachesto _t"?‘SkS so that extrinsie in

since the amount of scratchpad memory available is Oftenference_ IS ellmlngted;_ cgc_:he part|t|_ons are gs_5|_gned ks tas
small compared to the total amount of cache memory avail- 26c0rding to their priorities by using a prioritised cache:
able, intuitively, it is reasonable to think that for tasksse each partition is assigned dynamically at run time; higher

with big tasks the scratchpad memory approach may 0btainpriority tasks can use partitions that were previously al-
lower performance than the cache memory approach. located to lower priority tasks. A partition allocated to a
No matter higher priority task cannot be used for a lower priority task

unless the former notifies the cache controller to release th
1. which mechanism is used to trigger the execution of partitions it owns (which is done when the task is com-
a small software routine to either load blocks into the pletely over). Therefore, it might be possible that the high
locking cache (at the scheduler level, as proposed orig-est priority tasks consumes the whole cache memory and
inally in [10] or via debug registers by raising excep- jeopardises the lowest priority tasks response times.

tions when the program counter reaches specifigd val-  The work presented in this paper is a refinement of
ues [2]) or copy blocks to the scratchpad memory; and, previous work [23] and proposes the use of an I-cache

and additional hardware information to influence the I-
cache replacement decision. This “cache replacement pol-
icy” provides a mechanism to increase predictability (tme
the execution of the aforementioned software routine de-determinism) without degrading performance, making it
mands valuable processor cycles. Since this execution timesuitable for use in fixed-priority preemptive multitasking
must be added to the task’s WCRT, the overhead introducedeal-time systems. In this approach, the subset of selected
when using either locking caches or scratchpad memoriesblocks for each task and the instants in which I-cache flush-
in a fixed priority multitasking real-time system may have ing takes place are fixed: Every time a task begins or re-
severe consequences on performance. sumes its execution, the I-cache is flushed and then it is
gradually reloaded with selected blocks as the instrustion
2.3 The memory hierarchy is real-time systems belonging to the task to be dispatched are being fetched.
aware. The selected blocks are inhibited from being replaced un-
til a new context switch takes place. This way, the access
A third option is to design more predictable memory hi- time to the memory hierarchy is predictable and on the other
erarchies. A memory hierarchy for fixed-priority preemp- hand, each task may use all the available I-cache space in
tive multitasking real-time systems must implement mech- order to improve its execution time.
anisms which in some way address the effects of In contrast to other approaches, the proposed memory
hierarchy does not need any software to load the selected
blocks into the I-cache at run time and hence it does not
introduce penalties in the task's WCRT.

In [24], a custom-made cache controller assigns parti-

2. thelocation of the software routine (e.g., in main mem-
ory or even in a scratchpad memory),

e intrinsic interference: it must prevent that the contents
of the cache are overwritten by the same task;

e preemption: by allowing the preempting task to over-
write the contents of the cache; and

e extrinsic interference: it must allow that the contents 3 Memory hierarchy architecture
of the cache are restored when the preempted task re-

sumes execution. - . . .
Efficient operation of the memory hierarchy requires an

To deal with extrinsic interference, some of the ap- efficacious, automatic, on-demand storage control method
proaches use cache partitioning techniques, which adlocat that frees the software from explicit management of mem-
portions of the cache to tasks via hardware (I-cache [5], D- ory addressing space. Furthermore, the resulting arehitec
cache [14]), software (by locating code and data so theyture should not introduce any additional delays and be as
will not map and compete for the same areas in the cache)pen as possible by using generic components.
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In order to achieve determinism, each time a tasks
| I dispatched for execution, its corresponding subset ofiprev
Loncre R~ M ously selected blocks,B;, is loaded into the I-cache as the
TR e ™ e PATARA PE fetches them. Once loaded, the selected blocks must re-
IW j-_l main in the I-cache and must not be overwritten as long as
taskr; is either not preempted by other, higher priority tasks
or it finishes. This policy, which is applied to every task in
I 1 ! the task set, eliminates intrinsic interference since sk t
*é;ii;&i ﬁé is not allowed to remove any block previously loaded into

I-cache, thus contributing to temporal determinism. Fur-
thermore, extrinsic interference is bounded and can be esti
mated in advance.

Both temporal locality, the tendency to access instruc-
o tions that have been used recently, and spatial localigy, th
3.1 Description tendency to involve a number of instructions that are clus-

tered, are essential to performance. Hence, by keeping

Figure 1 sketches an architecture that pursues thesghe $B, blocks loaded in the I-cache, temporal locality is
goals. As can be seen, the figure does not embody anymainly captured by the I-cache yet spatial locality is also
locking I-cache; it resembles a system for a conventional sypported. Besides that, the I-buffer captures spatialdoc
I-cache. There are however three noteworthy differences: ity for those blocks not irf B;, albeit as it was said before,

e There is an extra, dedicated, very fast SRAM mem- it might also provide some temporal locality.

Figure 1. Proposed memory hierarchy

ory, the Locking State Memory (LSM), located to the With respect to timing issues, the goal is to cause min-
right of the Processing Element (PE). Its role is to imum overhead during I-cache (re)load: since the LSM is
store the status of every instruction block (theck- not in the critical path, IM latency remains the same. LSM

ing State, LS) in the Instruction Memory (IM), thus access time however must be in the order of a cache hittime
providing a mechanism to discriminate which blocks to operate in parallel with the I-cache and its controlldrisT
must be loaded into the I-cache and hence a way to al-way, the I-cache inner workings are not affected and hence,
low for automatic, on-demand loading of the selected its timings remain about the same.

instruction blocks. In other words, instead of locking

selected blocks into an instruction locking cache, the 3.3 Storage requirements

same effect can be attained by avoiding loading into

the I-cache unselected blocks. Storage requirements for the LS are also very important:

e There is also atnstruction Buffer (I-buffer), with size space consumption should be low. Regarding cost, the most
equal to one cache line, located below the I-cache con-Useful measure is to determine how much memory needs to
troller. Having an I-buffer is not essential, rather it is b€ added to the system. _
more of a performance assist: its purpose is to take The minimum amount of memory required to kee_p track
advantage of the sequential locality for those blocks of each_ selected block is one bit. _Hence, there will be as
that should not be loaded into the I-cache. Since the many bits as the number of blocks in the IM. Each of those

I-buffer catches and holds previously used instructions Pits will store a flag, the.ocking State Flag (LSF), which
for reuse, it might also contribute with temporal lo- is used to _S|gnal whether the correspondlng block should
cality by providing look behind support (via the boxes be loaded into I-cache or not. For LS packing purposes,

drawn with dashed lines in the bottom part of the fig- however, it is better to group the information into wider,
ure). off-the-shelf, fast SRAM memories. Henceforth assume an

) . ) ) 8-bit wide LSM; then, the information for eight blocks (a
e There is also a subtle difference in the control bits of parcel) will be stored in ond_ocking State Word (LSW) as
the I-cache with respect to a locking cache: since lock- shown in Figure 2.
ing state information is stored into the LSM, locking Let L be the I-cache line size in bytes and bgtbe the
status bits are not required. number of bytes per instruction; then each memory block
hasL/b; instructions. Given an IM of deptti;,, = mL,
3.2 Performance requirements wherem is the number of instruction blocks, the required
LSM has a depthd;sas, equal tom/8. Then, the number
The main goal of the memory hierarchy is to provide ofinstructions,, that corresponds to each LSW is given by
deterministic yet high-performance response times. I =8L/b;.
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Figure 2. Locking state memory

Let w be the IM width in bits,a be the width of the ad-
dress bus in bitsK be the degree of associativity aid
the number of sets, thefi;,;, the space required for IM;
Scu, the space required for I-cache memory; &gy,
the space required for LSM, are given (in bits) by:

Sy = wmlL (1)
Scm = wLKN—!—(a—log2 %) x KN + KN2)
Spsy = m 3)
In the expression fo5¢y,, the first term is related to

the I-cache data memory, the second one reflects the space
needed for its tag memory and the last one accounts for its

status bits (just the valid bits are considered). Noticé tha

lock bits are not necessary since they are grouped into the

LSM.
Therefore, the space efficienay,, which measures the

fraction of memory dedicated to store LS, can be defined as

the ratio of the LSM space§ s, to the total amount of
memory space:

Srsm
Sim + Scem + Srsm

ns (4)

3.4 Functional operation

During system design, given a task sg&f9, an off-line
algorithm selects a subs&tBrg, from the task set instruc-
tion memory blocks§Brs = JSB;,V 1, € TS).

The LS associated to T&,Stg, which reflects the status
of every instruction block in TS, must then be loaded into
the LSM and it will remain fixed during system execution.

block that embodied,. Hereafter, assume a 32-bit wide
instruction size and a byte-addressable IM. Then,y,. is
obtained by stripping off théog, 8b; least significant bits
of a,.

Finally, it is necessary to extraétS F,., the correspond-
ing LSF within LSW,. to drive theL SF signal and thus de-
termine whether it is necessary to loag in the I-cache.
The LSF is indexed by using ttgbits next to thdog, by
least significant bits o, to drive an 8-way multiplexer.

At the same time, the tag fon,. is compared in the I-
cache directory thus updating tMATCHsignal and its cor-
responding line status is checked viaWALID bit. Simul-
taneously, the data portion of the I-cache is also accessed.
Based upon thé SF, MATCHand VALID signals, the I-
cache controller may have three possible outcomes:

e ThelLSF signalisl, indicating thain, must be loaded
and locked in the I-cache so the I-buffer is disabled;
in other wordsyn, € SB;. If the reference causes a
miss (because either there is no tag match or the entry
is not valid), m,. is loaded from IM into the I-cache,
the corresponding tag is updated and its valid bit is set.
Afterwards, the I-cache controller, via tMWAITIine,
signals the PE that the instruction is available so that it
can restart fetching.

e The LSF signal is1, but the reference results in a
hit (because the instruction was previously referenced
during the current execution). Then, the PE can fetch
the instruction from the I-cache without incurring in
any further delays.

e ThelLSF signal is0, indicating thatmn,. should not be
loaded in the I-cache; in other words,. ¢ SB;. In
this case, the I-cache is disabled and it is necessary to
access the IM in order to load,. in the I-buffer.

Each time a context switch occurs, the scheduler exe-
cutes an instruction that causes that the entire I-cache con
tents are purged (its valid bits are reset) and therefore, ev
ery line is invalidated; the I-cache controller should &gso
reset to avoid that it finishes incomplete operations taking
place when the context switch happened. Not purging the
I-cache might bring better performance but in any case, it
is quite difficult to estimate which blocks will remain in the
I-cache after several preemptions; furthermore, it is éard
to know if those blocks will be used at all once the pre-
empted task resumes execution. Thus, since one of the pri-

When the system starts operating, the PE must reset thenary goals is to keep the schedulability analysis simple, it

I-cache controller and invalidate all the entries in thatite
as well as in the I-buffer.

Now, every time that an instructioi,, at address,. is
referenced by the dispatched task,the LSM needs to be
accessed to check the LSW at addressy,. This is the
address of the LSW that correspondsitg, the memory
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is better to purge the cache on each context switch. Notice
however that this may introduce an overestimation in the
schedulability analysis.

Using an LSM in the proposed way imposes a constraint:
since in a conventional I-cache there is no hardware impedi-
ment to replace its lines, the block selection algorithmtmus



guarantee that for any set in the I-cache there will be no Its WCET can then be estimated assuming that all of the

conflict misses. Otherwise, selected blocks, which are al-vertices inSV; are already loaded in the I-cache and then

ready loaded, may be overwritten. This might cause someadjust this WCET by accounting for the time required to

performance improvements, but at the same time, its pre-load.SB;. Hence, if the subset of selected blocks is already

dictability will deteriorate and hence, the analyses witht loaded in the I-cache and the execution time of any instruc-

more complex. tion (notincluding the fetch time) is given by, the WCET
Aside from this restriction, it is important to note that for a vertex is given by:

the focal feature of the memory hierarchy is the inclusion of

the LSM. With the LSM, the proposed memory hierarchy is kv, X (tr +thie), VVi € SVi ()

able to provide dfrtual Locking I-cache. Its key advantage kv, X (tr + thit) + tmiss, VVi ¢ SV; (6)

is that it uses a conventional I-cache like a locking I-cache )

This approach then, takes advantage of the I-cache intrinsi @1d Ci, the WCET for any task can be estimated by ap-

features while at the same time avoids the overhead required@!ying the approach given in [21]. Notice however that
to load instructions into the locking I-cache and the explic Eduation 6 introduces an overestimation in the schedula-
manipulation of its locking mechanism. bility analysis whenever there is a control transfer frore on

vertex to any other vertex that belongs to the same memory
block.

Nevertheless, the previous assumption makes necessary
to adjust the execution time of those instructions conthine

G The SChﬁduxg'llz't%’ a][]alysrl]sllsdt_que Iln tw|c<) ;teps;: Iln thg in every selected block3;. Then, for each selected block
Irst step, the ot each individual task is calculate B; not loaded into I-cache, taskwill incur in an overhead

assuming thatitis the only task in the system but accountinggiven bYtmiss (@ COMpUISOrY Miss)
miss .

for the intrinsic interference. Subsequently, the efféthe When estimating the WCET for every task the worst
extrinsic interference is considered in the second phbse, t case scenario regarding the blockssi; implies loading

caIcuIatjon of the WCRT. _ all of its blocks. Thus, this preemption penalty can be ac-
Task’'s WCET is estimated by using @ache Aware counted for by adding the terfs, x tmiss to the previ-
Control Flow Graph, CACFG, an extendedontrol Flow ously calculated WCET:

Graph, CFG [21]. In a CACFG, each memory block is

mapped to a cache block and assigned a block number and C; = C;+ Lgp, (7)

eachbasic block (i.e., each sequence of instructions with a kan Xt (8)

. . . . . . . SB; miss

single entry/single exit point) inside the memory block is

mapped to a different vertex. Thus, CACFG models not wherekgp, is the number of selected blocks for task

only the flow control of the task through vertices (as it hap- Notice that when using a scratchpad memory or a locking

pensin CFG) but also takes into account the presence of theache in a dynamic way (i.e., by modifying its contents

I-cache by modelling how the task is affected from the point at run time, it is necessary to add an extra ternitgs, :

of view of the cache structure. Asw,s5,, that takes into account the time required to exe-
The WCET of tasks may then be easily estimated consid-cute the software routine in charge of replacing the corre-

ering the execution time of each vertex: Let a tagkwith sponding memory.)

selected vertice®; € SV; C SB;. The execution time of a WCRT is then obtained by using Equation 9, where the

vertex depends on the number of instructions insideyit, I-cache refill penalty due to extrinsic interference is iRco

and the cache state when the instructions inside the vertexporated in parameter;.

are executed. Since

3.5 Schedulability analysis

Lsp,

n+1 U}? 7
¢ in the worst caseS B;, the subset of selected blocks, witt = G+ Z {?w X (CJ/ + 73‘) ()
and hence&'V;, the subset of its corresponding vertices, V7 €hp(r) | Y
will always be loaded on-the-fly by the proposed mem-

ory hierarchy each time, executes; and, Computingy; is not easy because tasks may suffer two

kinds of interference: direct interference or indireceint

e each block, once loaded, will remain in the I-cache as ference.Direct interference means that a task increases its

long as task; is not preempted (or it finishes), response time because it is forced to reload its own instruc-
tions, previously removed by its preempting tashslirect

it is possible to affirm that, in this particular case, theteac interference means that a task increases its response time
state forr; is essentially the same during each of its activa- because executing any other higher priority tasks inceease
tions. Thus, the execution times fey's vertices are con- its response time, due to its own direct and indirect extins
stant across each execution. interference.
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Itis hard to know which kind of extrinsic interference a Hence, rather than trying to find only the best (optimal)
task will suffer during its execution; then, to considertbot solution, a good non-optimal (trade-off) solution is sotugh
possibilities, it is safe to use the maximum I-cache refill Therefore, to solve the problem at hand, it may be a good

penalty: idea to apply some form of directed search. For this kind
_ of problem, one of the most appealing techniques is using
v; = [max(ksp,) + 1] X tmiss, ¥V j € hp(i) (10) genetic algorithms since they are generally seen as optimi-

sation methods for non-linear functions.

Using the max_imum I-<_:ache refill penal_ty gives a s_afe, UP-  In fact, in [8] a Genetic Algorithm, GA, has been pro-
per bound while keeping the complexity low. This may ,5sed to solve an equivalent problem. The results presented
be somewhat pessimistic: it may happen that not all of the {here show that the use of a genetic algorithm to solve the
loaded blocks are going to be used before the next preemppophjem represents a good choice since it provides for each
tion. Nevertheless, getting a more precise value in advancggk in the task set, not just the subset of blocks to be lgaded
will involve complex analyses, since it depends on the num- 5, astimation of the WCET and, the corresponding WCRT
ber of blocks effectively loaded and the exact preemption ¢qnsidering the estimated WCET, but also because that se-
Instants. _ _ . . _ lection offers good performance. Moreover, results in [9]

Equation 9 is a recursive equation that is solved itera- show that using the genetic algorithm proposed in [8] brings

tively; the resulting WCRT,R;, is then compared to;'s  gjightly better results than using the pragmatic algorithm
deadline to decide schedulability. given in [18].

In this work, for evaluation purposes, the following
4 Assessing the proposed memory hierarchy cache characteristics are assumed: A direct-mapped ecach
with varying size, a cache line size of 16 bytes (4 32-bit
The proposed architecture, when operating in Virtual Widg instru_ctions); I-buffer is also 16 bytes wide. Feta;hi_n
Locking I-cache mode, is able to guarantee determinism per®" instruction from I-cache or I-buffer takes 1 cycle while
se (since it is possible to analyse its impact on the WCRT fétching an instruction from IM takes 10 cycles. A fixed-
of every task), but system performance strongly depends orPriority preemptive scheduler is used in every case. Task
the blocks selected to be loaded in the I-cache. Thus, thisPriOrity is assigned according to a Rate Monotonic Policy.

selection must be carefully accomplished. In fixed-prjorit AIS0, notice that in this work, it is assumed that the dead-
preemptive multitasking systems, tasks response times deli"®: D, is equal to the task period..
pend on the execution time of higher priority tasks. In ad- ~ Evaluation results concerning the proposed memory hi-
dition, indirect interference causes that the response tim erarchy must show whether the proposed memory architec-
of tasks depends on the time needed to reload the I-cachdure is predictable and if there is any performance loss when
contents. Therefore, I-cache contents must be selected corHsing the proposed memory hierarchyS/) in front of
sidering not the isolated tasks, but all of the tasks in teke ta  Using alocking I-cache in a dynamic mannek (). There-
set. fore, two kinds of results were evaluated to assess thesnerit
Then, the goal is to optimise some temporal metric by of the proposed memory hierarchy. The first set of results is
selecting a subset of instruction blockéB s from the set obtained by using a GA to select blocks and estimate pro-
of instruction blocksBrs. Choosing the cache contents in  C€SSor utilisation when using those selected blocks wih th
a way that maximises the probability of finding the instruc- Proposed memory hierarchy/{ss.). The second set of
tions in cache is a combinatorial problem. In general, the results is obtained by using the same selected blocks and a
techniques employed to solve combinatorial problems aremodified version of SPIM (the freely available, widely used
characterised by looking for a solution from among many MIPS simulator) which embodies a cache simulator, to ex-
potential solutions. Petrank and Rawitz [16] showed that €cute one hyperperiod of the task set and thus obtain the
unlessP = NP there is no efficient optimised algorithm ~Simulated processor utilisatiol/{ sys).-
for data placement or code rearrangement that minimises It is not easy to compare the performance of a real-time
the number of cache misses. Furthermore, it is not even possystem running on different architectures. If the same task
sible to get close. Therefore, they conclude that the proble  Set is schedulable in every case, there are many character-
pertains to the class of extremely inapproximable optimi- istics and metrics useful to compare performance. Further-
sation problems and that, consequently, on one hand, it ismore, itis highly desirable to use standard benchmark(s) to
necessary to use heuristics to tackle the problem, and on th@valuate the predictability and performance of the progose
other hand, it is not possible to estimate the potential bene memory hierarchy since it makes possible the comparison
fits of an algorithm to reduce cache misses. So, the virtueswith other approaches.
of a given algorithm must be evaluated by comparing algo-  Traditional computing benchmarks are inadequate for
rithms. characterising real-time systems since they are not de-
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100%
Table 1. Main characteristics of task sets and 00% | L—e— Y [
cache sizes /
80% //
>
Feature Minimum | Maximum S 70% //
Number of tasks 3 8 g 6%
Task Size 1.6 KB 27.6 KB = 50% //
- > °
Task Set Size 125KB| 57.6KB o Vsl
Instr. executed per task (approx. 50,000 8,000,000 § // /

Instr. executed per tasks (approy®.) 200,000| 10,000,000 30% S
Cache Size 1KB 32 KB 20% B A

10% W.S%
signed to exhibit behaviour characteristic of such systems . s s8R
such as periodic, transient and transient periodic activa- Overestimation in Predictability
tion/deactivation. On the other hand, there are several pro

posals for embedded/real-time systems benchmarking. Un- Figure 3. Cumulative frequency curves for the
fortunately, however, the lack of consensus about using a OVerestimation in predictability

standard benchmark (to the authors’ best knowledge) pre-

cludes the use of such proposals given that, in general, they
are not easily portable. Moreover, it is necessary to nOt'CewhereRi is the WCRT forr. SinceR; includes not just
that the proposed benc_hmarks are not targete_d 10 Measurg, o cRpp but also the execution time of those tasks with a
cache memory eff_ects in real-time systems since they OIOhigher priority thanr;, it is necessary to deduct the execu-
not cause preemptlons[ZO].. . tion time for those tasks.

The 26 tasks sets used in this work come from [10]. The Then, given the proposed memory hierarchy, the utili-

code for each task is synthetic; it does nothing useful but it sation estimated by the GAUf.s1..), and the utilisation

e e e & o o s S rough 1 STUBtoD 1., e overesia
9 prog ’ q b tion in predictability,(2, is given byQ2 = Ursnyre/ULsis-

pose: each task may have streamlined code, single loops,.. . X
. igure 3 presents the cumulative frequencies for the over-
up to three nested loops, if-then-else constructs. S . .
estimation when using the proposed memory hierarchy and

Table 1 summarises some characteristics of the task set : : ; .
: . e dynamic use of locking cache. Cumulative frequencies
and cache sizes employed for evaluation purposes. . N
represent the number of responses in the data set falliog int
that class or a lower class [11].
The results verify that the proposed memory hierarchy is

. . . predictable:
To verify how predictable the proposed memory hierar-

chy is, the GA estimated response time of every task inthe ¢ gqor every task in the whole set of tasks (676), the es-

task set/i.sare, was compared with the corresponding re- timated response time is always larger than the simu-
sponse time obtained through the simulati®dng . lated one Rrsare > Risars)-

However, instead of using the individual response times
for each tasky;, in every task set, Processor Utilisation, a ¢ |n the same vein, for every task set, the estimated util-

40%4

4.1 Predictability analysis

measure th_at involves the whole TS will be used toillustrate isation is always larger than the one obtained through
the results in a more compact way: the simulation Ursare > Ursars);
tasks i i
U — &3 (11) e Furthermore, as can be seen in Figure 3, the proposed
Py T; memory hierarchyi .S M) provides better predictabil-
ity than that obtained with the dynamic use of locking
whereC!’, the computation time of; includes all cache ef- cache LC). It can be observed that when using the
fects (intrinsic and extrinsic interference); i.e., it lindes proposed memory hierarchy, the overestimation in util-
the time required for; to reload the cache after preemp- isation is greater than or equal to 5% in less than 7%
tions: of the cases. On the other hand, when employing the
locking cache in a dynamic way, the overestimation in
c’ = R — Z {&-‘ % C} (12) utilisation is greater than or equal to 5% in around 25%
V75 € hp(rs) T; of the cases.
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100% T—g=re W . dynamic manner; moreover, in the zone with losses
90% AdLC (rangel0, 1.0)), the proposed memory hierarchy pro-
> 80% | ——ALSM - vides lower losses and in the zone with gains (range
g 70% g (1.0, 00)), the proposed memory hierarchy provides
L 60% 11y higher gains.
<L 50%

5 40% /Z/Z/ . Furthermore, a statistical analysis of three null hypothe-
§ 30% e ~33:33% sis tests (t-test, sign test, and signed rank test) was @one t
20% [ corroborate thal\Uy sy — AUgLe < 0 (i.e., that the pro-

10:/0 et posed memory hierarchy provides a better Processor Utili-
0% i § i j § g‘ E‘ g‘ g‘ s aaac s 7 satlon_than the dynamic use of I_ocklng cache). The flrst_o_ne
229935223333 aum3In establishes whether the mean is zero or not; the remaining
€seoeoeoeossesddddd™ two tests allow to determine whether the median is zero or
Utilisation Ratio not. The sign test is based on counting the number of val-

ues above and below the hypothesized median, while the

Figure 4. Cumulative frequency curves for the signed rank test is based on comparing the average ranks of
utilisation ratios values above and below the hypothesized median. All of

the three tests revealed that/;, sy < AUyrc at the 95%
confidence level.

4.2 Performance evaluation
5 Concluding remarks
Although the effects of using the proposed memory hi-
erarchy can be safely incorporated into the schedulability By virtue of including the LSM, any I-cache is trans-
analysis, the performance advantages obtained from usingormed into a virtual locking I-cache, independently of its

the proposed memory hierarchy should be analysed. size, associativity and block size, the three main organisa
Since a higher cache hit ratio does not necessarily guarjon parameters in a cache memory. In addition, parameters
antees that every task in the task set will satisfy its deadli  |ike |-cache replacement policy are irrelevant, provideatt

the approach used in this work to measure the quality of thethe algorithm used to select I-cache contents guarantaes th
solution is to use Processor Utilisation. The lower the pro- there will be no conflict misses.
cessor utilisation, the better, since this means that tie ta Results show that the proposed memory hierarchy is pre-
set demands less CPU time and thus other tasks might be ingictaple and simple to analyse. Moreover, when compared
cluded in the task set while the system remains schedulablg dynamic use of locking cache, it offers (i) a lower over-
(i.e., all tasks executing on time). _ estimation in predictability; and (i) a higher performanc
Estimated Processor Utilisations for the system with an Finally, when compared to a conventional cache, in many
LSM (ULsare), the system with an LC used in a static man- cases the proposed memory hierarchy performs better or
ner Usrce), and the system with an LC used in a dynamic very close to it.
manner sz c.), were calculated by using the same GAfor o, the other hand, the proposed memory hierarchy does
block selection and the appropriate I-cache refill penalty. 5t needs explicit management of the memory hierarchy
Afterwards, the different utilisations were normalised 3t run-time. while both scratchpad memories and lock-
against the utilisation obtained when simulating the syste ing cache memories, do. Moreover, the use of scratchpad
with a conventional cachd/c;, to obtain the Utilisation  memories requires explicit modifications in the applicatio
Ratios AUx = Ux./Ucs, Wherey is one of s, are,s code’s control flow.
ch)_- _ In short, the memory assist is versatile in its operational
Figure 4 shows that: aspects, yet it uses generic components; it does not cause
e In less than 34% of the caseAlU, sy > 1: ie., any extra _overheads_tc_) th.e syste_m; its impact on syst(_em
Ursare > Ucs, and hence, the proposed memory hi- programming is negligible; and,_ it may be embedded in
erarchy brings about the same or better processor util-System-on-a-Programmable-Chip designs targeted to cur-

isation than that obtained when using a conventional rent FPGAs, while contributing in a significant way to de-
cache in around 66% of the cases: terminism and performance improvements with respect to

dynamic use of a locking I-cache.
e In every rangeAUrsy < AUgre < AUspe and All of these advantages are obtained at a fraction of
hence, the proposed memory hierarchy brings betterthe cost of the original system, thus paving the way to
processor utilisation than using a locking cache in a widespread use in realistic real-time systems.

83



References

[1] Alt M., Ferdinand C., Martin F., and Wilhelm R. Cache

behavior prediction by abstract interpretatibecture Notes
in Computer Science (LNCS)145, Sept. 1996.

[2] Arnaud A. and Puaut I. Dynamic instruction cache locking

in hard real-time Systems. Proc. of the 14th International
Conference omiReal-Time and Network Systems (RTNS 06),
pages 179-188, May 2006.

[3] Jacob B. L. and Bhattacharyya S. S. Real-time memory

management: Compile-time techniques and run-time mech-

[15]

[16]

[17]

anisms that enable the use of caches in real-time systems.[18]

Technical report, Institute for Advanced Computer Studies
University of Maryland at College Park, USA, Sept. 2000.

[4] Jain P., Devadas S., Engels D. W., and Rudolph L. Software
assisted cache replacement mechanisms for embedded sysf19]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

tems. InProc. of the International Conference on Computer-
Aided Design (ICCAD), Nov. 2001.

Kirk D. B. SMART (Strategic Memory Allocation for Real-
Time) cache design. IRroc. of the 10th IEEE Real-Time
Systems Symposium, pages 229—-237, Dec. 1989.

Li Y.-T. S., Malik S., and Wolfe A. Cache modeling for
real-time software: Beyond direct mapped instruction each
In Proc. of the 17th IEEE Real-Time Systems Symposium
(RTSS 96), pages 254263, Dec. 1996.

Lundqvist T. and Stenstrom P. An integrated path andrgni
analysis method based on cycle-level symbolic execution.
Real-Time Systems, 17(2—3):183-207, Nov. 1999.

Marti Campoy A., Pérez Jiménez A., Perles Ivars A., and
Busquets Mataix J. V. Using genetic algorithms in content
selection for locking-caches. IRroc. of the IASTED In-
ternational Symposia Applied Informatics, pages 271-276.
Acta Press, Feb. 2001.

Marti Campoy A., Puaut I., Perles Ivars A., and Busquets
Mataix J. V. Cache contents selection for statically-latke
instruction caches: an algorithm comparison. Rroc.

of the 17th Euromicro Conference on Real-Time Systems
(ECRTS 05), pages 49-56, July 2005.

Marti Campoy A., Tamura E., Saez S., Rodriguez F., and
Busquets-Mataix J. V. On using locking caches in embedded
real-time systems. IfProc. of the 2nd International Con-
ference on Embedded Software and Systems (ICESS-2005).
Lecture Notesin Computer Science (LNCS) vol. 3820, pages
150-159, Dec. 2005.

G. McPhersonApplying and Interpreting Satistics: A Com-
prehensive Guide. Springer Texts in Statistics. Springer-
Verlag New York, Inc., second edition, 2001.

Mueller F. Compiler support for software-based cache p
titioning. In LCTES 95: Proc. of the ACM S GPLAN 1995
workshop on Languages, Compilers, & Tools for real-time
Systems, pages 125-133, June 1995.

Mueller F. Timing analysis for instruction cach&®al-Time
Systems, 18(2):217-247, May 2000.

Muller H., May D., Irwin J., and Page D. Novel caches
for predictable computing. Technical Report CSTR-98-
011, Department of Computer Science, University of Bris-
tol, Oct. 1998.

84

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

D. Patterson and J. Hennessyomputer Organization and
Design: The Hardware/Software Interface. The Morgan
Kaufmann Series in Computer Architecture and Design.

Morgan Kaufmann, third edition, 2 Aug. 2004.

Petrank E. and Rawitz D. The hardness of cache con-
scious data placement. Rroc. of the 29th ACM S GPLAN-

S GACT Symposium on Principles of Programming Lan-
guages, pages 101-112, 2002.

Puaut 1.  WCET-centric software-controlled instracti
caches for hard real-time systems. Pnoc. of the 18th
Euromicro Conference on Real-Time Systems (ECRTS 06),
pages 217-226, July 2006.

Puaut I. and Decotigny D. Low-complexity algorithms fo
static cache locking in multitasking hard real-time system
In Proc. of the 23rd IEEE Real-Time Systems Symposium
(RTSS 02), pages 114-123, Dec. 2002.

Sasinowski J. E. and Strosnider J. K. A dynamic-
programming algorithm for cache memory partitioning for
real-time systems. |EEE Transactions on Computers,
42(8):997-1001, Aug. 1993.

Sebek F. Measuring cache related pre-emption delay on a
multiprocessor real-time system. IBE/| EEE Workshop on
Real-Time Embedded Systems (RTES 01), Dec. 2001.

Shaw A. Reasoning about time in higher-level language
software. |EEE Transactions on Software Engineering,
15(7):875-889, July 1989.

Staschulat J., Schliecker S., and Ernst R. Scheduliadr a
ysis of real-time systems with precise modeling of cache
related preemption delay. IRroc. of the 17th Euromicro
Conference on Real-Time Systems (ECRTS 05), pages 41—

48, July 2005.

Tamura E., Rodriguez F., Busquets-Mataix J. V., andtMar
Campoy A. High performance memory architectures with
dynamic locking cache for real-time systems. Rroc. of

the Work-In-Progress Session of the 16th Euromicro Con-
ference on Real-Time Systems (WIP ECRTS 04). TR-UNL-
CSE-2004-0010, Department of Computer Science and En-
gineering. University of Nebraska-Lincoln, pages 1-4, June
2004.

Tan Y. and Mooney V. A prioritized cache for multi-taski
real-time systems. IRroc. of the 11th Werkshop on Synthe-

sis And System Integration of Mixed Information technolo-
gies (SASMI’'03), pages 168-175, Apr. 2003.

Vera X., Lisper B., and Xue J. Data cache locking for leigh
program predictability. IfProc. of the 2003 ACM SGMET-

RICS International Conference on Measurement and Mod-
eling of Computer Systems, pages 272-282, June 2003.
Wehmeyer L. and Marwedel P. Influence of onchip scratch-
pad memories on WCET prediction. IRroc. of the

4th International Workshop on Worst-Case Execution Time
(WCET) Analysis, pages 29-32, June 2004.

Wehmeyer L. and Marwedel P. Influence of memory hi-
erarchies on predictability for time constrained embedded
software. InProc. of the Design, Automation and Test in
Europe Conference and Exhibition (DATE’ 05), pages 600—
605, Mar. 2005.

Wolfe A. Software-based cache partitioning for reede
applications. InProc. of the 3rd Workshop on Responsive
Computer Systems, Sept. 1993.



On the sengitivity of WCET estimates
to the variability of basic blocks execution times

Hugues Cassé®, Christine Rochange®, Pascal Sainrat™
“Institut de Recherche en Informatique de Toulouse, "HiPEAC NoE
Université Toulouse I1I — Paul Sabatier
31062 Toulouse cedex 9, France
{casse, rochange, sainrat} @irit.fr

Abstract

The Implicit Path Enumeration Technique (IPET) is a
very popular approach to evaluate the Worst-Case
Execution Time (WCET) of hard real-time applications.
It computes the execution time of an execution path as
the sum of the execution times of the basic blocks
weighted by their respective execution counts. Several
techniques to estimate the execution time of a block
taking into account every possible prefix path have been
proposed: the maximum value of the block execution
time is then used for IPET calculation. The first purpose
of this paper is to analyze the sensitivity of block
execution times to prefix paths. Then we show how
expanding the IPET model to consider the execution
times related to different contexts for each basic block
improves the accuracy of WCET estimates.

1. Introduction

In hard real-time systems, the Worst-Case Execution
Times (WCETs) of critical tasks have to be estimated as
accurately as possible either to analyze the schedulability
or to determine a static schedule that makes it possible
for every task to meet its deadline. Several approaches to
WCET estimation have been investigated these last
fifteen years and the problem has been shown to be more
and more complex as the architecture of processors is
enhanced to provide better performance. Researchers
recommend the use of simple hardware but even so the
tendency is to consider high-performance processors in
order to fit increasing performance requirements: the
tasks to be executed are not necessarily more complex
but, in the context of some approaches like IMA
(Integrated  Modular  Avionics) or AUTOSAR
(Automotive Open System ARchitecture), a single
processing node should support several tasks.

Static methods for WCET analysis are usually
preferred to measurements because they get round the
need of examining every possible execution path. They
roughly consist in adding the execution times of the
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basic blocks along execution paths. To be safe, they
must ensure that the execution times of basic blocks are
not under-estimated. When considering modern
processors, this requires to include the impact of the
context (i.e. the execution history) when analyzing the
pipelined execution of a block. The result is the
maximum execution time (or cost) of the block and is
used to compute the WCET of the whole program.

Our purpose, in this paper, is to show that the
execution time of a block depends sharply on the context
(prefix path) and that the whole WCET would be
estimated more tightly if different execution times (for
different contexts) were considered for each basic block.
In a second step, we introduce context-sensible data into
the IPET model. Experimental results show that this
helps in getting more accurate WCET estimates. The
sensitivity of these results to architectural parameters
(scalar/superscalar pipeline, static/dynamic instruction
scheduling, size of the instruction window) is also
investigated.

The paper is organized as follows. Section 2 provides
some background information on timing analysis and
pipeline modeling. In Section 3, we discuss experimental
results that show the sensitivity to the context of block
timings (experimental conditions are detailed in the
Appendix). The benefits (in terms of tightness of WCET
estimates) of extending the IPET model to include
context-related block execution times are shown in
Section 4. Section 5 concludes the paper.

2. Background: for

WCET estimation

pipeline  modeling

Modern processors cut the processing of an
instruction into several steps that are handled in a
pipelined manner: in the absence of stalls, instruction i
processes through step s in the same time as instruction
i-1 processes through step s-1 (Figure 1 shows a typical
processor pipeline). This means that, while the execution
time of a single instruction is the sum of the latencies of
all steps, the execution time of a sequence of instructions



is shorter than the sum of their individual execution
times due to the overlap in the pipeline. In theory, the
execution time of a sequence of N instructions in a
P-stage pipeline (each stage having a single-cycle
latency) should be P+N-1. In practice, the effective
execution time would be longer due to stalls that result

from resource conflicts and inter-instruction data
dependencies.

mstrut.jt.-on decoding | execution | commit

fetching

Figure 1. A typical 4-stage processor pipeline.

As said before, static WCET evaluation techniques
compute the execution time of a program from the
individual execution times of its basic blocks. To
estimate the execution time of a basic block tightly, one
must take into account the overlap of instructions in the
pipeline. When a basic block is fetched in a pipelined
processor, the pipeline is generally not empty and still
contains instructions from the previous block(s). Then,
two kind of effects should be taken into account in order
to get an accurate WCET estimate. First, the instructions
of the previous blocks use some resources and might be
responsible for delaying the processing of the evaluated
basic block. This is what we call the sensitivity to the
context. Second, the blocks that are simultaneously
present in the pipeline overlap, which reduces the
execution time of the sequence.

In this section, we will review the various approaches
that have been proposed to estimate the execution times
of basic blocks in a pipeline. We will first show how the
possible interferences between basic blocks can be
accounted for while computing the WCET of a program.
Then, we will explain how the behavior of a pipelined
processor can be modeled and how the interferences
between basic blocks can be evaluated.

2.1. Execution times and interferences between basic
blocks

In this section, we will show how it is possible to
evaluate the contribution of a basic block to the
execution time of an execution path it belongs to.

A conservative approach to get an upper bound of this
contribution consists in ignoring the overlap of
successive blocks in the pipeline and in considering the
full execution time of the block in an empty pipeline (i.e.
the time between the first instruction is fetched and the
last instruction is committed). Then the execution time
of the path is computed as the sum of the individual
execution times of its blocks. This is illustrated in
Figure 2. While being safe, this approach -clearly
overestimates the execution time.

86

cycles
1

pipeline
stages ]

[1 I

. A A J
Y Y Y
block i block i+1 block i+2

Figure 2. Conservative model to evaluate
the execution time of a sequence of
blocks.

To take into account the overlap of successive blocks
in the pipeline, every possible initial context should be
considered to derive time estimates for a given basic
block. However, not only the overlap but also the
possible block interferences must be analyzed.
According to the pipeline characteristics, these
interferences might lengthen or shorten the block
execution time (in a dynamically-scheduled processor,
timing anomalies can reduce or increase the final
execution time [13]).

Assuming that the interferences can be properly
analyzed (possible approaches will be reviewed in the
next section), Figure 3 shows how they can be
expressed. In this Figure, tg is the execution time of
block B when it is executed in an empty pipeline while
tg/a 1s the execution time of B when it is executed after A.
The cost Cga is the contribution of block B to the
execution time of the sequence [A-B]. The execution time
of sequence [A-B] can be written as:

Ya-B]=ta*Ca/A

tas

() S
t

te/a

Ce/a

Figure 3. Expressing block interferences
and overlapping.

Initially, users of the IPET method [11] to estimate
the Worst-Case Execution Time of a program in a
pipelined processor did not refer to the cost of blocks but
to pipeline gains. The execution time of sequence [A-B]
was expressed as:

which is the same (Cg/a stands for tg + 6[ A-B] ).

Early implementations of the IPET method did only
consider 2-block sequences to determine the costs of
blocks. In 2002, Engblom showed that this approach was
no longer valid when considering modern processors [4].



To improve performance, modern processors often
implement some mechanisms that might be a source of
interferences between distant basic blocks (not only
adjacent ones). Such features include superscalar
execution, dynamic instruction scheduling, long-latency
functional units, etc. Figure4 illustrates how
interferences between distant blocks may impact the
execution time of a sequence. The execution time of
sequence [A-B-C] should be computed as:

Ya-B-c] =ta+CB/A*Cc/[AB]
where . /[A-B] might be shorter than, equal to or

longer than ¢, g due to the possible interferences from
block A.

ts-c

tc
—
® e
B
Cer
ta-B-c

G i NELSSS,

Cs/A

Cc/a-B
Figure 4. Long timing effects.

The main difficulty comes from the fact that the span
of block interferences cannot be bounded, which means
that the cost of a basic block on an execution path might
be impacted by any other block on the path. In practice,
the cost of a block only depends on the few preceding
blocks but, for the sake of safety, a possible effect from
very distant blocks must be imagined. Existing
approaches to take all possible contexts into account to
evaluate the cost of a block will be presented in the next
section.

2.2. Pipeline model

Early contributions to pipeline modeling made use of
reservation tables to find out how every instruction of a
basic block would process through the pipeline [10][8].
A reservation table is a simple means to represent the use
of the processor internal resources (pipeline stages,
functional units, etc.) but its limited semantics is not
sufficient to express the behavior of superscalar and
dynamically-scheduled processors.

Cycle-level simulators (e.g. SimpleScalar [1]) make it
possible to accurately determine the execution time of a
sequence of blocks and the cost of each block in the
sequence. Unfortunately, the number of possible prefix
paths for a basic block in a real-life application is
generally huge and it is not possible to simulate each of
them. Then it is possible to determine the cost of a block
for a set of short possible prefix paths, but not the
maximum cost since all the possible prefixes cannot be
considered.
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When all the possible prefix paths cannot be
considered one by one, the solution comes from static
analysis techniques. The aiT tool of the AbsInt
company [1] uses abstract interpretation to define an
abstract pipeline state at the beginning of each basic
block that includes every possible concrete
state [15][16]. It then simulates the execution of the
block on this input abstract pipeline state to determine an
output abstract state which is propagated to the
successors of the block. The tool iterates until a fix point
has been found. Then execution times of basic blocks
can be derived and included in the ILP (IPET) model to
estimate the WCET of the whole program.

Recently, Li et al. [12] introduced execution graphs
as a means for estimating the worst-case costs of basic
blocks. An execution graph expresses precedence
constraints between the processing steps of the
instructions of a block and computes earliest and latest
values of their respective finish times. Some preceding
instructions (prologue) can be included in the graph to
take the context into account and very conservative
hypotheses are made on earlier instructions so that the
computed cost is guaranteed to be an upper bound of the
real possible costs, whatever the prefix path is. Again,
this worst-case cost is used to compute the whole
program WCET.

The differences between these two methods reside in
the accuracy of the contexts considered for each basic
block. With abstract interpretation, the input abstract
pipeline state of a block results from the evaluation of
effective prefix paths. On the contrary, the execution-
graph method examines real prefixes until a given depth
(which equals the instruction-window size) and
considers that the previous instructions can be any. As a
consequence, the overestimation of the costs is higher,
which is the price of shorter analysis times.

3. On the sensitivity of block timings to the
context

The experimental results reported in this paper were
collected in the conditions detailed in the Appendix.

As explained in the previous section, static methods
for pipeline modelling derive the worst-case cost of basic
blocks. Our purpose here is to analyze the variability of
the cost when different contexts (i.e. the prefix paths) are
considered.

3.1. Context-related costs

For each basic block, we have examined the different
costs when d-block deep contexts are considered, with
0 < d < 4. In the rest of this paper, we will refer to the
cost of a block evaluated by considering a d-block long
prefix of the block as a d-cost.



At each depth level, the cost of a block would be
estimated conservatively by a static analysis approach as
the ones described in section 2.2. This estimate would be
greater than or equal to the maximum of the costs
evaluated at the next deeper level. In this work, we have
evaluated all the possible costs of each block considering
all its possible 8-block long prefixes (see the Appendix
for details about the methodology). Then i-cost
(0 <i<4) of the block was computed as the maximum
value of the corresponding (i+1)-costs.

To illustrate this, Table 1 lists the different costs of
block A in the example CFG given in Figure 5 (in this
example, the length of contexts is limited to three
blocks). Block A has four possible 3-block contexts
([D1-C1-B1], [D2-Co-Bi], [D3-Cs-By], [D4-Cs-Bo]). In the
table, the third column shows the number of different
paths represented by each cost. For example,
Ca /[D,-C,-By] is the maximum value of the costs of A

observed in the two possible paths [F;-E;-D;-C;-B1-A] and
[F1-D;-Cy-Bs-A]. On a mean, each 3-cost represents 1.5
real cost values. We assume that paths [F;-D3-C3-B,-A]
and [F;-D4-C3-B,-A] have the same cost value for block A.
Then cp /[Cy-B,] represents two paths but a single cost

value. At the end, cp represents five different values and
is assigned the highest of them. Using Ca to compute the
program WCET (instead of distinguishing between
Ca/p, and Cp;p, ) is a source of overestimation.

Context # mean #
denth Costs represented | represented
P paths/values values
Ca/[D-C,-B/] 2/2
Ca/[D,-C,-B/] 2/2
3 1.5
CA/[Dy-C;-B,] 1/1
CA/[D,~C5-B,] 1/1
Ca/[c,-B)] 2/2
2 Ca/[c,-B)] 2/2 1.67
Ca/[cs-B,] 2/1
Casp, 474
1 2.5
CasB, 2/1
0 Ca 6/5 5

Table 1. Context depth and number of
represented cost values (see Figure 5)

3.2. Variability of block execution times

For each context depth d, we have recorded the mean
number of different represented cost values over the set
B of basic blocks in the program (computed with the
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formula below, where Py is the set of possible d-block
long prefixes of block b and A, is the set of possible
paths before prefix p).

1 1 1
Bl P2 |Ta]

beB EPb(d) |Ap

¢
y

\/

Z Cb/[a—p]

aeAp

Figure 5. Example CFG.

In this section, we consider the 2-way superscalar
processor configuration given in the Appendix.
Results for each benchmark are given in Figure 6. As
expected, the mean number of represented cost values
decreases when deeper contexts are considered. For most
of the applications, the variability of costs is noticeable.
The case of jfdctint is interesting because each of its
blocks has a constant cost value whatever the context
depth is. This program contains three loops executed in
sequence, and each loop has a long (up to 89
instructions) single-block body. These three blocks are
the only ones to have two possible contexts and, since
they are long, the impact of these contexts is not visible
at the end of the blocks.

Considering the maximum of a set of possible costs
values instead of each cost value individually might be
detrimental to the accuracy of WCET estimates if the
values differ noticeably. Table 2 gives additional
information about the maximum number of represented
cost values (observed over the set of blocks) and about
the mean and maximum gap between the different cost
values of a block. We observe that several benchmarks
(FFtl, fir, Ims, minver, qurt) have at least one block
for which the 0-cost represents more than 7 wvalues.
Moreover, the gap between cost values can be as long as
10 cycles (minver). This is likely to impact the whole
WCET since a block that has many different timings
probably belongs to a loop and might be executed many
times on the worst-case path. Note that the maximum
number of represented values and the maximum gap
between them remains large for 4-costs (even if their
means is lower). This indicates that some blocks are
impacted by long timing effects.
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Figure 6. Variability of the costs of blocks (2-way superscalar processor)

0-costs 4-costs
benchmarks max. # values | mean gap max. gap max. # values | mean gap max. gap
crc 3 0.71 3 3 0.43 3
ftl 8 1.16 8 6 0.23 5
fftlk 5 1.02 5 4 0.22 4
fir 7 0.88 7 6 0.16 8
Jfdctint 2 0.22 1 1 0 0
Ims 7 1.09 8 6 0.2 7
ludcmp 6 1.3 7 4 0.3 4
matmul 3 0.67 3 2 0.22 1
minver 11 1.35 10 6 0.39 10
qurt 7 1.16 8 6 0.25 7
select 4 0.64 4 3 0.41 3

Table 2. Variation of the cost values represented by each 0-cost and 4-cost (2-way processor)

4. Context-sensitivity of blocks timings and
WCET estimates accuracy

4.1. Including context-related timings in the IPET
model

As said before, the execution time of an execution
path is usually computed as:

T= Z Xp Cp
beB
where B is the set of blocks along the paths, xb is the
execution count of block b in the path and ¢, is the
maximum contribution of block b to the execution time
(c, is evaluated taking any possible context into
account).

This estimation can be refined by using deeper

costs. With depth d, x,.C, can be expanded into:
X Cp = Z Xo/pChip
PeRya)
where Py is the set of d-block prefixes of block b.

As shown in earlier work by Ermedahl [7], a set of
constraints must be added to the IPET model to bound
the execution count of each prefix path. For each block,
and for each path p in the set P of the possible prefixes
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of the block, with p being the sequence of blocks [po-
P1-...-Pn-1], the constraints to be added are:
Xp = Z Xo/p
PRy (4)

Vi,0<i<n-1, Xy sx[p__p_ 1

where X[ . is the execution count of sequence
1 1+

[Pi-Pi+1]-

4.2. Experimental results: improvement of WCET
estimates

Figure 7 shows how the WCET can be improved
when d-costs are used (the gain is computed against the
WCET estimated with 0-costs). On a mean, the WCET
estimation is improved by 5.5% with 1-costs, by 7%
with 2-costs, by 10% with 3-costs and by 11% with
4-costs. Some of the benchmarks (jfdctint, crc,
fftl, select) do not exhibit noticeable
improvements. This was expected for jfdctint since
the number of contexts is very limited. Other
benchmarks (fftkl, ludcmp, matmul, minver,
qurt) benefit from higher gains.
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Figure 7. Improvement of the estimated WCET with deeper analysis (2-way superscalar).

4.3. Impact of the architecture parameters on the
WCET improvement

In this section, we analyze the impact of the
processor parameters on the WCET improvement
obtained by using 4-costs. Figure 8 shows how the
gains (against a WCET estimated with 0-costs) vary
with the pipeline width (with out-of-order execution).
It can be observed that very small gains are to be
expected from considering deeper contexts for a scalar
processor (only 2.3% on a mean). But the gains
increase rapidly with the pipeline width. For several
benchmarks, the improvement is higher than 20% for a
4-way processor (up to 43% for ludcmp) which is
considerable. For these benchmarks, we have recorded
up to 15-cycle gaps between the cost values
represented by some O-costs. This means that the
execution time of a block is very dependent on the
execution history. This is not surprising since a large
pipeline with dynamic instruction scheduling can
produce a large number of instructions interleaves,
which generates inter-block effects.

In Figure 9, we observe the impact of the window
size on the results. Measurements were made for a
4-way out-of-order processor, with different reorder
buffer sizes, and the WCET was computed with 0-costs
and 4-costs (the diagram plots the improvement). For
most of the benchmarks, better gains are obtained when
the instruction window is deeper. This is not true for
matmul and select: they include some repeated small
loops that do not fit well in a small reorder buffer
(which generates many possible contexts for some
blocks). This is why they exhibit high gains with a
small instruction window.

Finally, we have considered in-order pipelines. The
results given in Figure 10 were obtained for a 4-way
processor with a 32-instruction window. As it could be
expected, it appears that taking deeper contexts into
account does only slightly improve WCET estimates
for a statically-scheduled processor. This is due to the
fact that the number of possible instruction interleaves
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in the pipeline is smaller, which limits the number of
possible cost values for a basic block.

5. Conclusion

Estimating the WCET of a program using a static
approach requires evaluating the individual execution
times of basic blocks. When executing on a high-
performance processor, the execution time of a basic
block is likely to depend on the execution history (also
referred to as the context). Some techniques to take
into account all the possible contexts have been
proposed and they provide the maximum execution
time (or cost) of each basic block.

In this paper, we have presented some experimental
results that show how much block execution times are
sensitive to the context. For most of the benchmarks,
some blocks have many different cost values related to
different possible prefix paths (as many as 11 values)
and the gap between the minimum and maximum value
is large (up to 10 cycles). Considering the maximum
value instead of distinguishing each of them is likely to
lead to a large over-estimation of the WCET.

We have shown how taking context-related
execution times could improve the tightness of WCET
estimates. Experimental results prove that considering
4-block contexts tightens the WCET estimates by up to
25% for a 2-way superscalar out-of-order processor
(11% on average) and up to 43% (18% on average) for
a 4-way processor. As far as we know, most of the
existing tools (e.g. aiT) mainly consider 1-costs (even
if they might use loop unrolling techniques to take one
part of the context-sensitivity into account. Our results
show that considering deeper contexts is beneficial for
most of the applications. Additional results show that
the gain is slightly lower when the instruction window
(reorder buffer) is less deep (4-way out-of-order
processor) and that is negligible when instructions are
scheduled in order.
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Appendix

The experiments reported in this paper were carried
out using the OTAWA framework [3]. OTAWA!
implements an infrastructure to support several kinds
of analyses that can be combined to estimate the
WCET of an application. In this work, we used a basic
flow analyzer (it builds the CFG from the object code
and retrieves user-specified flow facts), a cycle-level
simulator (it estimates the execution times of
sequences of blocks) and a module that generates the
constraints for WCET estimation with IPET and calls
an ILP solver.

Evaluating the costs of basic blocks from the
simulation of sequences of limited length is
questionable since some long timing effects might not
be captured this way. However, as mentioned in
Section 2, block interferences do not span over more
than a few blocks in practice. Then, the costs
considered in this work cannot be guaranteed as

1 OTAWA is supported by the French Agence Nationale pour la
Recherche (MasCoTte project)
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100%-safe but can be thought as very close to the real
costs.

The simulator models a pipelined processor and
accepts different parameters: pipeline  width,
instruction-scheduling policy (in-order/out-of-order),
fetch queue and reorder buffer sizes, functional units
parameters (width, latency, pipeline). It includes
perfect caches (every access is a hit) and a perfect
branch predictor. The configurations used in this work
are summarized in Table 3. The simulator accepts
PowerPC object code as input.

CONFIGURATIONS
1-way | 2-way | 4-way

instruction scheduling out-of-order
fetch queue size 4 3 3
reorder buffer size 4 8 32
functional units | latency

integer ALU 1 1 2 2

memory unit 2 1 1 1

fp ALU 6 1 1 1

multiply unit 3 1 1 1

divide unit 15 1 1 1

Table 3. Processor configurations

The benchmarks come from the SNU-suite [14] and
are listed in Table 4. They were compiled to PowerPC
code using gcc with the -O0 optimization level option.

4 mean _
blocks block Function
length

CRC (Cyclic

cre 52 5 Redundancy Check)
FFT (Fast Fourier

fftl 151 7 Transform) using Cooly-
Turkey algorithm
FFT (Fast Fourier

L 48 8 Transform) for 1K array
of complex numbers

fir 94 - FIR filter with Gaussian
number generation
JPEG slow-but-accurate

jfdctint 10 22 integer implementation
of the forward DCT

Ims 85 - LMS adaptive signal
enhancement

ludcmp 47 6 LU decomposition

matmul 14 4 Matrix product

minver 75 5 Matrix inversion

qurt 77 - Root computatipn of
quadratic equations

select 30 4 N-th l_argest number
selection

Table 4. Benchmarks
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Efficient computation of response time bounds under fixed-pority scheduling

Enrico Bini Sanjoy K. Baruah
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e. bi ni @ssup. it baruah@s. unc. edu
Abstract Despite the pseudo-polynomial time complexity, both

RMA and RTA have very efficientimplementations in prac-
All algorithms currently known for computing the re- tice that render them suitable for feasibility analysis of
sponse time of tasks scheduled under fixed-priority schedul Fixed Priority (FP) systems. However, these algorithms
ing have run-time pseudo-polynomial in the representation may not be particularly well-suited for use in interactive
of the task system. We derive a formula that can be com-real-time system design environments. When using such
puted in polynomial time for determining an upper bound design environments, the system designer typically makes
on response times; our upper bound on response time has large number of calls to a feasibility-analysis algorithm
the added benefit of being continuous in the task systenduring a process of interactive system design and rapid sys-
parameters. We evaluate the effectiveness of our approxitem prototyping, since proposed designs are modified ac-
mation by a series of simulations; these simulations reveal cording to the feedback offered by the feasibility-analysi
some interesting properties of (exact) response time,twhic algorithm (and other analysis techniques). In such scenar-
give rise to an open question that we pose as a conjecture. ios, a pseudo-polynomial algorithm for computing the task
Finally, the proposed upper bound of the response time set feasibility may be unacceptably slow; instead, it may be
can be used to test effectively the schedulablity of task set acceptable to use a faster algorithm that provides an approx
in time linear with the number of tasks. imate, rather than exact, analysis.
Moreover, there are some circumstances in the real-time
system design, such as in control systems [8] and in holistic
1. Introduction analysis [19], where it is required to know the response time
of the tasks, and not only the system feasibility provided
. T by RMA. For this reason in this paper, we propose an algo-
In many real-time systems specific jobs are expected to . . s .
rithm for computing efficiently an approximate upper bound

complete by specified deadlines. Basically, two main cat- . ”» . -
egories of algorithms have been proposed for determiningOf the response time. In ad(_jltlon to comp_utatlon efficiency,
our algorithm has the benefit of representing the (bound on)

the response times of tasks in DM-scheduled systems: Rate

oo oy () (13 and Rspanc e s b e 28 ortots rin of e s st
ysis (RTA) [10, 2]. P ' y gop y

RTA computes, for each task, theorst-case response sign in applications, such as some control systems, where
. ; . task parameters may be tweaked locally without causing
times— the maximum amount of time that may elapse be- . & ohic changes to application semantics (Response
tween the instant that a job is released for execution and th P 9 pp ) P

. . . Sime is not in general a continuous function of system pa-
instant it completes execution. If, for all tasks, the resm rameters- hence. no exact alaorithm for computing response
time is shorter than the deadline, then the task set is fieasib ' ’ 9 putingresp

times can possibly make a similar guarantee.)

Instead, RMA searches, for each task, any instant earlier T ; - .
; There are many scenarios in which efficient computation
than the deadline, large enough to accommodate the com-

putational requirement of the task itself and all the higher of (exact or approximate) response times is desirable.

priority tasks. If such an instant exists for all tasks thies t ¢ In distributed systems, tasks may be activated after the
task set is feasible. completion of some othertask [22, 19]. In such cases it
Both approaches are known to have pseudo-polynomial is necessary to know the response time of the first task
worst-case time complexity, and it is currently unknown in order to analyse the scheduling of the second. This
whether the task set feasibility can be computed in time task model is calledransaction mode[19], and the
polynomial in the representation of the task system. analysis is performed by means of thelistic analy-
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sis[22]. periments in Section 4 for determining the “goodness” of

our upper bound. We conclude in Section 5 with a brief

¢ In control systems, the response time of a task Measur&ymmary of the main results presented in this paper.
the delay between the instant where the input are read

from the sensors and the output are written to the actu- )

ators. The performance of the control system depends2- 1€ Response Time Bound

upon this value [8] hence the response time has a di-

rect impact on the system performance. Moreover, as We assume that a real-time system is modelled as be-

our provided bound of the response time is a differen- ing comprised of a pre-specified numbeof independent

tiable function, it is possible to estimate the effect of sporadictasks [18, 3}, 72, ..., 7,, €Xecuting upon a sin-

the variation of any system parameter. gle shared preemptive processor. Each sporadictaisk
characterised by a worst-case execution time (WCE)

e Finally, when the relative deadline parameters are per- 5 relative deadline parameté;; and a period/ minimum
mitted to be larger than the periods, current algorithms jyter_arrival separation paramet®y. Notice that the dead-
for the exact computation of response time require the jines are arbitrary, meaning that no particular relatigmsh
evaluation of the response times of each and every jobjs assumed betweeR; andT;. Each such task generates
within the busy period [12, 23]. The resulting com- 4 jnfinite sequence of jobs, each with execution require-
plexity may be unacceptably high, especially in all ment at mostC; and deadlineD; time-units after its ar-
those design environments where the response timeyjyq), with the first job arriving at any time and subsequent

routine is largely invoked. successive arrivals separated by at lgagime units. We
assume that the system is scheduled using a fixed-priority
1.1. Related work (FP) scheduling algorithm such as the Deadline-Monotonic

(DM) scheduling algorithm [14], which is known to be an
The problem of reducing the time complexity of feasi- optimal fixed-priority algorithm when all the sporadic task
bility tests has been largely addressed by the real-time re-have their relative deadline parameters no larger than thei
search community. The Rate Monotonic Analysis, after the periods.
first formulation by Lehoczky et al. [13], has beenimproved  We will use the termutilisation of 7; (denoted bylJ;), to
by Manabe and Aoyagi [17] who reduced the number of represent the rati@’; /T;, and letU denote thesystem util-
points where the time demand needs to be checked. Biniisation U/ = 3" | U;. We assume thaasks are indexed
and Buttazzo [4] proposed a method to trade complexity vs. according to priorities taskr; is the highest-priority task,
accuracy of the RMA feasibility tests. andr;;, has lower priority tham; for all 7, 1 < ¢ < n. No-
The efforts in the simplification of the Response Time tice that we do not assume any specific priority assignment.
Analysis has been even stronger, probably due to the greater \We start with some notations and definitions. Let us de-
popularity of RTA. Sjodin and Hansson [21] proposed sev- fine theworst-case workloads follows:
eral lower bounds to the response time so that the orig-
inal response time algorithm [10] could start further and Definition 1 Let WW;(t) denote thavorst-case workloadf
the time spent in computing the response time is reducedthe i highest priority tasks over an interval of length
Bril [7] proposed a similar technique to reduce the time Which is the maximum amount of time that a tagkwith
complexity of the exact RTA. Starting from the idea of Al- 1 < j < can run over an interval of length
bers and Slomka [1], who developed an estimate of the de- i , , i
mand bound function for EDF scheduled tasks, Fisher and AS Proved by Liu and Layland in their seminal pa-
Baruah [9] have derived a fully polynomial time approxi- Per [15], the worst-case workload’;(¢) occurs when all
mation scheme (FPTAS) of the RTA. Very recently, Richard the tasksry, ..., r; are S|mult<'_;1ne0usly activated, and each .
and Goossens [20] have extended the task model of a prez"’ISk generate; subsequentljob_s as soon as legally permit-
vious FPTAS [9] to take into account release jitter. Finally ted to do so (i.e., consecutive jobs qfarrive exactlyT;

Lu et al. [16] proposed a method to reduce the number 0ftime units apart, for alf) — this sequence of job arrivals is
iterations for finding the task response times sometimes referred to as tegnchronous arrival sequence.

The remainder of this paper is organised as follows. In NUSWi(t) equals the maximum amount of time for which

Section 2 we formally state our task model, and reduce theth® CEU may execute 50”;6 t?]Sk fromhamqﬁmg e Til}'
problem of bounding the response time of each task in atasKoVer the time interval0, ¢), for the synchronous arrival se-

system to a problem of bounding the total workload gener- quence.. . o
ated by the task system. In Section 3 we derive a bound We highlight that our definition of worst-case workload

on the workload, which immediately yields the desired re- IS differentthaln thevolrlst—case dem’.?tr,ldvhich is expressed
sponse time bound. We describe a series of simulation exby the “classical ceiling” expressiod ; [TLW C;. The
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worst-case workload is the fraction of the demand which Theorem 1 For any upper boundV#°(¢) on the workload
can be executed if), ¢), under the synchronous arrival se- W;(t), there is a corresponding upper bou}® on the
guence hypothesis, whereas the demand is the maximumvorst-case response tinie.

amount of work which can béemandedh [0, ¢).

A closely-related concept is that of tieorst-case idle ) .

time Proof. SinceW!t(t) is an upper bound diV;(¢) we have
— . . by definition

Definition 2 Let H;(t) denote theworst-case idle tim®f W-”b(t) > Wi(t)

thei highest priority tasks over an interval of length ! -

. . ) . f hich it foll the obvi lationship for the idl
This is the minimum amount of time that the CPU is not rom which it Toflows the obvious refationship for the idie

. . X . time
executing some task ifir, ..., 7;} over the time interval
[0,¢). Itis straightforward to observe that HP(t) =t — W™ (t) <t — W;(t) = Hy(t)
H;(t) =t —W;(t) 1)

which gives us a lower bound of the idle time. From this
Let us define th€pseudo) inversef the idle time, as  relationship it follows that for any possible valugve have
follows:

Definition 3 The (pseudo) inverse functidf;(c) of H;(t)

is the smallest time instant such that there are at least Now it is possible to find a relationship between the pseudo-
time units when the processor is not running any tasks ininverse functions. In fact we have
{71,..., 7}, over every interval of lengtl; (). Thatis,

Xi(e) = mtin{t s Hi(t) > ¢}

{t:HP(t) >c} C {t: Hi(t) > c}

X"(c) = mtin{t CHP(t) > e} >

We note thatH,(t) is not an invertible function, since
there may be several time-instanfer which H;(t) is con-

stant — that is why we refer t&;(c) as a pseudmverse. from which it follows that

In the remainder of this paper we will abuse notation some- RY — max {Xyb (kCy) — (k—1)T;} > R;
what, and use the following notation: ! =12, TR e
Xi(e) = [Hy(t)] ! 2) as required]

Based upon this definition of the inverse of the idle time,
we obtain the following alternative representation of task
response time. (Observe that this relationship holds cegar 3- The workload upper bound
less of whether task deadlines are lesser than, equal to, or

greater than periods.) As stated above, it was proved by Liu and Layland [15]
Lemma 1 The worst-case response tink& of taskr; is that the worst-case worklani_(t) oceurs for the syn-
) i chronous arrival sequence of jobs — i.e., when all the
given by: X .
taskst, ..., ; are simultaneously activated, and consec-

R, =  nax {Xi1(kC;) — (k—=1)T;} 3) utive jobs ofr; arrive exactlyT; time units apart, for all
=1,2,... i. Hence the functiodV;(¢) may be expressed by the sum
of the individual workload of each task. If we let w;(t)

Proof. X,;_1(k C;) is the instant when the firgt— 1 tasks denote the maximum amount of time that the processor ex-
have leftk C; units of time available for the lower priority  ecutes task; over the interval0, ) in this worst-case sce-
tasks. Hence it is also the finishing time of tki& job of 7; nario, we can write:
in the busy period(k — 1) T; is the activation of such a job. .
The proof hence follows directly as in [23]] Wit) = Z w;(8)
Notice that if 22:1 U; > 1 then the we clearly have =t
R; = +oo. For this reason in realistic cases we assume This is shown in Figure 1.

Z;Zl U; < 1. Letting w?(t) denote the maximum amount of time that
Some further notation: for any functigifz), f'®(z) de- the processor executes taskin any interval of lengtft,

notes an upper bound, arfé(z) denote a lower bound on  when task 7; is the only task in the system clearly we

the functionf (z), so that we havg'®(z) < f(x) < fU(z) have:

for all z. Vi o Vit wi (t) > w;(t)
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Wi(t), w; (t) bound on the workload functioi; (¢):

Wa(t) i i
= wi(t) <Y wit) <
j=1 j=1
< (UG (1-Uy) (@)
w;g(t) j=1
T ()

We have so obtained the upper bound we were looking
for. The property of this bound is that we can compute con-
veniently its inverse function and then apply the Theorem 1
to finally find the bound of the response time.

T | h n h h— -- Theorem 2 The worst-case response tinig of taskr; is
Ts| (T =T _- bounded from above as follows:
v amm T
Figure 1. An example of the W;(¢) and w;(¢) Ci + ch(l -U
Ry < —2—— = Ri® (5)
. L . 1- Z Uj
since the presence of additional jobs may only delay the o

execution ofr;’s jobs.
The workload w$(t), which is equal to

min {t —(T; - Cy) { JJ , [LW C; } can be conveniently ~ Proof. The proof of this theorem is obtained by applying

T]
upper bounded by the finear function as shown in Figure 2, 1heorem 1 to the workload bound provided by the Eq. (4).

The equation of the linear boundig ¢ 4+ C;(1 — U;). So we have:

We(t) =Y (Ujt+ C;(1 = T;))

linear bound------- j=1
w;(t) ——

wi(t) HP(t) (1 - Z U; ) Z (1= U;))

Since H®(t) is invertible, it can be used to compute
ol X2 (h).

: : X9 (h) — h+3252,Ci(1=U;)

Cj 7 - %
higher 1->0.Uj
priority load _ _
T _-J_-J_i_._-_h_. o Then the response time is bounded by:

79 l l l
max ( ‘ =1 1 ’ —(k—l)Tz‘> (6)
k=1,2,... 1—21 U;

Figure 2. The upper linear bound of w;(t)

We will now prove that the maximum in the Eq. (6) occurs
Using these relationships found for the workloag(t) for k = 1. Let us consider this function on the real ex-
of each task, if we sum ovegrfrom 1 to¢ we obtain an upper  tension[1, 4+00). On this interval we can differentiate with
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respect tdk. Doing so we get: We have:

i—1 R,
Ri=Ci+)Y_ {?w C;
j=1"'7"J

. i-L 1 - U
d (k:Ol + Zj:l ¢;(1-Uj) — (k- 1)Tz> =

ar i—1
dk 1- Zj:l Uj i1 R
Y% g Ri§0i+z<??+1>cj
1 - Z;;l U_] j=1 J
i—1 i—1
Ti<$—1>_ Ri—RiZUjSCri-ZCj
1-35U; i=1 i=1
T, (L‘l ek 1) Ry< 2t
1-3>7.U; 1=>U;
_ Observe that this is a looser bound than the one we have
which is always negative (or zero). In fact,‘A"f;:1 U; >1 obtained above, in Theorem 2.

the response time is known to be arbitrarily long, and so  We conclude by reiterating the benefits of using the re-

unbounded. Then, since the function is decreasing (or con-sponse time upper bound presented in Theorem 2 above:

stant), its maximum occurs in the left bound of the interval, _ ) o

which meanst = 1. Finally, by substitutingc = 1 in e itcan be computed io)(n) time;

Eq. (6), we get: e itis continuous and differentiable in all the variables;
C, i1 1 1. . the.bound ho_lds even for deadlines greater than the

ub + Zﬂ:li_Jl( s) (7) period. In this case the exact algorithm for the re-

1 - Zj:l Uj sponse time calculation [23] requires to check all the
jobs within the busy period;

as requiredL] e the bound has a closed formulation, instead that an it-
erative definition. Hence it is possible to adopt some
Moreover we can divide by{’; to normalise the bound feedback on task paramete€s;(or 7)) so that the re-
and we get: sponse time is modified in some desired direction.

RS Uit 23;11 0 Us(1— U;) 3.1. A sufficient schedulability test
it = o= e ®)

T; 1 - Zj:l Uj In the same way as the exact values of the response times
allow to formulate a necessary and sufficient schedulgbilit
wherea; = T} /T;. test_, t_he response tlr_n_e upper_t_)m}ﬂ;tif allows to express a

. ) ) . sufficient schedulability condition for the fixed priority- a
The time complexity of computing the response time up- gorithm. It is then possible to enunciate the followid¢)

per boundR® of task; is O(i). Hence the complexity of  gyfficient schedulability condition for tasks scheduled by

computing the bound for all the tasks seems ta’lje?). fixed priority with arbitrary deadline.
However, it can be noticed that the computation/
can take advantage of the completed computatioR'5t Corollary 1 A task setry, ..., 7, is schedulable by fixed

In fact the two sums involved in Equation (5) can be simply priorities if:
computed by adding only the values relative to the last index
to the sum values of the previous computation. This obser-
vation allows us to say that the computation of the response
time upper bound of all the tasks @(n).

=

Vi R, ———
1_23‘:1 Uj

o CEEIC0-U)

< D; 9)

There are other techniques to bound the response time.
Similarly as suggested by Sjodin and Hansson [21], a differ Proof. From Theorem 2 it follows thak; < RY®. From
ent upper bound on the worst-case response times may béhe hypothesis it follows thaki® < D;. Then it follows
obtained from the recurrence used in response-time analythat R; < D;, which means that all the tasks do not miss
sis [10, 2] by replacing the ceiling functida:| with « + 1. their deadlines]
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Corollary 1 provides a very efficient means for testing the approximation depends upon the task set parameters. In
the feasibility of task sets. This condition can also be order to estimate the distance between the exact value of
restated as a utilisation upper bound, and compared withthe response time and of our derived upper bound (thereby
many existing schedulability tests [15, 12, 11, 6]. Since determining the “goodness” of our upper bound), we per-
some of these results are achieved assuming deadlines equedrmed a series of experiments that explored the impact of
to periods, we also provide the following corollary in this the different task characteristics.
hypothesis although this restriction doesn't apply to @ur r

sponse time upper bound. 4.1. Effect of task periods

Corollary 2 A task setry, ..., 7,, with deadlines equal to

periods (D; = T;) is schedulable by fixed prioritig& In the first set experiments we evaluate the impact of task

periods on the response time upper bound. For this purpose,
i i—1 we use a system comprised of orlyasks. The period of
Vi Y U;<1-Y a;U;(1-U)) (10)  the higher-priority task is séf, = 1, whereas the pericf,
j=1 j=1 of the low priority task is calculated so that the refig/7%
ranges in the interval, 1]. The task computation times;

wherea; = T;/T;. andCs, are chosen such that:

e the relative utilisations of the two tasks does not
change in the experiments. This is achieved by setting
U, /Usz = 0.25 always;

Proof. From Equation (9) it follows that the task is
schedulable if

i—1
Ui + Zi:l a-? ({7(1 —Uj) <1 ¢ the total utilisation/ = U; + Us is equal to one of the
1— Z;l U; four values{0.2,0.4,0.6, 0.8} (we run four classes of
experiments, one for each value).

wherea; = % Also notice that if tasks are scheduled by

RM thena; < 1 always. From the last equation we have We leave the values dD, and D, unspecified, since these
parameters have no effect on either the exact response time,

i—1 i—1 or our computed upper bound, under FP scheduling.
U; + Zaj Uj(1-U;)<1- ZUJ' For each simulation, we computed the exact response
j=1 j=1 time R, and our upper boun®&y® for the taskr,. Notice
i i—1 that both the tasks will have response times smaller than
Z U; <1- Z a; U;j(1 —Uj) or equal to their respective periods since the Liu and Lay-
j=1 j=1 land utilisation bound for two tasks &v/2 — 1) ~ 0.828,

which is greater than all the total utilisations assumedis t
experiment. Hence the maximum response time occurs in
the first job of ,. Both the response time and the upper
bound are normalised with respect to the pefidso that
Ehe comparison between different values of the pefipds
easier. The results are shown in Figure 3. Black lines are
the normalisedry® values, gray plots are the exact response
times.
It may be noticed that the approximation is very good
whenT, > T (i.e. when the ratid7 /T3 is close to zero).
) In fact, in this condition the workload estimate, upon which
4. Experiments the response time bound is built, becomes very tight. The
discontinuities in the response times occur when an addi-
The major benefits of the response time upper bound thattional job of 7y interferes with the response time of. Fi-
we have computed in Section 3 above li€i)rthetime com- nally, it may be noticed that the approximation degrades as
plexitywhich, atO(n) wheren denotes the number of tasks, the total utilisation increases. This can be explained by re
is linear in the representation of the task system; @ind iterating that the upper estimate of the workload is tight fo
the fact that the upper boundgéentinuouswith respect to  low utilisations, as can be observed from Figure 2.
the task system parameters (and hence more useful in in- Given this last observation, it becomes quite interesting
teractive system design). It is however, also important to to test the case wheli = 1. In this condition of heavy
evaluate the quality of the bound. Clearly, the tightness of load, the task system utilisation is no longethe Liu and

which proves the corollary, when ensured for all tagks.

Itis quite interesting to observe that when the periods are
quite large compared to the preceding one — meaning thal
a; — 0 —thenthe testis very effective. On the other hand,
when all the periods are similar each other then the right
hand side of Eqg. (10) may also become negative, making
the condition impossible. This intuition will be confirmed
in the next section dedicated to the experiments.
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Figure 3. Effect of task periods

index of critical job

Layland utilisation bound, and hence it is not guaranteed .l
that both tasks’ response times will Betheir respective 0 01020304 T"ﬁ 06 07 08 09 1
period parameters. Furthermore, the response Eimeoes 12

not necessarily occur at the first job, and hence all the jobs ) )

within the first busy period must be checked. (In fact, un- ~ Figure 4. Response time bound, when U = 1
der the conditiorl/ = 1 the processor is always busy and
the busy period never ends, but the response time can still
be computed by checking all the jobs up to hyperperiod —
the least common multiple of all the periods.) A second —
more serious — problem is related to the nature of the ex-
periment. since we are running simulations as the period
T, varies fromT; to infinity, the hyperperiod can be ex-

tremely large! (Indeed, the hyperperiod does not even exist : .
if T1/T> is irrational, although this phenomenon is not en- harmonic. For this purpose, we % V2 so that the no-

countered with machine representable numbers.) Hence, |r¥Ion of hyperperiod doesn't exist (clearly on machine rep-

our simulation setting the computation of the response tlmeresentable numberd; andT; are still rational.) We set

U, _
is stopped aftet000 jobs of». In the top part of Figure 4 lthe rat||o (; t_h 0.25 (”:;anmﬁ tt?]at thetlt hasdad3|gnt|f|cantlyt
we report the differenc&4® — R, normalised with respect ower foad thanr, afthoug 'S setling did not seem 1o

to T as usual. The result is quite surprising. significantly affect the simulation results). The expentse
are carried out varying the total utilisation in the proxiyni

_ From the figure we see that the upper bound is a very ¢ ;7 — 1. Again, we stopped the computation of response
tight approximation of the exact response time, UnéesBe  ime after10000 jobs. Figure 5 reports the index of the crit-
harmonic relationship emgbetweerifl andTs. Mpreover, ical job in log scale.
the stronger the harmonicity the greater the difference be- It may be noticed clearly that as the total utilisation ap-
t:\geen th? tiognd and the exact value (for example wheny, . haq the index of the critical job progressively in-
7t € {1,357, 3}.) When the periods are poorly harmonic . caces until the computation is artificially interrupted
the upper bound is extremely tight. job 10000. Actually when the utilisation is exactly, we

In these experiments we observed that in poorly har- pelieve thathere always exists some future job with longer
monic periods, the response time routine needs to be conresponse time Observing this phenomenon has lead us to
ducted much further than in more harmonic conditions. The formulate the following conjecture.
bottom part of Figure 4 reports, on a log scale, the index of
the job ofr» that experiences the maximum response time Conjecture 1 WhenU = 1 and the rat|o is irrational
(thecritical job). When the periods are in some harmonic then the index of the critical job is unbounded Moreover

relationship the critical job occurs relatively early. How
ever, when the harmonic relationship is poor we often stop
our computation because of our job limitiat00 jobs.

This observation motivated the third and last set of ex-
periments exploring the influence of periods. We want to
evaluate what the critical job is, when the periods are yoorl
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we have )
limsup Rox = RS (11) are equal to a common valde The asymptotic value of the

response time then is

\;\;P?ereRQ_,k denotes the response time of #&job of task . r;‘Lb _ % 4 (n _ 1)an (}J %)
nes ~(n-1%
4.2. Effects of the number of tasks U+ (n -DaU(1-Y)
N —(n—-1U
In this set of experiments we focus on the influence of U+ (n —1)alU
the number of tasks both on the actual response time and = m
on the upper bound derived by us in Section 3. The number ol
of tasks ranges from to 20. The experiment is run under =
three different total load condition representedlby= 0.3 1-u
(light load),U = 0.5 (average load) and = 0.8 (heavy  which is constant.
load). The total load is uniformly distributed among the sin
gle tasks using the simulation routine suggested by Bini and4.3. The sufficient test
Buttazzo [5]. Notice that as the number of tasks increases
all the individual utilisationgJ; tend to decrease because In the final experiments we evaluated the number of tasks
the total utilisation is kept constant. The peridty of = sets accepted by the sufficient test stated in Corollary 2.
is set equal to one, and the remaining periods are randomlyThis test is compared with other simple sufficient tests: the
selected such th& ., /T; is uniformly distributed if1, 3. Hyperbolic Bound [6] and the utilisation RBound [11]. We

For each pair (number of taskstotal utilisation) we ran remind that the complexity of the test presented here and
10000 simulations and computed the normalised responsethe Hyperbolic Bound irO(n), whereas the complexity of
time R,,/T,, — drawn in gray — and the normalised upper the utilisation RBound i$)(n logn), wheren denotes the
bound R¥®/T,, — in black. Figure 6 reports the average number of tasks.
value of all the simulations. The figure shows three pairs  First we investigated the effect of the period on the qual-
of plots, relative to the three different values of utilisat ity of the sufficient tests. We arbitrarily set the number of
simulated. tasks equal t6 and the total utilisatio®/ = 0.8 so that the

It may seem quite unexpected that the response timesandom task sets are not trivially schedulable. The periods
does not increase with the number of tasks. However, weare randomly extracted as follow§) T} is set equal ta
must remember that we are plotting values normalised withand(ii) the other period§’; are uniformly extracted in the
the periodT,,. To confirm the validity of the experiments interval[T;_1,r T;—1]. The parameter, denoted byeriod
we can compute the limit of the normalised response time, dispersionin Figure 7, measures how close each other are
reported in Eq. (8), as grows to infinity. In order to com-  the periods. For exampleif = 1 then all the periods are
pute the limit we assume that all the tasks utilisationslage t the same, if is large then the next random period tends to
same (i.e., each is equallf/'n) and all the period ratios; be large compared with the previous one. The experiments
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are conducted for varying from 1 to 7, and for each setting 100 ~ " |—— R“P-based test
we extracted 5000 task set. The quality of the tests is mea- @90 rrrrrrrrrrrrrrrrrr hyperbolic b.
sured by theacceptance ratipwhich is the percentage of %80 I util. RBound
schedulable task sets accepted by each of the three sets [5].  E 70
The results are shown in Figure 7. o 60}
250t
100 S a0}
o @© 20 ¢
® 10
(0] 60r 0 . Lo e
o 2 4 6 8 10 12 14 16 20
8 — Rub_pased test n (number of tasks)
g S e hyperbolic b. | |
§ util. RBound Figure 8. Acceptance ratio and tasks number
20t ]
0 L L L n
1 2 3. 4 5 6 7 to feasibility analysis of real-time systems that are sehed
max;{T;/T;—1} (period dispersion) y y Y

uled using fixed-priority (FP) scheduling algorithms. Two

drawbacks of RTA arefi) computing response times takes

time pseudo-polynomial in the representation of the task
system; andii) response times are not in general contin-
uous in task system parameters.

Figure 7. Acceptance ratio and periods

First, the figure confirms that the Hyperbolic Bound is

tnecgtaiif e((:atrigr?r::(ljl lé)))r/ﬂth(ce)r\]/ ?z;lsalilazlg;trilgnpse\:\ll?\?csﬁ .l';(i Iefttun In this paper, we have derived an upper bound on the re-
P y . sponse times in sporadic task systems scheduled using FP
changed. Then we observe that when the periods are close

each other (period dispersion close to 1) the RBound dom algorithms. Our upper bound can be computed in polyno-

) . “mial time, and has the added benefit of being continuous
inates, whereas for large periods the test based on the re- 9

sponse time bound performs better than the others. The os‘?lnd differentiable in the task system parameters. We have
si%le explanation ispthat the RBound is built startiﬁ froFr)n designed and conducted a series of simulation experiments
exp . ring to evaluate the goodness of our approach. These simula-
the Liu and Layland [15] worst-case periods which are all .. ) N .
tions have had the added benefit of giving rise to an inter-
very close each other.

. . esting theoretical conjecture concerning response times f
Finally, we evaluated the acceptance ratio as the number 9 ) gresp

of tasks varies from to 20. The total utilisation is equal to E}é?tsems in which all parameters need not be rational num-
0.75 so that a considerable number of task sets are schedula- ~ ™
ble also when the number of tasks is maximum. The period
dispersionr, as defined previously, is set equalt@ so References
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Abstract tionally expensive for performing on-line task admission
or for analysing large distributed systems using classical
We consider static-priority tasks with constrained- methods such as the holistic analysis [19].
deadlines that are subjected to release jitter. We define an  For a static-priority system, a task sefémsibleon a
approximate worst-case response-time anagsgpro-  given processing platform, if every task will always meet
pose a polynomial-time algorithm. For that purpose, we all deadlines when scheduled according to its given static-
extend the Fully Polynomial-Time Approximation Scheme priority on the given platform. A feasibility test is an al-
(FPTAS) presented in [6] to take into account release jit- gorithm used to check if a task set is feasible or not. One
ter constraints; this feasibility test is then used to define can distinguish several approaches to designing a feasibil
a polynomial time algorithm that approximate worst-case ity test for real-time task set$i) an exact feasibility test,
response times of tasks. Nevertheless, the approximatgii) a sufficient feasibility test (also known as pessimistic
worst-case response time values have not been provedeasibility test) andiii) an approximate feasibility test.
to have any bounded error in comparison with worst- We briefly describe their main characteristics.
case response times computed by an exact algorithm (with ~ An exact feasibility testan always correctly catego-
pseudo-polynomial time complexity). rize task sets as eithéeasibleor infeasibleupon a spe-
cific hardware platform [10, 13, 15]. An exact test will
label a periodic task set as “infeasible” if and only if
1 Introduction the task set will miss a deadline at run-time. Neither a
polynomial-time test nor NP-hardness result are known
Guaranteeing that tasks will always meet their dead- for static-priority tasks having constrained-deadlines.
lines is a major issue in the design of hard-real time sys- A sufficient feasibility tesalways leads to an exact
tems. We consider the problem of ensuring that periodic positive decision: if the test concludes that a task set is
tasks scheduled by a preemptive static-priority schedulerfeasible then no deadline will be missed at run-time. But,
upon a uniprocessor platform meet all deadlines. Everywhen it concludes that a task is infeasible, then it may be
execution of a given task is called a job. We consider a rather pessimistic decision (i.e., tasks may meet their
tasks that have constrained-deadlines (i.e., deadlires ardeadlines at run-time). Sufficient feasibility tests have a
less than or equal to task periods) and are subjected to relower computation complexity than corresponding exact
lease jitter. Arelease jittermodels an interval of time in  feasibility tests. Numerous sufficient feasibility teste a
which a task waits the next tick of the RTOS in order to known in the literature (e.g. [16, 11, 3, 9, 1, 4]).
start or is pending due to input communications. An approximate feasibility tess based on the approx-
Tasks are scheduled at run-time using a static-priority imability theory of NP-hard optimization problems [7].
scheduling policy. Every task has a static priority and at It reduces the gap between the two previous approaches
any time the executed job has the highest priority amongto control the “unused processor capacity” for tests based
tasks awaiting execution. The feasibility problem con- on the processor-demand analysis. It rungatynomiat
sists of proving that tasks will always meet their dead- time according to an accuracy paramete/An approxi-
lines at run-time. For the considered real-time systems, mate feasibility test allows to conclude that a task set is
the feasibility problem is not known to be NP-hard, but [6, 5]:
only pseudo-polynomial time tests are known. How-
ever, pseudo-polynomial time complexity is too computa- e feasible (upon a unit-speed processor).
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e infeasible upon g1 — €)-speed processor. Thatis, 7; between two successive releases. Every task occur-
“we must effectively ignore: of the processor ca- rence is called a job. We assume that deadlines are con-
pacity for the test to become exact” [6]. So, the strained: D; < T;. Such an assumption is realistic in
pessimism introduced by the feasibility test is kept many real-world applications and also leads to simpler al-

bounded by a constant multiplicative factor. gorithms for checking feasibility of task sets [12]. More-
_ _ over, we define the utilization factor of the periodic tasks
In[17], some numerical experiments are presented thz_;\tas follows: U ! S Cy/Ti. We consider a discrete

show the practical interest of several approximate feasi-

bility analysis in comparison with exact feasibility tests
Most of feasibility tests produce a boolean decision:

feasibility or infeasibility. However, an important quali  c4tions of tasks, we also consider that jobs are subjected

tative measure for a task is igorst-case response time  , ygjease jitter. A release jittek; of a taskr; is a in-

(i.e., the maximum size interval of time between a release gy 4| of time after the release of a job in which it waits

of a task and its completion). Response-Time Analysis is pefore starting its execution. In the following, we assume
often used to quantify the maximum earliness or tardinessy4t 0 < 7. < D, (otherwise the system is obviously
= [ — 1

of tasks and to bound release jitter of dependent tasks of, ot schedulable). Release jitter constraints model delays
messages in a distributed system. For synchronous statiCintroduced by the RTOS in presence of system ticks or
priority systems, worst-case response times of tasks cann st communications. For this latter case, dependencies
be computed ipseudepolynomial time. among distributed tasks are modeled using the parameters
~ This research. As far as we know, no approxima-  y. 1 < < . Using such a model, a distributed system
tion algo_rlthm is known f(_)r approximating worst-case re- g pe analysed processor by processor, separately using
sponse times of tasks with a constant performance guarfor instance an holistic based schedulability analysig. [19
antee (i.e., upper bounds of worst-case response times). gqr a given processor, we assume that all tasks are in-
The aim of this paper is to introduce such an analysis a”ddependent and synchronously released. All tasks have
to try to show its relationship with approximate feasigilit  g;atic priorities that are set before starting the apgticat
analysis. We present @pTAsfor analysing the feasibil- 514 are never changed at run-time. At any time, the high-
ity of static priority tasks with release jitter constrant  og¢ priority task is selected for execution among ready
We then show feasibility tests can be used to define up-iasks.  Without loss of generality, we assume next that

per bounds of worst-case response times based on a polygasks are indexed according to prioritiesis the highest
nomial time algorithm. Lastly, we show that there ex- yiority task andr,, is the lowest priority one.

ists some task systems such that ratio between the exact
Worst-case_ response time and the approximate worst-case o known Results
response time is not bounded.

Organization. The remainder of this paper is orga-
nized as follows. We first define a preliminary result for
computing worst-case response times while performing In presence of release jitter constraints, the requestidbou
a processor demand analysis (e.g., [13]), then we extendunction of a taskr; at timet (denoteckBF(7;, t)) and the
the FPTAS presented in [6] with release jitter constraints. cumulative processor demand (dendiEdt)) of tasks at
These results are then combined to define for computingtime ¢ of tasks having priorities greater than or equad to
approximate worst-case response times. Nevertheless, ware respectively (see [19] for details):
show via a counter-example that the computed approxi-

scheduling model and thus we assume that all parameters
are integers.
In order to model delay due to input data communi-

2.2.1 Request-Bound and Workload Functions

mate worst-case response times values are not guaranteed b T
to be close to actual worst-case response times (i.e., with RBF(7;, 1) def { 1-‘ C; (1)
a bounded error). T;
i—1
def
) Wi(t) = Ci+ ) RBF(1j,t) (2)
2 Task Model and Exact Analysis ' ' ; !

Informally, the request-bound function for a tasland
positivet is the maximum execution requirement of jobs
) of 7; released in any continuous interval of length
In this paper, we assume that all tasks share a proces- sjng these functions, two distinct (but linked) exact

sor upon which all jobs must execute. Every job can be feasibility tests can be defined. We restate both results
preempted and resumed later at no cost or penalty. With-ihat will be reused in the remainder.

out loss of generality, we also assume the the rate of the
processor is exactly one, since if it is not the case all pro-
cessing requirements can be normalized to the processo
speed. The time-demand approach checks that the processor ca-

Ataskr;, 1 <i < n,is defined by a worst-case execu- pacity is always less than or equal to the processor capac-
tion requirement’;, a relative deadlind; and a period ity required by task executions. [13] presents a processor-

2.1 Task Model

%.2.2 Time-Demand Analysis
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demand schedulability test for constrained-deadline sys- Nevertheless, to the best of our knowledge, no direct
tems (but the test was extended for arbitrary deadline sys-ink is known between these methods for validating static-
tems in [12]). It can be also easily extended to tasks sub-priority task sets. In this section, we propose combining
jected to release jitter as stated in the following result (a the aforementioned analysis techniques in an algorithm
proof can be found in [8]): that calculates the response time of a periodic task in the
presence of release jitter constraints. The initial value
Theorem1[13, 15] A  static-priority ~ system (e g, W' ”) plays an important role to limit the number
with release jitter contraints is feasible iff of required iterations to reach the smallest fixed point of

max;—i.. . 4 Minseg, WT(” < 1, where S; is equation;(t) = t. Different approaches have been pro-
the set of scheduling points defined as follows: Posed in[18, 2] and are quite useful in practice to reduce
def . . Di—Ji+J; computation time. Nevertheless, such improvements are
Sz-—{aTj—Jj|j—1...z,a—1... #}
: ' Y not necessary to present our results and for that reason are
UiD; = Ji}. not developed in the remainder.

As in the processor-demand approach, the worst-
case response-time computation can be done in pseudo-
polynomial time. Furthermore, for any integerthere is
a task system with two tasks such that the time complexity
of the response-time analysis is at le@st) (Lemma 2,
[15]).

Note that schedulability points correspond to a set of
time instants in the schedule where a task can start its
execution, after the delay introduced by its release jit-
ter. From a computational complexity point of view, for
any integerk, there is a task system with two tasks such
that the time complexity of the time-demand analysis is at

leastO(k) (Lemma 1, [15]). 2.3 A Preliminary Result

2.2.3 Response-Time Analysis We show that worst-case response times of tasks can
An alternative approach for checking the feasibility of a 0 computed using a Time-Demand Analysis (i.e., using
static-priority task set is to compute the worst-case re- Theorem 1), for every feasible task set. For a feasible task
sponse timeR;. The worst-case response time fis 7;, it is sufficient to check the following testing set [13]:
formally defined as:

def : : Di—Ji+J;
Si =A{aT;—Jj|j=1...%,a=1... {AJ}

Definition 1 The worst-case response time T;

of a task 7; subjected to a release jitter is: U{D; — J;}
R < (min{t > 0| Wi(t) = t}) + J;.
We first define the critical scheduling point that facil-
Note that for infeasible taskB; does not necessarily itates the computation of the worst-case response time of
correspond to the worst case response time, but instead: (under the assumption that the taskwill meet its
only corresponds to the worst-case response time of thedeadline at execution time).
first job of 7;.

Exact algorithms for calculating the worst-case re- Definition 2 The critical scheduling point for a feasible
sponse time of periodic tasks are known (e.g., see [10]taskr; is: t* Cmin{t € S, | Wi(t) < t}.

for a recursive definition of the following method). Using

successive approximations starting from a lower bound of ~ We now proveifi* exists, therV; (t*) + J; defines the
R;, we can compute the smallest fixed pointBf(t) = ¢ worst-case response time of

with the following sequence. By Definition 1, this small-

est fixed point is the worst-case response time for feasible | '€0rém 2 The worst-case response time of a feasible

taskr; is exactlyR; = W, (t*) + J;.

taskr;.
i Proof:

W = ch Since taskr; is feasible then we verify thal; (t*) <

j=1 t*. LetS; = {til,tig, . ,tig} With t;7 < tjp < -+ <
i1 tf < --- <ty = D; — J;. By Definition 2, there ex-
W = Oi+ZRBF(Tj7Wi(k)) ists t* = t;;, wherel < j < ¢, is the first schedul-

=1 ing point verifyingW; (t*) < t*: W;(t) > t forallt €

{tih - ,tijfl} andWi(tij) < tij-

The recursion terminates (assuming that< 1) for Since W;(t) is non-decreasing between subsequent
the smallest integek such that:Wi(k“) = Wi(k) (i.e., scheduling point$t;,, tia+1}, 1 < a < £ — 1, then there
the smallest fixed point of the equatiéW;(t) = ¢ has exists a time € (t;;_1,t;;] such thatV;(t) = ¢. Since
been reached). scheduling points irb; corresponds to task releases, then

The processor-demand analysis and the response-tim@o new task is released betweeand¢* and as a con-
analysis are both based on the cumulative request-boundgequence we hav#;(t) = W;(t*). The worst-case re-
function (i.e., Equation 2). sponse time of; is then defined ab/; (t*) + J;. [ ]
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Tasks| Ci | D; | T; | J; analysed processor busy period starts at time 0, then the
71 11332 worst-case workload in that busy period is defined by the
T2 215|151 release of task; attime—.J;, j < i. According to such a
T3 1 112]12] 2 scenario, the total execution time requested at titmga

1 v E . d:Ct t+J¢—‘ .
Table 1. Static-priority task set with release taskr; is defined _by [_19]'RB_F(T“ t)_ [ T q' _
jitter constraints The rRBF function is a discontinuous function with a

“step” of heightC; everyT; units of time. In order to
approximate the request bound function according to an

teS; 1| 4 7 19 error bounde (accuracy parameted, < € < 1), we use
W)/t | 1 the same principle as in [6, 5]: we consider the fikst 1)
Wa(t)/t |3 1 steps ofRBF(7;,t), wherek is defined ag& = [1/e] — 1
Ws(t)/t | 4] 1.25|1.14| 1 and a linear approximation, thereafter. The approximate

request bound function is defined as follow:
Table 2. Exact Time-Demand Analysis

(7 1) {RBF(TZ-, t) fort < (k— 1)T; — J;

Tis = o .

Thus, for all feasible tasks, we can compute their Ci+ (t+Ji) 7 otherwise

worst-case response times. Biitis not defined for an in- ) ] @)
feasible task , thus there is no scheduling point S; Notice that up to(k — 1)7; — J; the approximate

such thatiV;(t) < ¢. For this latter case, the presented request—bou_nd function is equivalent_to_ the exact request-
method cannot be used to compute a worst-case responsgound function ofr;, and after that it is approximated

time (i.e., some scheduling points after the deadline mustPYy a linear function with a slope equal to the utilization
be considered). factor of ;. The next subsection describes how we use

Since the size of5; depends oy '—} |22t |, the approximation to the request-bound function to ob-
then the algorithm runs ipseudepolynél_”nial time. Note tain_an gpproximation _scheme for feasit_>_i|ity analysis of
that computing the smallest fixed-poiit, () = ¢ using static-priority tasks subjected to release jitter coristsa

successive approximation is also performed in pseudo-

polynomial time. 3.2 Approximation Scheme
Let us take an example, consider the task set presented
in Table 1. The utilization factor i& = 0.81. The com- [19] shows that a static-priority task system with re-

putations associated with the exact tests are given in Talease jitter constraints is feasible, iff, worst-case oese
ble 2. Figure 1 preseni&’;(¢) and the processor capacity times of tasks are not greater than their relative deadlines
(i.e., f(t) = t). Notice that for every task;, 1 <i <n This problem is known as thelease jitter problemAn
the first value such that/;(¢)/t < 1 leads to its exact  alternative way is to define a time-demand approach for

worst-case response time: solving the release jitter problem using the principles of
the well-known exact feasibility test presented for the rat
o forrm, Ry =Wi(l)+ 1 =1+2=3, monotonic scheduling algorithm in [13].
o fOr 7o, Ro = Wa(4) + Jo =4+ 1 =5, As presented in Theorem 1, the cumuli\titye request
bound function at time is defined by:W; (%) = C; +
o forms, Ry = W3(9) + Js =9+2 =11 > %1 RBF(7;,1). Ataskr; is feasible (with a constrained

relative deadline) iff, there exists a timg 0 < t <
o . D; — J;, such thatW,(t) < t. Since request bound
3 AFpPTAsfor Feasibility Analysis of a Task  ynctions are step functions, thefi;(¢) is also a step

function that increases for every scheduling point in the
3.1 Approximating the Request-Bound Func-  following setS; = {t = bT, — Jo;a = 1...i,b =

tion 1... {%@“ﬁ} U {D; — J;}. The feasibility test can

. .. then be formulated as follows: if there exists a schedul-
For synchronous task systems without release jitter, the.

L ) ing pointt € S;, such thai¥;(¢)/t < 1 then the task is
worst-case activation scenario for the tasks occurs when]c egsri)bl e € o HOZS

they are simultaneously released [14]. When tasks are ' . o '
. - To define an approximate feasibility test, we define an
subjected to release jitter, then the worst-case processor

workload occurs when all higher-priority tasks are simul- approximate cumulative request bound function as:
taneously available aftef; units of time (e.g., when their i1

input data are available). Notice that deadline failures of Wit ¥ ¢, + Z 5(rj,t)

7; (if any) occur necessarily in an interval of time where i=1

only tasks with a priority higher or equal f@re running.

Such an interval of time is defined as a levédusy pe- According to the error boundleading tok = [1/¢] —
riod [13]. When analysing a task, if we assume thatthe 1, we define the following testing sét C S;:
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Approximate Time-Demand Analysis (k=3)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Approx(tau_3,t) — — — - Processor Capacity ------- W(t3,t) ‘

Figure 1. Exact and approximate cumulative request bound fu nctions Wis(¢) and I/I/%(t) with e = 0.3
leading to k£ = 3. Steps occurs at time «a7; — J; where 0 < a < k—1and 0 < i < n before starting
linear approximations. The approximate test concludes tha t 75 is not feasible upona (1 —¢)-speed
processor.

Proof: We first prove the first inequality: for all €
[0, (k = 1)T; — Ji]

o(ri,t) = RBF(7;,1)
Fort > (k— 1)T; — J;:

We consider the task set presented in Table 1, the cu-
mulative request bound functioiVs(¢) is presented in
Figure 1 using = 0.3. This means exactly three steps
will be considered for every task (i.ek, = 3) before
approximating the request bound function using a linear
function. We indicate without providing computation de- 5(rit) > Ft + Jﬂ C, = RBF(7, 1)
tails that worst-case response timesrofand, can be T ’

exactly computed since they are achieved before approx- \we now prove the second inequality of the statement:
imating request bound functions. But as shown in Fig- | §(7i,t) > RBF(r;,t) then sincet > (k — 1)T; — J;

ure 1, the approximate feasibility test concludes t9as  thenk — 1 steps before approximating the request bound
not feasible becausé’;(t) > t for all scheduling points  function, we verify:
(i.e., for allt € S3).

S; € {t=bT,—Jyga=1...i—1,b=1...k—1}
U{Dl—JZ}

Q

i t+ J;
5(72,15) = CZ‘—F(t—FJi) —CZ<1+ +J>

T;

o

As a consequence:

i

o ; ; : : i) = kG
This is aFpPTAs since the algorithm is polynomial ac- RBF(ri, t) 2 kC. )
cording to the input size and the input parameter. We Furthermore,
now prove the correctness of this approximate feasibility 5(7i,t) — RBE(73, 1) < C

test.
This is obvious ift € [0, (k — 1)T; — J;] sinced(r;, t) =

3.3 Correctness of Approximation RBF(7:,1), and ift > (k — 1)T; — J;, then:

C; t+J;
The key point to ensure the correctness is: Ori,t) —RBR(ri, 1) = Ci+(t+ JZ)Ti { T; -‘ @

d(i,t)/RBF(73,t) < (1 + €). This result will then < ¢

be used to prove that if a task set is stated infeasible by

the FPTAS then it is infeasible under &l — ¢) speed

processor.

As a consequencé(r;,t) < RBF(t;,t)+C; and using
inequality (4), we obtain the result:

1
_ 0(ri,t) < (1+ —)RBF(7y,1)
Theorem 3Vt > 0, we verify that: RBF(7;,t) < k
§(ri,t) < (1+ £)RBF(7;,t) wherek = [1] — 1. As a consequence, both inequalities are verifiedm

€
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Using the same approach presented in [6, 5], we can
establish the correctness of approximation.

Theorem 4 If there exists a time instante (0, D; — J;], Y= Wi(t)

such thatiV;(t) < t, thenr; is feasible (i.e.W;(¢t) < t). / t
y=

Proof: Directly follows from Theorem 3. | .

Theorem 5 If Vt € (0,D; — J;], V/[Z-(t) > t, thenr; is /

infeasible on a processor ¢f — ¢) capacity. ;

Proof: Assumethaltt € (0, D;—.J;], Wi(t) > t, butr; is _—

still feasible on 1 — ¢) speed processor. Since assuming
7; to be feasible upon @ — €) speed processor, then there
must exist a timey, such that;: W;(ty) < (1—e¢)to. But,
using Theorem 3 we verify that/;(t) < (1 + L)W;(t),
wherek = [1] — 1, then for allt € (0, D; — J;], the

conditionV; (¢) > ¢ implies thatvt € (0, D; — J;: ; ) =t

k N
Wi(t) > TTI i1 2 (1 —et. Figure 2. The scheduling points  S; are suf-
k .« o
ficient
As a consequence, a timg such thatV; (t,) < (1 —
€)to cannot exist and; is infeasible. [ |

To conclude the correctness, we must prove that

. . L Definition 4 Consider a taskr; such that there exists a
scheduling points are sufficient.

timet satisfyingﬁ/\i(t) < t, then an approximate worst-

Theorem 6 For all ¢t € SA*Z such thatI/I/Z- (t) > t, then we case response time is defined by:

—~ « def def 5 /4
also verify that:vt € (0, D; — J;], W;(t) > t. t* = min (t €S| Wit) < ) andR; < W;(t*) + J;.
Proof: Lett, andt, be twoadjacentpoints inS; (i.e., We now prove that such a method defines an upper
1t e S such thatt; < t < to). SinceI//V\-(tl) > bound of the worst-case response time of task
t1, Wi(t2) > t2 and the fact that¥;(t) is an non-  Theorem 7 For every tasks; such that there exists a time

decreasing step left-continuous function we conclude that, satisfyingV/[Z(t) < t,then:R; < E

Vit € (t1,t2) W;(t) > t (see Figure 2 for details). The

property follows. [ | Proof: Lett be a scheduling point such thﬁz\ti(t) <t
From the approximate feasibility test, we verify thais

4 Approximate Response-Time Analysis feasible: there exists a tinie such thatV; (¢*) < ¢* and

with Re'ease J”:ter t* < t. SinceRi = Wl(t*) + J; andﬁ\i = I//IZ(t) + J;
then, it follows from properties of the approximate feasi-
4.1 Approximate worst-case response time up-  Pility testthatR; < R;. u

per bound )
4.2 The Algorithm
According to a accuracy parameterwe define ap- ) ] )
proximate worst-case response times as in the classical "€ complete algorithm for computing approximate
Combinatorial Optimization Problem theory [7]: worst-case response time of a tasks presented in Algo-
rithm 1. The algorithm contains three nested loops. The
Definition 3 Lete be a constant an®; be the worst-case  firstloop and the last one are bounded.e., the num-
response time of a task then the approx|mate worst-  ber of tasks). The second one is related téhus on the
case responses tinfe; satisfies:R; < R; < (1+ €)R;. valuel/e. Thus, this implementation of the approximate
feasibility test for a given task leads ton?/¢) algo-
rithm. This algorithm is eligible to be apTAS since it
We shall combine results presented in Sections 2 and 3,is polynomial in the size of the task set and the accu-
in order to define approximate worst-case response timesracy parametet /e. But, as we will prove in the next
Using therpTASpresented in Section 3, we can check that section, it does not lead to bounded performance guaran-
atask is feasible or not. Ifitis feasible, then we are able to tee on computed response times in comparison with an
compute an upper bound of the worst-case response timexact response time analysis (performed with a pseudo-
of a task as presented in Section 2. polynomial time algorithm).
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Algorithm 1. Approximate worst-case response time of  7;

input :
e real [+ The FPTAS accuracy paraneter =*/;
i . integer [+ Index of the anal ysed task */;
n @ integer [+ Size of the task set =*/;
C[n],T[n], DIn], J|n] : array of integers I Task paraneters =*/;
output: Approximate response time of or 'not feasible upon &l — ¢)-speed processor’;
k=11/e] -1 /+ k is the nunber of steps considered in rbf(r,t) */;
forj=1toi—1do
for { =1to kdo [+ for each scheduling pointt =/
if {=kandj=i—1)then t=D[i]—J[i]; [+ ¢t is the |last scheduling point */
elset =¢xT[j] — J[j]; I~ t is another scheduling points */
w=C; I+ wis 6(m,t) */;
form=1toi—1do [+ for all higher priority tasks =*/
if (¢t <(k—1)T[m]— J[m])then w+ = C[m][t/T[m]]; I+ conpute rbf(rm;t) */
else w+ = Clm] + (t + J[i])C[m|/T[m] ; /= compute |inear approximation =/
end
if (¢ > w)) then return (w + J[i]); /= approxi mate response tine of = */
end
end

return ("not feasible upon &1 — ¢)-speed processor;)

4.3 Worst-case analysis of the algorithm perfor-  analysis always predicts that the task system is feasible fo
mance guarantee any integerk since the approximate worst-case response
time is strictly less than the deadline of task Therefore,
We now show that this method does not lead to an ap-the approximate response time is strictly larger than the
proximation algorithm (i.e., with the expected bounded exact, and can be made arbitrarily large: the ratio between
error presented in Definition 3) even if the approximate the exact worst-case response time and the approximate

feasibility analysis returns a positive answer. one is exactly:

Theorem 8 There exist some task systems for which E 1 1

cR; < R; for any integere. R 1- T + VA
2

Proof: Let us consider a task system with two tasks with
the following parameters:; with C; = 1—Xand7; = 1
andr, with Cy = kA andTy = k+1/\, whered < A < 1
andk is an arbitrary integer. (Both tasks have their jitter
parameter equal to zero). With these parameters and the The Figure 3 presents an example of this counterex-
Rate-Monotonic scheduling policy, the taskcan only ~ ample withk = 10, A\ = 0.1, ¢ = 0.33. The exact worst-
be executed\ unit of time within any interval of length  case response time of is 10 and the approximate worst-
one in the schedule. The completes at timé. The ap-  case response time is 19 (thuscompletes by its dead-
proximate feasibility analysis leads to the following com- Jine equal to 20). Note that the slope of the approximated
putations: cumulative request bound function tends to one when
— tends to zero. and thus becomes nearly parallel to the line
Wa(t) kA +0(r1,t) representing the processor capacity. That is why a perfor-
A+ (1 =A)+t(1-=21) mance guarantee can not be achieved using our method.

This ratio increases without any bound aspproaches
zero. So, for any arbitrary integerwe can find a lambda
sufficiently small such thaks/Rs > c. [ ]

The corresponding approximate worst-case response time
will be achieved foriV,(t) = t. The approximaton 5 Conclusion and Further Work
switches to a linear approximation at tifle — 1)77 =
k — 1. The corresponding fixed-points: We presented a method for approximating worst-case
_ response times of static-priority tasks with releaserjitte
t = k0 I A)+H1=A) constraints. The method is based orrarAS performing
t = k—14+= a feasibility test based on a Time-Demand Analysis. Ac-
A cording to an accuracy parameterif the approximate
As a consequence the approximate worst-case responsgzasibility test concludes that a task is feasible (i.e.,
timeis: Ry = k — 1+ 1/\. The approximate feasibility = meets its deadline) then we can compute an approximate
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Counterexample
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—f(t)=t
— approx_2(t)
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Figure 3. Counterexample with &k = 3,\ =
0.1,e = 0.3.The exact worst-case response
time is 10 and the approximate one is
achieved when lines intersect at time 19.
Thus, the approximate value is near 2 times
greater than the exact wors-case response
time. Reducing X to an arbitrary small value
lead to an unbounded performance ratio.
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[4]
[5]

[6]

[7]

(8]

9]

(10]

worst-case response time, but without any constant per-[11]

formance guarantee. But, when the approximate feasi-

bility test cannot conclude that is feasible, we know

that7; will not be feasible under a processor with capac- [12]
ity (1 — ¢); however, the proposed approach cannot guar-
antee that the approximate worst-case response times are
within a constant multiplicative factor of the actual werst

case response time. Even if our results are not complete,

they allow to define a sufficient feasibility analysis that
can be used for analysing a component in a QoS Opti- [14]
mization method or encapsulated within a holistic analy-

sis for analysing distributed real-time systems.
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Abstract

Classical approaches based on preemption, such as
RM (Rate Monotonic), DM (Deadline Monotonic), EDF
(Earliest Deadline First), LLF (Least Laxity First), etc,
give schedulability conditions in the case of a single pro-
cessor, but assume the cost of the preemption to be negli-
gible compared to the duration of each task. Clearly the
global cost is difficult to determine accurately because, if
the cost of one preemption is known for a given proces-
sor, it is not the same for the exact number of preemptions
of each task. Because we are interested in hard real-time
systems with precedence and strict periodicity constraints
where it is mandatory to satisfy these constraints, we give
a scheduling algorithm which counts the exact number of
preemptionsfor each task, and thusleadsto a new schedu-
lability condition. Thisis currently done in the particular
case where the periods of all the tasks constitute an har-
monic sequence.

1 Introduction

We address here hard real-time applications found in
the domains of automobiles, avionics, mobile robotics,
telecommunications, etc, where the real-time constraints
must be satisfied in order to avoid the occurrence of dra-
matic consequences [1, 2]. Such applications based on
automatic control and/or signal processing algorithms are
usually specified with block-diagrams. They are com-
posed of functions producing and consuming data, and
each function has a strict period in order to guarantee the
input/output rate asit is usually required by the automatic
control theory. Consequently, in this paper we study the
problem of scheduling tasks onto a single computing re-
source, i.e. a single processor, where each task corre-
sponds to a function and must satisfy precedence con-
straints in addition to its strict period. This latter con-
straint implies that for such a system, any task starts its
execution at the beginning of its period. We assume here
that no jitter is allowed at the beginning of each task.

Y ves Sorel
INRIA Rocquencourt
Domaine de Voluceau BP 105
78153 Le Chesnay Cedex - France
Email: yves.sorel @inriafr

Traditional approaches based on preemption, such as
RM (Rate Monotonic) [3], DM (Deadline Monotonic)
[4], EDF (Earliest Deadline First) [5], LLF (Least Lax-
ity First) [6], etc, give schedulability conditions but al-
ways assume the cost of the preemption to be negligible
compared to the duration of each task [7, 8]. Indeed, this
assumption is due to the Liu & Layland model [9], also
called “the classical model”, which is the pioneer model
for scheduling hard real-time systems. With this model,
the authors showed that a system of independent periodic
preemptive tasks with the periods of all tasks forming an
harmonic sequence [10] 1, is schedulable if and only if:

ncl
4 <1 1
ZiTi* W

T; denotes the period and Ci' the inflated worst case exe-
cution time (WCET) with the approximation of the cost
of the preemption for task 1;. It is worth noticing that
most of the industrial applications in the field of auto-
matic control, image and signal processing consist of tasks
with periods forming an harmonic sequence. For exam-
ple, the automatic guidance algorithm in a missile falls
within this case. Actually, expression (1) takes into ac-
count the cost due to preemption inside the value of Ci/ .
Thus, C = G; +¢ whereC; isthevalue of the WCET with-
out preemption, and e} is an approximation of the cost ;
of the preemption for this task, as explicitly stated in [9].
Thus, expression (1) becomes:;

U+te <1 @)

where

U=

|

E

n
and ¢ = Y
i i=1

The cost of the preemption for task 7; is € = Np(Ti) - o,
where o, denotes the temporal cost of one preemption
and Np(7i) is the exact number of preemptions of task ;.

Gi
'1Ti7

1A sequence (&)1<i<n is harmonic if and only if there exists qi €
N such that a1 = gja. Notice that we may have g1 #q Vi €
{17 e 7n}'

113



Np(ti) may depend on the instance of the task according
to the relationship between the periods of the other tasks
in the system. For example, in the case where the periods
of the tasks form an harmonic sequence Np(ti) does not
depend on the instance of t;. Therefore, since si' isan ap-
proximation of € and T; is known, ¢ isan approximation
of the global cost € due to preemption, defined by:

If the temporal cost o of one preemption is known for
a given processor, it is not the same for the exact num-
ber of preemptions Np(7i) for each task t; during a pe-
riod T;. Conseguently, it becomes difficult to calculate
the global cost of the preemption, and thus to guaran-
tee that expression (2) holds. Obviously the approxima-
tion of this latter may lead to a wrong real-time execu-
tion whereas the schedulability analysis concluded that
the system was schedulable. To cope with this problem
the designer usually alows margins which are difficult to
assess, and which in any case lead to awaste of resources.
Note that the worst-case response time of a task is the
greatest time, among all instances of that task, it takes to
execute each instance fromitsrelease time, and it islarger
than the WCET when an instance is preempted. A. Burns,
K. Tindell and A. Wellings in [11] presented an analysis
that enables the global cost due to preemptions to be fac-
tored into the standard equations for cal culating the worst-
case response time of any task, but they achieved that by
considering the maximum number of preemptions instead
of the exact number. Juan Echagile, 1. Ripoll and A. Cre-
spo aso tried to solve the problem of the exact number
of preemptionsin [12] by constructing the schedule using
idle times and counting the number of preemptions. But,
they did not really determine the execution overhead in-
curred by the system due to these preemptions. Indeed,
they did not take into account the cost of each preemption
during the scheduling. Hence, this amounts to consider-
ing only the minimum number of preemptions since some
preemptions are not considered: those due to the increase
in the execution time of the task because of the cost of the
preemptions themsel ves.

For such a system of tasks with strict periodicity and
precedence constraints, we propose a method to calculate
on the one hand the exact number of preemptions and thus
the accurate value of €, and on the other hand the sched-
ule of the system without any idle time, i.e. the processor
will always execute a task as soon as it is possible to do
so. Although idle time may help the system to be schedu-
lable, when idle time is forbidden it is easier to find the
start times of al the instances of a task according to the
precedence relation.

The proposed method leads to a much stronger schedu-
lability condition than expression (1). Moreover, we do
thisin the case where tasks are subject to precedence and
strict periodicity constraints, using our previous model

[13] that is well suited to the applications we are inter-
ested in. Afterwards, to clearly distinguish between the
specification level and its associated model, we shall use
the term operation instead of the commonly used “task”
[14] which is too closely related to the implementation
level.

The paper is structured as follows: Section 2 describes
the model and gives notations used throughout this paper.
Section 3 restricts the study field thanks on the one hand
to properties on the strict periods, and on the other hand
to properties on WCETSs. Section 4 proposes a scheduling
algorithm which counts the exact number of preemptions,
and derives a schedulability condition, in the case where
the periods of al operations constitute an harmonic se-
guence. We conclude and propose future work in section
5.

2 Model

The model depicted in figure 1 is an extension, with
preemption, of our previous model [13] for systems with
precedence and strict periodicity constraints executed on
asingle processor.

o s — -
| TSV, | R

Irstance k Instance ka1

Figure 1. Model

Here are the notations used in this model assuming all
timing characteristics are non-negative integers, i.e. they
are multiples of some elementary time interval (for ex-
ample the “CPU tick”, the smallest indivisible CPU time
unit):
ti = (Gi, Ty): An operation
T;: Period of T
Ci: WCET of 1; without preemption, C; < T;

% The kM ingtance of T;
o Temporal cost of one preemption for a given processor
Np(tk): Exact number of preemptions of 1; in T
CK = Cj + Np(t¥) - o Exact WCET of 7 including its pre-
emption cost in ¢

: Start time of the first instance of 7;

=+ (k—1)T;: Start time of the K" instance of 7

RK: Response time of the k" instance of 1;

R Worst-case response time of T;

Ti ATj: The greatest common divisor of T; and Tj,
when Ty AT; = 1, Ty and Tj are co-prime

Ti < Tj: Ti — Tj, Ti precedes T

We denote by V the set of all systems of operations.
Each system consists in a given number of operations,
with precedence and strict periodicity constraints. Each
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operation 1; of asysteminV consists of apair (G, Ti): Ci
itsWCET and T; its period.

The precedence constraints are given by a partial order
on the execution of the operations. t; < tj; means that
the start time s? of the first instance of t; cannot occur

before the first instance of 1, started at qo is completed.
This precedence relation between operations also implies
that s¢ < s, vk > 1 thanks to the result given in [15]. In
that paper it has been proven that given two operations
% =(G,Ti) and 1) = (Cj, Tj):

Ti < T =T <Tj

Regarding the latter relation from the practical point of
view, it is worth noticing that when the precedence rela
tions are due to data transfers and the periods of the oper-
ations exchanging data constitute an harmonic sequence,
the number of operations producing data between two
consecutive operations consuming the corresponding data,
is constant. Consequently, the number of buffers used to
actually achieve the data exchange is bounded, i.e. it can-
not increase indefinitely.

The strict periodicity constraint means that two succes-
sive instances of an operation are exactly separated by its
period: $*1 =T vkeN, Vie{l---,n},andno
jitter is allowed. In this model the start time is aways
equal to the release time, in contrast to Liu & Layland's
classical model. A great advantage of the strict periodic-
ity constraint for each task is that it is only necessary to
focus on the start time of the first instance, the other being
directly obtained fromit.

It isfundamental to note that, because of the strict peri-
odicity constraint and the fact that we are dealing with the
single processor case, any two instances of any two op-
erations of the system cannot start their executions at the
same time.

3 Study field restriction

Firstly, we eliminate all the systems where the start
times of any two instances of any two operations are iden-
tical. This will be achieved thanks to properties on the
strict periods of the operations, using the Bezout theorem.
Thisisformally expressed through both theorems givenin
section 3.1. Secondly, we eliminate all the systems where
the start time of any instance of an operation occurs while
the processor is occupied by a previously scheduled op-
eration thanks to properties on WCETSs of the operations.
This is formally expressed through the theorem given in
section 3.2. These three theorems give sufficient non-
schedulability conditions. For the remaining systems of
operations, we adopt a constructive approach which con-
sistsinbuilding, i.e. in predicting, all the possible preemp-
tive schedules without any idle time. In so far, aswe are
dealing with hard real-time systems whose main feature
is predictability, constructive techniques are better suited
than simulation techniques based on tests that are seldom
exhaustive. In addition, an exhaustive simulation assumes

that there exists a scheduling algorithm, e.g. RM or DM,
which is used to perform the simulation. In our case we
propose a scheduling algorithm which determines if the
system is schedulable and provides the schedule.

3.1 Restriction due to strict periodicity
Theorem 1
Given a system of n operations in V, if there are two
operations t; = (C;, Ti) and Tj = (Cj,Tj) with (7 < ’l?j)
starting their executions respectively at the dates s and s
such that
TiATj=1 ©)]

then the system is not schedulable. Moreover, any
additional assumption (for example preemption and
idle times) on the system intending to satisfy all the
congtraintsis of no interest in this case.

Proof: The proof of thistheorem usesthe Bezout theorem
and isdetailed in [16]. .

Theorem 2

Given a system of n operations in V, if there are two
operations t; = (G;,Ti) and tj = (Cj,T;) with (tj < 1))
starting their executions respectively at the dates qo and
s such that

TAT (S ) @

then the system is not schedulable. Moreover any addi-
tional assumption on the system intending to satisfy all
the constraints is of no interest in this case.

Proof: The proof of this theorem also uses the Bezout
theorem and is detailed in [16]. .

Theorems 1 and 2 give non-schedulability conditions
for systems with strict periodicity constraints when both
previous relations on the strict periods hold. Moreover,
any additional assumption on the system would be useless
because of the identical start times of two instances of at
least two operations.

We denote by Q, the sub-set of V excluding the cases
where the strict periods of the operations verify both pre-
vious relations.

Q?& - {{(Ci?Ti)}lSiSn ev /VI7 ] € {13 T an}

> TAT =Aand At () — )}

3.2 Restriction due to WCET

The scheduling analysis of a system of preemptive
tasks (operations) has shown its importance in a wide
range of applications because of its flexibility and its rel-
atively easy implementation [17]. Although preemptions
may allow schedules to be found that could not be found
without it, it can, unfortunately, cause non schedulability
of the system due to its global cost.

Since, given two operations i = (G, T) and tj =
(Cj, Tj) we have 1 < 1) = T; < T thus, the operations
must be scheduled in an increasing order of their periods
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corresponding to classical fixed priorities. In other words
the smaller the period of an operation s, the greater its pri-
ority is, like in the RM scheduling. Note that the schedul-
ing analysis of a system of preemptive tasks with fixed
priorities has been a pivotal basisin real-time application
development since the work of Liu and Layland [9]. Now,
we assume that any operation of the system may only be
preempted by those previously scheduled, and that any op-
eration is scheduled as soon asthe processor isfreg, i.e. no
idle time is allowed between the end of the first instance
of an operation and the start time of the first instance of
the next operation relatively to <. This assumption about
no idle time allows the greatest possible utilization factor
of the processor to be achieved. Therefore, to schedule
an operation 1; relatively to those previously scheduled,
amounts to filling available spaces in the scheduling with
corresponding slices of the exact WCET of t;. Conse-
guently, from the point of view of operation 7; the start
ti me§ of itsfirst instance is yielded by the end of thefirst
instance of Tj_;. Thus, the notion of release time of 1 is
not relevant in this paper, or isequal to .

A potential schedule S of asystem is given by alist of
the start times of the first instance of al the operations:

S:{(S.l.c)?ﬁ”SQ)} (5)

The start times §¢ (k > 1, i = 1---n) of the other in-
stances of operation 1; are directly deduced from the first
one, and this advantage derives directly from the model.
The response time R¢ of the K instance of operation
1i = (G;,T) is the time elapsed between its start time s¢
and its end time. This latter takes into account the pre-
emption thus,

R‘>C vk

We call R the worst response time of operation 7;, de-
fined as the maximum of the response times of al itsin-
stances.

These definitions enable us to say that, in order to sat-
isfy the strict periodicity, any operation t; = (G, T;) of a
potentially schedulable system in Q; must satisfy:

R<T vie{l-,n} (6)

We say that a system in Q; has one overlapping when
the start time of any instance of a given operation occurs
while the processor is occupied by a previously scheduled
operation. Such systems are not schedulable, as expressed
in the following theorem.

Theorem 3

Given a system of n operationsin Q,, if there are two
operations 7; = (C;,Ti) and tj; = (Cj,T;) with (tj < 1))
starting their executions respectively at the dates s and
s? such that for k > 1

IB<kand0< () +BT) — (L+(k-1)T) <R (7)

then the system is not schedulable. Moreover any addi-
tional assumption on the system intending to satisfy all

the constraints is of no interest in this case.

Proof: The proof of this theorem derives directly from
the assumption that an operation may only be preempted
by those previously scheduled, and it is detailed in [16].

An exampleis given below (seefigure 2). .
i y o :.‘.

s mm s b L_;.—.___li_. L .

N e RS R EEasmanl  hassssmsasmEl 3

Figure 2. System with an overlapping

Now we can partition Q, into the three following dis-
joint subsets: the subset V. of systems with overlappings
which are not schedulable thanks to theorem 3, the subset
V; of systems with regular operations, i.e. where the peri-
ods of al the operations constitute an harmonic sequence,
and the subset V; of systems with irregular operations.
Thus, since the subset of operations where T AT = 1
holds, the subset of operations where T AT | (s? — &)
holds, and the subset V; are not schedulable, only the re-
maining subsetsV; andV; are potentially schedulable (see
figure 3).

VC: {{(Ci7-|-i)}1§i§n € Q?\./E“ € {17 7n_1}7
Jje{i+1,---,n} and
0< (8 +BT) — (+(k-1T)) <R,
Ve = {{(Ci.T) ba<icn €2 /Ta [ T2 |-+ | Tn}

Vi = \(VeUV)

Figure 3. O, -partitioning

In the remainder of this paper, we restrict our schedul-
ing analysisto the subset V; .

4 Scheduling analysis for V;

Given any system in \;, both the exact WCET CK and
the response time R¢ of the k" instance of a given op-
eration 7; are the same for all its instances, CK = Cf =

116

k>1;BeN}



Ci + Np(ti) - o and R¢ = R (equal to the worst response
time R, of the operation) because the number of available
spaces left in each instance does not depend on the in-
stance itself. Therefore it is worth, in this case, noticing
that it is sufficient to give a schedulability condition for
the first instance of each operation.

We call Up (respectively Up) the p" temporary load
factor (respectively the exact pth temporary load factor)
of the processor (1 < p < n) for a system of n operations
{1i = (G, Ti) }1<i<n iN V4.

b G
i=

i=1
This system will be said to be potentially schedulable

if and only if:
Un<1 €)

and schedulableif and only if:
Up <1 9)

Notice that in (8), C; is the WCET of operation 1; with-
out preemption. From now on, we assume (8) is aways
satisfied.

We say that the exact WCET C = Cj 4 Np(7i) - o of an
operation t; = (C;, T;) of asystemin; isacritical WCET
if its scheduling causes a temporal delay to the start time
of the first instance of operation Ti11 = (Cit1, Ti+1), T <
Ti+1. In other words, this means from the point of view
of operation 7; that C; is critical when &, > + R, see
figure 4. Indeed, in this case the last dlice of the exact
WCET of 1; exactly fits the next available space in the
scheduling, and thusthefirst instance of the next operation
relatively to < cannot start exactly at the end of the first
instance of ;.

[l " " " " 1 ' '

I '
i I.——"j.—-"‘.—"'-..-—"""'::— B T e

=

¥ n.'_ ¥ # ¥
T3 T
i

sl | I
™A E r

Figure 4. Operation with a critical WCET

In order to make it easier to understand the genera
case, we first study the simpler case of only two opera-
tions. Both cases are based on the same principle which
consists, for an operation, in filling available spaces left
in each instance with slices of its exact WCET taking into
account the cost of the exact number of preemptions nec-
essary for its scheduling.

4.1 System with two operations
We consider 11 = (C1, T1) and 12 = (C, T2) tobeasys-
tem with two operationsinV; suchas Ty | To.

To be consistent with what we have presented up to
now, wewill first schedule t1, and then 12, 11 < T2. Hence,
since no idle time is alowed between the end of the first
instance of t1 and the start time of the first instance of 15,
we have:

Ci=C andthus Ri=C; and $=s+R; (10)

Without any loss of generality, we assume in the re-
mainder of this paper that ﬁ = 0. Because the system is
potentially schedulable, we have:

d@} —1) C+C < T, (11)
1

i.e. operation Ty is schedulable without taking into ac-
count the cost of the preemption.
Now, on the one hand, if:

C+C<Ty

then operation T2 is schedul able without any preemption,
and we have:

C; =C and R =0C (12)
On the other hand, if:
Ci+C>T1 (13)

then the system requires at least one preemption of oper-
ation T, to be schedulable. To compute the exact number
of preemptions Np(t2), we perform the algorithm below,
using a sequence of Euclidean divisions.

We denote e = Ty — C; and weinitidlizeCl =
Euclidean division of C! by e gives:

C,. The

. ct
Cl=q-e+ryiwithg = {?J and0<ri<e

For all k > 0, we compute
Ccktl = Mg+ Qg - o (14

and at each step, we perform the Euclidean division of
C**1 by ewhich gives:

k+1
Ck+l =0Oks1-€+ Tk with Ok4+1 = \‘eJ and0§ krp1<e

We stop the algonthm as soon as: either there exists
my > 1 such that Z gi -€> T2(1—Uy), and thus the oper-

ation t2 is not schedulable in this case, or
Jdmp, >1 suchthat C™<e (15)

and thus, Np(t2) isgiven by:

mp—1
= > G (16)
i=1
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Hence
G =C+ Np(‘tz) -0 a7

and the worst response time R, of the operation 1, isgiven
by:
Ry =R - (18)

where: -
R=Cs+ H < (19)

Rg is easily obtained by using afixed point algorithm ac-
cording to:

RO o RS" .
O+ 4 .C; VI>0

T
0.0 .
R"= G

The algorithm is stopped as soon as two successive
terms of the iteration are equal:

(20)

IR, 1>0 (21)

To simplify the notation, the worst response time will
be written as:

Therefore a necessary and sufficient schedulability
condition for operation T, and thusfor the system {11, 12}
taking into account the cost of the preemptionis given by:

Np(T2) -0

Us;<1 ie, U
2> 2+ T

<1 (23)

Example 1
Let 11 and 12 be a system with two operations in V;
with the characteristics defined in table 1:

Table 1. Characteristics of example 4.1

G| T
T1 2 5
2| 4|10

We have: U, = §+% =08ande=3.

As operation 11 is hever preempted, its worst response
time Ry is equal to its worst-case execution time: Ry =
Ci=C=2

Because 11 < 12, these operations are schedulable if
and only if preemption is used (is mandatory).

Although it is not realistic, let oo = 1 be the cost of one
preemption for the processor in order to show clearly the
impact of the preemption. SinceCy +Cy = 6> T; =5, the
computation of Np(t2) is summarized in the table below:

Therefore, there is only one preemption Np(t2) = 1
(seefigure5)andC5 =4+1-1=5

According to (20), Rg =9, and the worst response time
R of operation 1, is given by:

Table 2. computation of Np(t2)
Steps | g | C' | ri

1 1141

2 0|2]|2

R =9-2=7 andwehave R, <T, =10
Thus the system is schedul able because:

Np(T2) -

Uj =Up+ ¢ _o09<1.
T2

Figure 5. Scheduling of two operations

4.2 System with n > 2 operations

The strategy we will adopt in this section of calculating
the exact number of preemptions for an operation is dif-
ferent from the one used in the previous section, because
we can no longer perform a simple Euclidean division.
Although, we can perform the Euclidean division to find
the number of preemptions for the second operation, this
technique cannot be usable for a third operation, and so
on. Actually, the available spaces left after having sched-
uled the second operation may not be equal, as shown in
example 4.2 below, see figure 6.

Example 2
Let oo =1 and {t1, T2, T3, T4} be a system with four
operationsinV; with the characteristics defined in table 3:

Table 3. Characteristics of example 4.2

G| T
T1 2 5

72| 1] 10
3| 3|20
T4 3 40

The schedule is depicted in figure 6.

Infigure6, it can be seen that after the scheduling of the
first operation, the available spaces left have equal lengths
(3timeunits) but it is no longer the case after the schedul-
ing of the second operation, and thus for the third opera-
tion after the scheduling of the second operation, and so
on.

Theintuitiveidea of our algorithm consistsin two main
steps for each operation, according to the precedence re-
lation. First, determine the total number of available time
units in each instance, and then the lengths of each avail-
able space (consecutive available time units). These data
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Figure 6. Difficulty of using a simple Eu-
clidean division

allow the computation of the instants when the preemp-
tions occur. A preemption occurence corresponds to the
switch from an available time unit to an already executed
one. Second, for each potentially schedulable operation,
fill available spaces with dlices of its WCET up to the
value of its WCET, and then add the cost of the pre-
emptions (p- o for p preemptions) to the current inflated
WCET, taking into account the increase in the execution
time of the operation because of the cost of the preemp-
tions themselves. Finaly, the last inflated WCET corre-
sponds to the exact WCET. Thus, it is possible to verify
the schedulability condition and then whether this opera-
tion is schedulable.

Notice that the number of available spaces is the same
for al the instances of an operation, thusit is only neces-
sary to verify the schedulability condition in the first in-
stance which is bounded by the period of the operation. In
addition, this verification is performed only once for each
operation. Conseguently, the complexity of the algorithm
even though it has not been yet computed precisely, will
actualy not explode.

Before going through our proposed algorithm, let us
make some assumptions:

1. we will add the cost due to the preemptions to the
scheduling analysis of asystem if and only if the sys-
tem is aready schedulable without taking it into ac-

n .
count, that is 9 <1
=l

2. we have scheduled thefirst j —1(2< j <n—1) op-
erations, and we are about to schedule the jt" opera-
tion,

3. we have potentially enough available spaces to
schedule operation tj, that is to say:

(5] i) <o

Under assumption 2, if F; denotes the number of avail-
able time units left in each instance of the operation tj,

then we have:
Fi=T-(1-Ujy) (24)

Therefore, the operation T = (Cj, T;) is schedulable if
and only if:
0<Ci<F ie, C el F} (25)
Let:

L denotes the set of all the possible exact WCET C; of
operation tj = (Cj, Tj). Thus, it also contains al the pos-
sible WCETSs for operation tj. Once (25) is satisfied, the
worst response time of 7; is given by:

* o R(J) * 0

and R; is obtained by using afixed point algorithm similar
to the one given in the previous section, used to obtain Ry.

4.3 Scheduling algorithm

Hereafter is the scheduling algorithm which counts the
exact number of preemptions in order to accurately take
into account its cost in the schedulability condition. It has
the twelve following steps.

1: Determine the start time s of the first instance of
operation tj = (Cj, Tj) according to whether the ex-
act WCET Cj_; = Cj_1+ Np(tj-1) - o of operation
Tj—1 = (Cj_1, Tj—1) iscritical or not.

2. Calculate the number of available time units F; left
in each instance of 7, and build the set L; thanks to
relations (24) and (25). T

3: Make a first ordered partition of L; in kj_1 = T—’

j-1
sub-sets of equal cardinals such that:

Lj=LuL?U---uL

j with

4: For each subset L| obtained in the previous step,
make, if possible, a second ordered partition in hj_;
subsets such that:

Li=LHuLi2u- oL =1 ki

where the cardinal of each L}*" with2< o < hj_;
equals the cardinal of the subset at the same position
in the partition of Lj_; starting from the subset with
the greatest pair (kj—», hj_») of indices (the subset the
furthest on the right).
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To make this step clear, let us give an example with
(kj—2,hj—2) = (2,2).
Let the partition of Lj_; be such that:
Lia = LhuliAul?ul??

= {1,2}u{3,4,5}U{6,7} U{8,9,10}

andlet L, and kj_1 be such that:
Lj ={1,2,3,4,5,6,7,8,9,10,11,12}
Ki-1=2
Thanksto step 3, we have:
Lj= leu LJ-2
where
le ={1,2,3,4,5,6} and Lj2 ={7,8,9,10,11,12}

In step 4, we obtain:

Li=LMuL?uL®

i i i i
={1}u{2,3tu{4,5,6}
L2=LPuL??uL??
i j i i
={7}uU{8,9}U{10,11,12}

Thus, at the end of step 4, we can write:

L= kU {thJl'-}’c}

i=1 | o=1

(28)

Rl ol
1l
-
I e ol
N

hj,lf 1= le’hj_l

o 21

2h 1—1=L
Zhj_lz LJ-?"'l

2hj 1
J

Kby 1 —1=Ll

6 denotes the subset of the possible exact WCETs C}
of operation 7, preempted 6 times. Because opera-
tion 1; is potentially schedulable, thus:

30, € {0, 1. ,kj,lhj,lfl} and Cj 6971 (29

If 81 = O, then Np(tj) = 0. If it is not the casg, i.e.
01 # 0, thuswe obtain for operation t; the exact num-
ber of preemptions Ny(tj) using the algorithm below:
Weinitialize
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For | > 1, we compute:

|

B = A+ (1 +6-0) (30)
k=1

If B! < Fj, thus 36,41 > 0 such that B'*? ¢

01+---+06141. If 6.1 =0, then expression (31)

holds with mp = | 4+ 1 and Np(t;) is given by (32),

else we set:

C*tl=r 46 o

Qi+1="0111
O1+-+0) 11 ~
Atl= % card(k)
K=01+-+6)

Mo1= CI+1_A|+1

The algorithm is stopped as soon as. either there ex-
ists my > 1 such that B™ > F;, and thus operation 7
is not schedulablein this case, or

dmp, >1 suchthat 6y, =0 (31)
and therefore:
mp—1
No(tj) = 3, o (32)
k=1
We compute the exact WCET C; of operation t;:
Cj =Cj+Np(1j) - o (33)

. Determine the set |; of all the possible critical exact

WCETsC] of operation tj = (Cj, Tj). Each element
of 1 is the maximum of each subset L:°, except Fj,
with (1 <i <kj_1) and (1 < o < hj_1) obtained in
step 4.

We distinguish between two types of critical exact
WCETs: critical exact WCET of the first order and
critical exact WCET of the second order.

Critical exact WCET of the first order consists of the
ordered set I given by:

I = {max(L]) for 1<i<ki_1}\{F}
Fi F; F; }
—b o 1 (k-1

{kjl R

Critical exact WCET of the second order consists of

the ordered set I given by:

Ki 1

12 = J1¥ with
i—1
Ijz’I = {max(L}“’) for 1§c§hj,1}\lj1
Hence |; = 1 U1# and can be rewritten as the ordered
set defined by:

21 Fi 22 Fi
=12tud L Lyi2?2yla L Ly
= {kil} ! { kjl}

Fi .
---u{(k,-l—l)—’}uljzk'l

= (34



Again, to make this step clear, let us give an example,
using the same one asin step 4. In this step we obtain:

1= {max(L}),max(L?)} \ {12} = {6}
|2t
J
|f=2

= {mex(L}®), 1<0<3}\{6}={1,3}

_ {max(sz’(’), 1<o< 3} \{6} = {7,9}

Thus, by writing I; likein expression (34) we obtain:
lj={1,3yu{6}u{7,9}

: Determinewhether Cj isacritical WCET, i.e. Cj €1j,
or not, thanks to step 6.
: Determine the delay A;j(C;) that operation t; will
cause to the start time of the first instance of oper-
ation tj11 = (Cj41,Tj+1). There are three possible
cases for Cj:

e Cj € Lj\lj,i.e Cjisnotacritical exact WCET,

then:

Aj(Cj)) =0 (35)

e Cie Ijl, i.e. Cf isacritical exact WCET of the
first order, then:

Aj(Cy) =] (36)

e Cie I]-Z, i.e. Cfisacritical exact WCET of the
second order, then:

Aj(Cj) =Aj1(C) y) (37)

such that for each possible val ueCJQ’i € IJ-Z’i of Cj
with (1 < <kj_1),

Aj(CM) = Aj-1(C]_y)

whereCj_; € 1j_1 and Cj_, isat the same posi-
tioninlj_q written asin (34) zasC?’I in IJ-Z", Start-
ing in Ij_1 from its maximum which belongs to
the sub-set with the greatest pair (2,kj_») of in-

dices|? (the subset the furthest on the right).

Again, to make this step clear, let us give an example,
using that of step 4. Thanks to everything we have
presented up to now,

1 =124 U{B U™ = {21 U {5} U {7}

if we assume we had:
Aj-1(5) =)y and Aj-1(2) = Aj-1(7) = 5)_,, then
as
lj={1,3yu{6}U{7,9}
In this step we obtain:

Aj(6) =
Aj(3) = Aj(9) = Aj-a(7)

10:

11:

12:

Calculate the worst response time R; of operation 7
thanks to expression (27).

Increment j: j < j+ 1 and determine the start
time s?,, of the first instance of operation 1j,1 =
(Cj+1,Tj+1) according to whether operation tj =
(Cj, Tj) hasacritical exact WCET Cj, or not.

11 =Rj+5)+Aj(C)) (38)

Go back to step 2 aslong as there remain potentially
schedulable operations.

Give the necessary and sufficient schedulability con-
dition:

. 0 Ny (1) -
U;<1 ie, Un+z@§1 (39)
i=2 I

and the valid schedule S for the system taking into
account the global cost due to preemptions:

S :{(Sfl.)as(z)”sg)} (40)

Example 3

Let oo =1and {11,12,73,T4} be asystem with four op-

erations in V; with the characteristics defined in table 4.

Table 4. Characteristics of example 4.3

G|T
T1 2 5

T2 1 10
3| 3|20
T4 3 40

That system is potentially schedulable, indeed:

2 1 3 3
U47§+E+X)+4fo—0.725

The scheduling algorithm that we introduced previously
gives. C] = 2,C; = 1,C; = 4,C, = 5, thus.

2 125 o

Vs 5710 20 ' 40

and we obtain (see figure 7):

N BT e

:I._f;. uia . & . a:.:jn wih 9. W Sy Fy=12 B=l0
0.:0. 8.0 . ®.lc
Figure 7. Scheduling algorithm

In figure 7, for each operation, we can see its actual

exact WCET (squared), its critical exact WCET (circled),
and its exact number of preemptions.
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The global cost due to preemption is given by:
1 1 1

and therefore the schedulability condition is:
U =Us+pr=0825<1

Thevalid schedul e of the system of operations obtained
with our scheduling algorithm is given in figure 8, and is
such that:

S = {0,985 = (0,R,R+,Rs+))}
= {(0327379)}

Figure 8. Preemptions taken into account

5 Conclusion and future work

We are interested in hard real-time systems with prece-
dence and strict periodicity constraints whereit is manda-
tory to satisfy these constraints. We are also interested
in preemption which offers great advantages when seek-
ing schedules. Since classical approaches are based on an
approximation of the cost of the preemption in WCETS,
possibly leading to a wrong real-time execution, we pro-
posed a constructive approach so that its cost may betaken
into account accurately. We proposed a scheduling algo-
rithm which counts the exact number of preemptionsfor a
system inV; which is the subset of systems where the pe-
riods of all operations constitute an harmonic sequence as
presented in section 3.2, and thus gives a stronger schedu-
lability condition than Liu & Layland's condition.

Currently, we are seeking aschedul ability condition for
systemsinV; which isthe subset of systemswith irregular
operations and we are planning to study the complexity of
our approach in both V, and Vi. Moreover, because idle
time may increase the possible schedules we also plan to
allow idle time, even though this would increase the com-
plexity of the scheduling a gorithm.
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Abstract

We investigate the global scheduling of sporadic, im-
plicit deadline, real-time task systems on identical multi-
processor platforms. We provide a task model which in-
tegrates work-limited job parallelism. For work-limited
parallelism, we prove that the time-complexity of decid-
ing if a task set is feasible is linear relatively to the num-
ber of (sporadic) tasks for a fixed number of processors.
Based on this proof, we propose an optimal scheduling
algorithm. Moreover, we provide an exact feasibility uti-
lization bound.

1 Introduction

The use of computers to control safety-critical real-
time functions has increased rapidly over the past few
years. As a consequence, real-time systems — computer
systems where the correctness of each computation de-
pends on both the logical results of the computation and
the time at which these results are produced — have be-
come the focus of much study. Since the concept of
“time” is of such importance in real-time application sys-
tems, and since these systems typically involve the shar-
ing of one or more resources among various contending
processes, the concept of scheduling is integral to real-
time system design and analysis. Scheduling theory as it
pertains to a finite set of requests for resources is a well-
researched topic. However, requests in real-time environ-
ment are often of a recurring nature. Such systems are
typically modeled as finite collections of simple, highly
repetitive tasks, each of which generates jobs in a very
predictable manner. These jobs have bounds upon their
worst-case execution requirements and their periods, and
associated deadlines. In this work, we consider sporadic
task systems, i.e., where there are at least T; time units
between two consecutive instants when a sporadic task 7;
generates jobs and the jobs must be executed for at most

* Aspirant du EN.R.S.
TPost-doctorante du FN.R.S.

C; time units and completed by their relative deadline D;.
A particular case of sporadic tasks are the periodic tasks
for which the period is the exact temporal separation be-
tween the arrival of two successive jobs generated by the
task. We shall distinguish between implicit deadline sys-
tems where D; = T;,Vi; constrained deadline systems
where D; < T;,Vi; and arbitrary deadline systems where
there is no constraint between the deadline and the period.

The scheduling algorithm determines which job[s]
should be executed at each time instant. We distinguish
between off-line and on-line schedulers. On-line sched-
ulers construct the schedule during the execution of the
system; while off-line schedulers mimic during the exe-
cution of the system a precomputed schedule (off-line).
Remark that if a task is not active at a given time instant
and the off-line schedule planned to execute that task on
a processor, the latter is simply idled (or used for a non-
critical task).

When there is at least one schedule satisfying all con-
straints of the system, the system is said to be feasible.
More formal definitions of these notions are given in Sec-
tion 2.

Uniprocessor sporadic (and periodic) real-time sys-
tems are well studied since the seminal paper of Liu and
Layland [9] which introduces a model of implicit dead-
line systems. For uniprocessor systems we know that
the worst-case arrival pattern for sporadic tasks corre-
sponds to the one of (synchronous and) periodic tasks
(see, e.g. [11]). Consequently, the results obtained for pe-
riodic tasks apply to sporadic ones as well. Unfortunately,
this is not the case upon multiprocessors due to scheduling
anomalies (see, e.g. [1]).

The literature considering scheduling algorithms and
feasibility tests for uniprocessor scheduling is tremen-
dous. In contrast for multiprocessor parallel machines the
problem of meeting timing constraints is a relatively new
research area.

Related research. Even if the multiprocessor scheduling
of sporadic task systems is a new research field, impor-
tant results have already been obtained. See, e.g., [2] for
a good presentation of these results. All these works con-
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sider models of tasks where job parallelism is forbidden
(i.e., job correspond to a sequential code). This restric-
tion is natural for the uniprocessor scheduling since only
one processor is available at any time instant even if we
deal with parallel algorithms. Nowadays, the use of par-
allel computing is growing (see, e.g., [8]); moreover, par-
allel programs can be easily designed using the Message
Passing Interface (MPI [5, 6]) or the Parallel Virtual Ma-
chine (PVM [12, 4]) paradigms. Even better, sequential
programs can be parallelized using tools like OpenMP
(see [3] for details). Therefore for the multiprocessor case
we should be able to describe jobs that may be executed on
different processors at the same time instant. For instance,
we find such requirements in real-time applications such
as robot arm dynamics [13], where the computation of dy-
namics and the solution of a linear systems are both par-
allelizable and contain real-time constraints.

When a job may be executed on different processors
at the very same instant we say that the job parallelism
is allowed. For a task 7; and m identical processors we

define a m-tuple of real numbers I'; o (Vis- s Yiom)
with the interpretation that a job of 7; that executes for ¢
time units on j processors completes 7; ; X t units of ex-
ecution. Full parallelism, which corresponds to the case
where T'; = (1,2,...,m) is not realistic; moreover, if
full parallelism is allowed the multiprocessor scheduling
problem is equivalent to the uniprocessor one (by consid-
ering, e.g., a processor m times faster).

In this work, we consider work-limited job parallelism
with the following definition:

Definition 1 (work-limited parallelism) The job paral-
lelism is said to be work-limited if and only if for all T';
we have:

7 g
Vi<i<n, Vi<j<j <m, &> 2L

J Yi,j

For example, the m-tuple I'; = (1.0,1.1,1.2,1.3,4.9)
is not a work-limited job parallelism, since v; 5 = 4.9 >
1.3 x § =1.625.

Remark that work-limited parallelism requires that for
each task (say 7;), the quantities -y; ; are distinct (y;,1 <
Vi2 < Yz < v

The work-limited parallelism restriction may at first
seem strong, but it is in fact intuitive: we require that
parallelism cannot be achieved for free, and that even if
adding one processor decreases the time to finish a paral-
lel job, a parallel job on j’ processors will never run j’/j
times as fast as on j processors. Many applications fit in
this model, as the increase of parallelism often requires
more time to synchronize and to exchange data between
the parallel processes.

Few models and results in the literature concern
real-time systems taking into account job parallelism.
Manimaran et al. in [10] consider the non-preemptive
EDF scheduling of periodic tasks, moreover they con-
sider that the degree of parallelism of each task is static.

Meanwhile, their task model and parallelism restriction
(i.e., the sub-linear speedup) is quite similar to our model
and our parallelism restriction (work-limited). Han et al.
in [7] considered the scheduling of a (finite) set of real-
time jobs allowing job parallelism. Their scheduling prob-
lem is quite different than our, moreover they do not pro-
vide a real model to take into account the parallelism. This
manuscript concerns the scheduling of preemptive real-
time sporadic tasks upon multiprocessors which take into
account the job parallelism. From the best of our knowl-
edge there is no such result and this manuscript provides
a model, a first feasibility test and a first exact utilization
bound for such kind of systems. This research. In this
paper we deal with global scheduling' of implicit dead-
line sporadic task systems with work-limited job paral-
lelism upon identical parallel machines, i.e., where all the
processors are identical in the sense that they have the
same computing power. We formally define our model,
and consider the feasibility problem of these systems, tak-
ing into account work-limited job parallelism. For work-
limited job parallelism we prove that the feasibility prob-
lem is linear relatively to the number of tasks for a fixed
number of processors. We provide a scheduling algo-
rithm.

Organization. This paper is organized as follows. In Sec-
tion 2, we introduce our model of computation. In Sec-
tion 3, we present the main result for the feasibility prob-
lem of implicit deadline sporadic task systems with work-
limited job parallelism upon identical parallel machines
when global scheduling is used. We prove that the feasi-
bility problem is linear relatively to the number of tasks
when the number of processors is fixed. In Section 4, we
provide a linear scheduling algorithm which is proved op-
timal. We conclude and we give some hints for future
work in Section 5.

2 Definitions and assumptions

We consider the scheduling of sporadic task systems
on m identical processors {p1, P2, ..., Dm}. A task sys-
tem 7 is composed by n sporadic tasks 71, 7o, ..., T,
each task is characterized by a period (and implicit dead-
line) 7;, a worst-case execution time C; and a m-tuple
i = (7i1,%i,2,- - - » Vi,m) to describe the job parallelism.

We assume that ; o EC) (Vi) in the following. A job
of a task can be scheduled at the very same instant on
different processors. In order to define the degree of par-
allelization of each task 7; we define the execution ratios
Vi, V3 € {1,2,...,m} associated to each task-index of
processor pair. A job that executes for ¢ time units on j
processors completes 7; ; X t units of execution. In this
paper we consider work-limited job parallelism as given
by Definition 1.

We will use the notation 7; < (C;,T},T), Vi with
I, = (7i,177i,27 .. 7'71’,771) with Vil < Vi2 < < Yiome

!Job migration and preemption are allowed.
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Such a sporadic task generates an infinite sequence of jobs
with T; being a lower bound on the separation between
two consecutive arrivals, having a worst-case execution

requirement of C; units, and an implicit relative hard

. e f o
deadline T;. We denote the utilization of 7; by u; def %

In our model, the period and the worst-case execution time
are integers.

A task system 7 is said to be feasible upon a multipro-

cessor platform if under all possible scenarios of arrivals
there exists at least one schedule in which all tasks meet
their deadlines.
Minimal required number of processors. Notice that a
task 7; requires more than k& processors simultaneously if
u; > ,;k; we denote by k; the largest such k (meaning
that k; is the smallest number such that the task system
{7;} is feasible on k; 4+ 1 processors):

k, def { 0, ifu; <1
| max {k| vk <u;}, otherwise.
Notice that if k; = m for any ¢, the task system is
infeasible as at least one task requires m + 1 processors.
For example, let us consider the task system 7 =
{71, 72} to be scheduled on three processors. We have
1 = (6,4,T;) with Ty = (1.0,1.5,2.0) and 7o =
(3,4,T3) with 'y = (1.0,1.2,1.3). Notice that the sys-
tem is infeasible if the job parallelism is not allowed since
71 will never meet its deadline unless it is scheduled on
at least two processors. There is a feasible schedule if the
task 77 is scheduled on two processors and 75 on a third
one.

Definition 2 (schedule o) For any task system T =
{T1,..., ™} and any set of m processors {p1,...,Dm}
we define the schedule o(t) of system T at instant
t as o Ry — {0,1,...,n}™ where o(t) ef
(o1(t),02(t), ... ,om(t)) with

0, ifthere is no task scheduled on p;
at instant t;
1, If 7; is scheduled on p; at instant t

foralll <5 <m.

Definition 3 (canonical schedule) For any task system
7 = {m,...,7n} and any set of m processors
{p1,...,Pm}, a schedule o is canonical if and only if the
following equations are satisfied:

Vj e [l,m], Vt,t' € [0,1),t <t :0;(t") <o;(t)

Vi, i € l,m],j <j, Vet €[0,1):0;() < ojp(t)

and the schedule o contains a pattern that is repeated ev-
ery unit of time, i.e.,

Vte Ry, VI<j<m:oi(t) =0;(t+1).

Without loss of generality for the feasibility problem,
we consider a feasibility interval of length 1. Notice that
the following results can be generalized to consider any
interval of length ¢, as long as ¢ divides entirely the period
of every task.

3 Our feasibility problem

In this section we prove that if a task system 7 is fea-
sible, then there exists a canonical schedule in which all
tasks meet their deadlines. We give an algorithm which,
given any task system, constructs a canonical schedule or
answers that no schedule exists. The algorithm runs in
O(n) time with n the number of tasks in the system.

We start with a generic necessary condition for schedu-
lability using work-limited parallelism:

Theorem 1 In the work-limited parallelism model and
using an off-line scheduling algorithm, a necessary con-
dition for a sporadic task system T to be feasible on m
processors is given by:

Us — Vi k;

n
3 (k + ) <m
Yiki+1 — Vi k;

=1

Proof. As 7 is feasible on m processors, there exists a
schedule o meeting every deadline. We consider any time
. . def

interval [t,t + P) with P = lem{T}, T, ..., T} }.

Let a; ; denote the duration where jobs of a task 7; are
assigned to j processors on the interval [t, ¢+ P) using the
schedule o. Z;"Zl J - a;; gives the total processor use of
the task 7; on the interval (total number of time units for
which a processor has been assigned to 7;). As we can use
at most m processors concurrently, we know that

zn:zm:jamng

i=1 j=1

otherwise the jobs are assigned to more than m proces-
sors on the interval. If on some interval of length /¢, 7; is
assigned to j processors, we can achieve the same quan-
tity of work on j' > j processors on an interval of length
/ % In the first case, the processor use of the task ¢ is

2,3
<) Vig
-1

£ j, while in the second case it is £ e By the restric-

tion that we enforced on the tuple I'; ’(see Definition 1),
we have

g

I ULEREES @"—%’J’jf

Yi,j Yi,j
> (j

Let o’ be a slightly modified schedule compared to o,
where Vi # 4',Vj, a} ; = a; ;. For the task 7y, it is sched-
uled on 5’ processors instead of j < j’ in o for some
interval of length /, i.e.
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! = Qi —
ai/J — a1/7] E

¢ Vi,g

/
Qs ir = Q4 1 + =
Vi,

)

Then, for that task 7;,

Z] a/ >Z] Qi 4

Jj=1

This proves that increasing the parallelism yields an in-
creased sum; as we want to derive a necessary condition,
we schedule the task on the minimal number of processors
required. A lower bound on the sum is then given by

Ui — Vi k; P
Yiki+1 — Vi,k;

ki P+

which corresponds to scheduling the task on k; + 1 pro-
cessor for a minimal amount of time, and on k; processors
for the rest of the interval. Then

m
Zj'ai,jzk‘i'P-i-M'P
=1 Viki+1 — VYik;

and thus

n

ZZ]"CLZ‘J =~ mP

i=1 j=1

N

Z(k pyp Tk ~P> < m-P
i—1 Yiki+1 — Vik;

n Wi — i

Z (kt + i Vi ks ) S m

=1 Viki+1 — Visks
which is the claim of our theorem. |

Theorem 2 Given any feasible task system T, there exists
a canonical schedule o in which all tasks meet their dead-
lines.

Proof. The proof consists of three parts: we first give an
algorithm which constructs a schedule o for 7, then we
prove that o is canonical, and we finish by showing that
the tasks meet their deadline if 7 is feasible.

The algorithm works as follows: we consider sequen-
tially every task 7;, with7 = n,n—1,...,1 and define the
schedule for these tasks in the time interval [0, 1), which
is then repeated.

We calculate the duration (time interval) for which a
task 7; uses k; + 1 processors. If we denote by ¢; the
duration that the task 7; spends on k; + 1 processors, then
we obtain the following equation:

CiYiksr1 + (1= 0;) Yik, = us.

Therefore we assign a task 7; to k; + 1 processors for a

duration of
Ui — Vi,k;
Yiki+1 — Vik;

and to k; processors for the remainder of the interval,
which ensures that the task satisfies its deadline, since
each job generated by the sporadic task 7; which arrives
at time ¢ receives in the time interval [¢,¢ 4+ T;) exactly

T; x u; = C; time units.
The task 7, 1is assigned to the processors
(Pms- s Pm—k,) (see Figure 1). If up # Yok, +1,

another task can be scheduled at the end of the interval
on the processor p,,—x,,, as T, does not require k, + 1
processors on the whole interval.

Tn—1

Tn

| | |
I I I
0 ln b +ln—1 1

\

Figure 1. Schedule obtained after schedul-
ing the task 7,

We continue to assign greedily every task 7;, by first
considering the processors with highest number.

The schedule produced by the above algorithm is
canonical as it respects the three constraints of the defi-
nition:

e on every processor j we assign tasks by decreasing

index, thus ¢;(¢) is monotone and decreasing;

e for all ¢ < 4/, if 7,/ is scheduled on a processor Dt
then 7; is assigned to a processor p; with j < j';

o the schedule is repeated every unit of time.

The last step is to prove that if our algorithm fails to
construct a schedule, i.e., if at some point we run out of
processors while there are still tasks to assign, then the
system is infeasible.

In the case of a canonical schedule, \; corresponds to:

Ui — Vi k;
Yiki+1 — Vik;

So for instance, if a task 7; is assigned to \; = 2.75 pro-
cessors, it means that it is scheduled on two processors
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for 0.25 time unit in any time interval of length 1, and on

three processors for 0.75 time unit in the same interval.
If our algorithm fails, it means that Y, \; > m,

which by Theorem 1 implies that the system is infeasible.

Corollary 3 In the work-limited parallelism model and
using an off-line scheduling algorithm, a necessary and
sufficient condition for a sporadic task system T to be fea-
sible on m processors is given by:

n

Z(zH e L
Yiki+1 —

i1 Vi, ki

Please notice that Corollary 3 can be seen as feasi-
bility utilization bound and in particular a generaliza-
tion of the bound for uniprocessor (see [9]) where a spo-
radic and implicit deadline task system is feasible if and
only if > ;u; < 1. Like the EDF optimality for
sporadic implicit deadline tasks is based on the fact that
Zzl 1 u; < 1is a sufficient condition, we prove the op-
timality of the canonical schedule based on the fact that

Dy (kl + $) < m is a sufficient condition.
= Yiki+1 7Yk

Corollary 4 There exists an algorithm which, given any
task system, constructs a canonical schedule or answers
that no schedule exists in O(n) time.

Proof. We know that the algorithm exists as it was used
in the proof of Theorem 2. For every task, we have to
compute the number of processors required (in O(1) time,
as the number of processors m is fixed), and for every
corresponding processor j, define o (t) appropriately. In
total, O(n) time is required. |

4 Scheduling algorithm

In this section we give a detailed description of the
scheduling algorithm provided in the proof of Theorem 2.
Based on the results of Section 3 this algorithm is optimal
and runs in O(n) time (see Corollary 4).

For example for the task system 7 = {71, 72} given
before we have k; = 1 and k2 = 0. By using Algorithm
1 we obtain:

os(t) = 2,Vt € [0,0.75)
os(t) = 1,Vt € [0.75,1)
oo(t) =1,Vt € [0,1)
o1(t) = 1,Vt €10,0.75)
o1(t) = 0,Yt € [0.75,1).

Notice that in Algorithm 1, we do not consider the op-
timization relatively to the number of preemptions or mi-
grations and the scheduling algorithm does not provide
satisfactory schedules for problems for which this is a is-
sue. Nevertheless, the algorithm can decide the feasibility
of every task system.

Algorithm 1 Scheduling algorithm of implicit deadline spo-
radic task system 7 of n tasks on m processors with work-
limited job parallelism

Require: The task system 7 and the number of processors m
Ensure: A canonical schedule of 7 or a certificate that the sys-
tem is infeasible

I: letj =m

2: letto =0

3: letop(t) =0,VE €]0,1),V1<p<m
4: for : = n downto 1 do

5. ifu; < ;1 then

6: letk; =0

7: else

8: let k; = maxje {k | vie < ui}
9: end if

10:  for r = 1 upto k; do

11: let o;(t) = i, Vt € [to, 1)

12: let O’j_l(t) =1,Vt € [0, to)

13: letj=5—1

14: end for

. _ ui77i,ki
15: let tmp = to + P

16:  if tmp > 1 then

17: let o;(t) = 4,Vt € [to, 1)
18: letj=35—-1

19: letto =0

20: lettmp =tmp — 1

21:  endif

22 leto;(t) = 1,Vt € [to, tmp)
23:  letto =tmp
24:  if j < 0 then

25: return Infeasible
26: end if
27: end for
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5 Discussions

Job parallelism vs. task parallelism. In this manuscript
we study multiprocessor systems where job parallelism is
allowed. We would like to distinguish between two kinds
of parallelism, but first the definitions: task parallelism
allows each task to be executed on several processors at
the same time, while job parallelism allows each job to
be executed on several processors at the same time. If we
consider constrained (or implicit) deadline systems task
parallelism is not possible. For arbitrary deadline sys-
tems, where several jobs of the same task can be active
at the same time, the distinction makes sense. Task par-
allelism allows the various active jobs of the same task to
be executed on a different (but unique) processor while
job parallelism allows each job to be executed on several
processors at the same time.

Optimality and future work. In this paper we study the
feasibility problem of implicit deadline sporadic task sys-
tems with work-limited job parallelism upon identical par-
allel machines when global scheduling is used. We prove
that our problem has a time-complexity that is linear rel-
ative to the number of tasks. We provide an optimal
scheduling algorithm that runs in O(n) time and we give
an exact feasibility utilization bound.

Our algorithm is optimal in terms of the number of pro-
cessors used. Itis left open whether there exists an optimal
algorithm in terms of the number of preemptions and mi-
grations. As a first step, we used an interval of length 1
to study the feasibility problem. If we generalize our al-
gorithm to work on an interval of length equal to the gcd
of the periods of every task, we decrease the preemptions
and migrations. We do not know, however, if the result is
optimal.

The definitions of work-limited job parallelism was
given here for identical processors, one should investigate
an extension of this definition to the uniform processor
case.
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Abstract

This paper deals with applying state-of-the art schedu-
lability analysis techniquesto OSEK/VDX-based applica-
tions for real-time embedded systems. To do so, we ex-
plore two complementary problems: (i) extending state-
of-the-art resultsin schedul ability analysisin order to take
into account OSEK/VDX specific constructs; (ii) defining
design rules that must be followed in order to build appli-
cations that comply with the hypothesis made during the
analysis. Themainwork reported here dealswith asimple
periodic task model. An extension to software architec-
tureswith precedence constraints, which will be discussed
in a future paper, is also briefly introduced.

1. Introduction

This paper deals with the design and schedulability
analysis of monoprocessor real-time embedded applica-
tions executed on top of an OSEK/VDX-compliant real-
time kernel. An OSEK/VDX application consists of a set
of concurrent tasks, which compete for the processor. An
OSEK/VDX application can be as simple as a set of in-
dependent periodic tasks, but it can be much more com-
plicated. Nevertheless, as long as we deal with real-time
systems, one of the key requirements to meet at the design
step is the verification of the timing constraints. In order
to check this, the designer usually performs a schedula-
bility analysis of the task set, based on a technique that
makes hypothesis on the application task model. Thus, in
order to have the possibility to use schedulability analysis
techniques, the designer must master the complexity of the
application that he creates, according to the used real-time
kernel services, in order to comply with the analysis hy-
pothesis. This is rather difficult because of the vast num-
ber of services and the vast number of possible application
models.

In this context, our main objective is to provide:

e schedulability analysis techniques that take into ac-
count the specificities of the OSEK/VDX real-time
kernel;

e design rules that must be followed in order to comply
with the hypothesis made by the proposed schedula-
bility analysis techniques.

Notice that our goal is not to develop new schedulabil-
ity analysis techniques. Hence, to fulfill the first item, we
worked on adapting state-of-the art results to OSEK/VDX
applications. The second item can be thought of as an at-
tempt to define design guidelines for OSEK/VDX-based
applications. Another objective, not presented here, is
to build a tool that will complete our OSEK/VDX open
source implementation [1, 7].

The paper is organised as follows. First of all, the basic
features of OSEK/VDX are presented. Then, we intro-
duce the independent periodic task model together with
an analysis technique and some design guidelines. Next,
we consider some possible extensions of this work, espe-
cially the case of software architectures including prece-
dence constraints, before to conclude.

2. Summary of the OSEK/VDX RTOS speci-
fication

OSEK/VDX  ("Offene  Systeme und deren
Schnittstellen fur die Elektronik im Kraftfahrzeug/\Vehicle
Distributed eXecutive”) [11] aims at being an industry
standard for RTOS used in distributed control units in
vehicles. The OSEK group aims at standardising the
interfaces of the operating system to ease application
software portability, interoperability, re-use and the
supply of software packages independently of hardware
units. Various parts are proposed for the standard: OS
(the basic services of the real-time kernel), COM (the
communication services), NM (the Network Management
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services) and OIL! (OSEK Implementation Language).
The presentation below concerns only the kernel of
the operating system (OS 2.2.3, Feb. 2005). For more
information refer to [11].

All the objects of an OSEK/VDX application are static:
they are created before the start-up of the application and
are never destroyed (no dynamic allocation).

Task management. OSEK/VDX specification pro-
vides two different task types. On one side, a basic task is
a sequential code without system call being able to block
the task. Synchronisation points are only at the beginning
and the end of the task. On the other side, an extended task
is composed of one or several blocks separated by invoca-
tions of OS services, which may result in a waiting state.
According to the conformance classes of OSEK/VDX OS
(see below), it is possible to authorise the record of acti-
vation requests of a task while it is already active. Every
request is then recorded (no multiple instances) and taken
into account when the task ends. The basic services of-
fered for task management are: ActivateTask (activates the
target task), TerminateTask (mandatory auto-termination
of the current task) and ChainTask (atomic combination
of ActivateTask and TerminateTask).

Conformance classes. The conformance classes de-
fine four versions of the real-time kernel, in order to adapt
it to different requirements. They are determined by three
main attributes and some implementation requirements:
the type of task (basic or extended), the possibility of
recording multiple activation requests for a basic task and
finally the number of tasks per priority level. The four
conformance classes are BCC1, BCC2, ECC1 and ECC2.
They are summarized in table 1.

| Task type [ Activ. queuing | Tasks / priority

BCC1 Basic No 1
BCC2 Yes (Basic) Many
ECC1 | Basic + No 1
ECC2 | Extended Yes (Basic) Many
Table 1. OSEK/VDX OS conformance

classes summary

Scheduling policy. For scheduling, static priorities are
assigned to tasks and the "Highest Priority First” policy
is used, with FIFO as a second criterion for BCC2 and
ECC2 applications where many tasks share the same pri-
ority level. For an application, the scheduling can be: full
non preemptive, full preemptive or mixed preemptive. In
this last case, every task has its appropriate mode (preemp-
tive or non preemptive, specified in the OIL file). There
exists also a notion of group, for tasks that share a com-
mon internal resource. An internal resource is automati-
cally taken by a task of the group when it gets the CPU

LAn OIL file describes at a low-level the software architecture of an
OSEK/VDX application in order to automatically generate kernel con-
figuration files. More details can be found in [10].

and released when it terminates, waits for an event or in-
vokes the Schedule service. Usual preemption rules are
used for the tasks which are not in the group, according
to their priority level. Inside the group the tasks can’t pre-
empt among themselves.

Task synchronisation. Synchronisation (extended
tasks only) is based on the private event mechanism: only
the owner task can explicitly wait for the occurrence of
one or more of its events (logical OR). The setting of oc-
currences can be made by tasks (basic or extended) or
ISRs (Interrupt Service Routine). There is no timeout
associated to the WaitEvent service, but using the alarm
concept (see below) it is possible to build watchdogs to
monitor the timing behaviour.

Resources management. OSEK/VDX coordinates the
concurrent access to shared resources with the OSEK-
PCP protocol (Priority Ceiling Protocol). OSEK-PCP pro-
tocol is more simple than original PCP [16, 9]. It is also
known as ”Immediate Priority Ceiling Protocol” (IPCP).
When a task gets a resource, its priority is immediately
raised to the resource priority, so that other tasks that share
the same resource cannot get the CPU. The resource shar-
ing is allowed between tasks and ISRs or between ISRs.
For that purpose, a virtual priority is assigned to every in-
terrupt. Two services allow to control access to resources:
GetResource and ReleaseResource. A predefined system
resource (Res_Scheduler) allows a task to lock the proces-
sor and execute some code in non preemptive scheduling
mode.

Alarms and counters. These objects allow mainly
the processing of recurring phenomena: timer ticks, sig-
nals from mechanical organs of a car engine (camshatft,
crankshaft). They constitute complements to the event
mechanism. They allow the management of periodic tasks
and watchdog timers for the monitoring of various situa-
tions (wait for an event occurrence, send/receive a mes-
sage). A Counter is an object intended for the counting of
"ticks” from a source. An Alarmallows to link a Counter
and a Task. An Alarmexpires when the value of its associ-
ated counter reaches a predefined value. When an Alarm
expires, an action is taken: either the activation of the as-
sociated task, the setting of an event of the task or the
execution of a routine. An Alarm can be defined to be
single-shot or cyclic, the corresponding Counter value be-
ing absolute or relative to the current Counter value.

Communication. The communication services of
OSEK/VDX are built around the Message object. Two
types of messages are offered: those using the black-
board model (Unqueued, single place buffer); those using
a FIFO (Queued). The communication services are the
same whatever the communication is local or distant. For
more information refer to [11].

In this paper, we focus on the BCC1 and BCC2 confor-
mance classes, thus ignoring the event management ser-
vices. We also focus on monoprocessor systems, thus ig-
noring distributed communication services. Moreover, we
investigate the case of software architectures where com-
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municating tasks follow the blackboard pattern, so that
data flows can easily be implemented through shared vari-
ables? (and, when needed, resources). Hence, we ignore
local communication services.

3. The periodic task model

In this section, we consider a subset of OSEK/VDX
task configurations. It combines most of the specificities
of the BCC1 and BCC2 classes, while giving rise to acces-
sible schedulability analyses. We list its features: all tasks
are periodic and non-concrete, i.e. the date of the first
activation of a task is unknown; some tasks can have the
same priority; the scheduler is mixed preemptive; there
are no precedence between tasks, but some tasks can share
resources with the IPCP protocol as well as internal re-
sources through groups.

First , we propose an equivalent model for the schedu-
lability analysis of such tasks. Then, we discuss about the
implementation of such tasks so as to ensure consistency
between the model and the OSEK/VDX application.

3.1. Notations and definitions

We want to point out that with the OSEK/VDX con-
figurations we are looking at, the scheduling behaviour is
not a "strictly fixed priority” one in the sense that the pri-
ority of a task may not remain fixed on-line. The priorities
that are assigned to tasks when they are declared are used
by the scheduler to select the next running task. How-
ever, because of shared resources and mixed preemptive
scheduling, the priority of a task can increase during its
execution. Such a behaviour can be captured with the no-
tion of preemption threshold in a quite generic way. The
preemption threshold was introduced in [18], and is the
priority level that the task has during its execution, i.e. the
priority considered by the scheduler for the task after its
first start event, and before its terminate event. The notion
of preemption threshold that we use hereafter is brought
at the code section level in tasks.

3.1.1 Model

LetT' = {r;}, 1 < i < n be the set of the n tasks of
the application under analysis. Each task 7; is a tuple <
Di, di, T, €, > Where: p; is its period; d; is its relative
deadline (we allow either d; < p;, or d; > p;); m; its user-
declared priority level; and e; = {< e;;,7;; >} is a set
of execution times with their corresponding preemption
threshold. A 2-uplet < e;;,~;; > describes a code section
of task 7; of which e;; is the worst-case execution time
(without preemption) and ~;; the priority to be given to 7;
while executing this code (see Fig. 1).

Here, for each task, e;q is its worst-case execution time
and ~;o is deduced from its characteristics: for a non-

2To our knowledge, all OSEK/VDX implementations use a flat mem-
ory model. Hence, there is no need for system services dedicated to
shared variable handling

Di

A A
critical critical
section section
V<, > <e€ v >
N
< €40, 7i0 >

Figure 1. Task model

preemptive task, ~v;o is considered as infinite (or the high-
est priority level); for a task belonging to a task group, 7.0
is equal to the priority of the group, i.e. a priority higher
than all priorities of the tasks in the group; and for other
tasks Yio = T

Each other 2-uplet < e;;,v;; >, 1 < 4, corresponds to
a critical section in 75, with e;; the time needed to execute
the code between the lock and unlock operations, and - ;;
its ceiling priority, i.e., a priority higher than the highest
priority of the tasks that share the same resource. If the
resource is the processor, the ceiling priority is considered
as infinite (or the highest priority level).

3.1.2 Definitions

The schedulability analysis presented in this paper is
based on the computation of the worst-case response time
of each task. If the worst-case response time of a task
is smaller than its deadline, then the task is schedula-
ble. If all the tasks in the system are schedulable, then
the system is schedulable too. The response time com-
putation is based on the well-known busy period analy-
sis [2, 5, 8, 18]; it requires to determine the length of the
busy period which starts at a critical instant.

A m-busy period is a time interval during which the pro-
cessor is continuously processing at priority 7 or higher.
Remark that in our model, a non preemptive task is al-
ways executed with a priority higher than 7 (cf. its v;0).
An instance of 7; is necessarily executed during a 7;-busy
period. Furthermore, more than one instance of 7; can be
executed during the same ;-busy period. For a m;-busy
period, we define a;(q) the date of the ¢th activation of 7;
in the busy period, s;(q) its start time, and f;(q) its finish
time. By definition, the response time of the gth instance
of ; in a 7;-busy period is:

def

ri(q) = fi(q) —ai(q)

Then, the worst-case response time of 7; is defined by:

def
R, = max 7
' vm—busy—period,\fq21{ Z(q>}
The critical instant for a task 7; describes a m;-busy
period where 7; meets its worst-case response time. Thus,
to compute the worst-case response time of ;, we need to

133



know its critical instant and to compute each f;(q) in this
m;-busy period.

We point out that the computation of the worst-case re-
sponse time developed in the next section is an exact one
in the sense that the critical instant that is defined there de-
scribes a worst-case scenario for the task that may occur
actually; and that the given expressions are not approxi-
mate ones.

3.2. Schedulability analysis

In [18], the authors consider the same model as us, but
without shared resources and identical priorities. The crit-
ical instant is described as an instant (time 0) when 7; is
activated together with an instance of each higher priority
task, and the task that contributes to the maximum block-
ing time has just started executing prior to time 0. They
prove that in computing the blocking time for a task 7,
one needs to consider blocking from only one lower prior-
ity task with a preemption threshold higher than or equal
to ;. Such a critical instant specification can easily be ex-
tended in order to take into account shared resources and
identical priorities.

With regard to shared resources, even if it is slightly
different in the implementation than the original priority
ceiling protocol (PCP), IPCP exhibits the same worst-case
performance (from a scheduling view point) [3]. Thus the
property of PCP shown by Sha et al. in [16] is still true
and the corresponding worst-case blocking time of 7; is
reduced to at most the duration of at most one critical sec-
tion of a lower priority task that is using a resource whose
ceiling priority is higher than or equal to ;. For the uni-
fying model we consider, it is easy to show that a task 7;
can be blocked by at most one critical section of a lower
priority task with a preemption threshold higher than or
equal to ;.

As for tasks with identical priorities, in [2] the authors
prove that the critical instant for tasks with the same pri-
ority occurs when all tasks are activated simultaneously.

Thus, by combining these various properties, the criti-
cal instant can be defined for the specific model studied in
this section. It occurs when (1) 7; is activated (time 0) to-
gether with (2) an instance of each higher or equal priority
task, and (3) the longest code section with a higher pre-
emption threshold but belonging to a lower priority task
starts at time 0.

3.2.1 Computing Blocking Time

A task 7; can be blocked by a task ; with a lower priority,
if a code section of 7; with a higher or equal preemption
threshold than 7; exists. Thus, the longest blocking time
of 7; is [16]:

B; = max {ejr}

V(5.k) i <mi<vjk

3.2.2 Computing the gth start time

The ¢th instance of a task 7; in a m;-busy period can
start its execution at the latest when: the blocking time
is elapsed; and all the previous instances of 7; in the busy
period have completed; and all higher priority tasks acti-
vated before s;(q) have completed; and all the equal pri-
ority tasks activated before a,(q) have completed because
of the FIFO scheduling for tasks with the same priority.

Thus, the start time of the ¢th instance of r; is obtained
by computing the fix-point of [18, 2]:

si(q) = Bi+(g—1)epo

- 2 (452

Vi, mi>m;

e

Vj?fi,ﬂ‘j:ﬂ'i pj

3.2.3 Computing the gth finish time

Between the start time of the gth instance of 7; and its
finish time, the scheduler can select for running only a
task with a priority higher than ~;o. Thus, the finish time
is computed by solving the fix-point of [18, 2]:

(- 152

3.2.4 Computing the worst-case response time

filg) = si(q) +eio

>

V3,75 >0

To determine the worst-case response time of 7; it is nec-
essary to check the finish time for each instance of 7; in
the busy period started at the critical instant. The length

of this m;-busy period is:
H
Zile.
Pj 70

The number of instances of 7; in the busy period is
N, =[L;/pi], and so:

R; = qénuf?ﬁi]{fi(Q) —(q—1)pi}

Li=B;+
Vi, mi>mi

3.3. Implementation

The schedulability analysis technique presented above
extends state-of-the art results in order to integrate some
specific constructs of the OSEK/VDX kernel. Neverthe-
less, it relies on a set of hypothesis that must be verified
by the implementation. We expose in this section a set of
rules that must be followed in order to achieve this goal.

The model of computation of the periodic task model
requires that:

e the first activation of a task is free. Thus it can be
triggered by an external event (R1) or at a specified
date (R1’);
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o the following activations are periodic (R2), or spo-
radic or sporadically periodic (R2’);

o the body of a task does not call a service that could
cause a preemption except for resource unlocking
(note that resource locking is not a preemption point
in OSEK/VDX), neither does it contains suspension
points (R3);

o the body of a task implements a deterministic algo-
rithm, and a WCET can be computed (R4);

The formalization of the model in the previous sec-
tion expresses explicitly requirements R1 and R1'. It also
states that the tasks of the system are periodic ones (R2).
However, as the analysis is based on a worst-case scenario,
the analysis is also valid for sporadic or sporadically pe-
riodic tasks (these activation patterns produce the same
worst-case scenario as the periodic pattern). Hence, we
have requirement R2'. Lastly, requirements R3 and R4
are implicit: they translate the model of computation tra-
ditionally used in the real-time scheduling theory.

Let us consider requirements R1 and R2. In order to
program recurring tasks, OSEK/VDX provides the Alarm
object. As stated in section2, an Alarm is used to link
a Counter and a Task. When the Counter reaches a spe-
cific value, the Alarm expires and triggers an action on
the target Task: activation, or event signaling (not pos-
sible for BCCx applications). Thus, when the triggering
event of the first activation of r; is raised, the serving ISR
must program the Alarm so that it expires every p;. The
ISR also performs the first activation of the task, subse-
quent activations being made by the kernel, according to
the Alarm configuration given in the OIL application de-
scription file. As shown in fig. 2, the SetRelAlarm service
must be used. Its parameters are (in this order): reference
to the target Alarm, relative date of first expiration, and cy-
cle time (both expressed in Counter ticks). The figure also
shows the OIL code used to link the Alarm, the Counter
(here SYSTIMER) and the Task.

// C code

ISR (TriggerFunc) {
ActivateTask (Ti) ;
SetRelAlarm (AwakeTi, Pi, Pi) ;

}

// OIL code
ALARM AwakeTi {
COUNTER=SYSTIMER;
ACTION=ACTIVATETASK{
TASK=Ti;
}i

AUTOSTART=FALSE;

Figure 2. C and OIL codes to ensure require-
ments R1 and R2

If we consider requirement R1’ instead of R1, we
can use the AUTOSTART attribute of the Alarm object to

achieve the desired behavior if the date of the first acti-
vation is not 0 (see figure3). Indeed, according to the
OSEK/VDX standard, setting parameter 01 (offset of task
7;) to 0 would produce an implementation specific be-
havior. Hence, in this particular case, we must use the
AUTOSTART attribute of the Task object for the first ac-
tivation, and the AUTOSTART attribute of the Alarm ob-
ject for subsequent ones, where the ALARMT IME attribute
(first expiry date) is set to pi (where P1i is p;). The cor-
responding OIL code is given figure 4.

ALARM AwakeTi {
COUNTER=SYSTIMER;
ACTION=ACTIVATETASK{

TASK=Ti;
}i

AUTOSTART:TRUE{
ALARMTIME=01i;
CYCLETIME=Pi;
APPMODE=DefaultMode;

}i

Figure 3. OIL code to ensure requirements
R1"and R2 when 0i# 0.

TASK Ti {
AUTOSTART:TRUE{
APPMODE=DefaultMode;

}i
};...

ALARM AwakeTi {
COUNTER=SYSTIMER;
ACTION=ACTIVATETASK{

TASK=Ti;
}i

AUTOSTART=TRUE {
ALARMTIME=Pi;
CYCLETIME=Pi;
APPMODE=DefaultMode;

Figure 4. OIL code to ensure requirements
R1" and R2 when 0i= 0.

As OSEK/VDX targets small real-time embedded sys-
tems, it does not enforce implementations to provide more
than one Alarm object. Hence, one can face the situation
where the number of Alarmobjects is lower than the num-
ber of periodic tasks. Obviously, our previous approach
cannot be used anymore. To solve this problem, one so-
lution consists in using a periodic task, 7;me, Which will
in turn activates the other tasks of the system. Of course,
Trime Must be included in the analysed task set. In or-
der to achieve all the activations, its period must equal
the greatest common divider of the other periodic tasks
(ptime = ged{pi}1<i<n). For some configurations, this
can lead to a high cpu utilization. However, this is a re-
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current problem of tick-driven schedulers and it is out of
the scope of this paper. So as to be able to preempt any
running task and activate a task of potentially greater pri-
ority, 7¢me Must be granted the highest priority among
the tasks: Vr; € I',m; < mume. These conditions are
not sufficient: some tasks can be non preemptive (and all
tasks can become non preemptive for some time by taking
the Res_Scheduler resource). A problem may arise when
the duration of such a non preemptive section is greater or
equal to pgime: One or more of 74, activation requests
might be lost. To avoid this situation, m ., the number
of activation requests memorized for 7;,,. must fulfill the

following constraint: my;m,e > [Rt—ﬂw If miime > 1,

Ptime

we must use the BCC2 conformance class. Let us under-
line that this selection of the number of memorized ac-
tivation requests must also be considered when the worst
case execution time of a task is greater than its period (and
lower than its deadline). Indeed, schedulability analysis
techniques always suppose that all activation requests are
memorized.

Let us consider now requirement R2": after the first ac-
tivation, the tasks are sporadic or sporadically periodic.
A sporadic task is a real-time event-triggered task (for
instance supervision of functional modes of the applica-
tion, emergency handling, etc.). In order to allow analysis
of sporadic behavior, a minimal inter-arrival time, called
pseudo-period, must be given. In the worst case, a spo-
radic task has a periodic behaviour, its period being equals
to its pseudo-period. A sporadically periodic task is a real-
time event triggered functionality: once triggered, the task
that implements the functionality is periodic. Depending
on the functional mode, the functionality can be stopped.
Hence, the task is not dispatched anymore until the func-
tionality is one more time requested. In order to allow
analysis of sporadically periodic behavior, a delay must
be respected between a deactivation and the subsequent
activation of the functionality. Hence, in the worst case, a
sporadically periodic task has a periodic behaviour, its pe-
riod being equals to the minimum between its period and
its deactivation-activation delay. As worst-case response
time computation techniques consider worst cases, spo-
radic tasks and sporadically periodic tasks can be consid-
ered as periodic tasks and analysis techniques do not need
to be extended.

On the implementation side, OSEK/VDX does not of-
fer any native support to ensure that the effective activa-
tion law of a sporadic task (resp. sporadically periodic)
will not violate the pseudo-period (resp. deactivation-
activation delay) hypothesis. Hence, while there exists
no mechanism to solve this problem, it is not safe to use
sporadic or sporadically periodic tasks in an OSEK/VDX
application. In other words, requirement R2’ cannot be
fulfilled. However, it is out of the scope of this paper
to discuss the implementation of such robustness mech-
anisms.

Let us consider now requirement R3. To express im-
plementation constraints, we cut the body of tasks in a

sequence of a Computation part and a Finalization part.
In its Computation part, the task is not allowed to use
the following services: ActivateTask, TerminateTask and
ChainTask. Moreover, if it performs an 1/0O that has a non
negligible response time (more than just reading/writing a
value from/into a dedicated register), it enters a busy-wait,
which is taken into account in its WCET. Of course, if the
I/0 response time is too costly, another solution should be
used (for instance delegating the interaction with the de-
vice to an ISR, or considering to use an other device). For
this model, the Finalization part consists in a call to the
TerminateTask service.

Lastly, requirement R4 is common to all real-time ap-
plications and has been largely studied by the scientific
community. It is out of the scope of our current work. As
an entry point, the interested reader can refer to [13].

4. Adding precedence relations

In this section, the software architecture (task model)
of section 3 is supplemented with precedence relations
modelled by precedence graphs between tasks. Of course,
we consider here precedence relations without cycle. A
root task of a graph is still strictly periodic and non-
concrete, whereas a non-root task is activated upon the
completion of its predecessor task(s), ie., a task can have
multiple predecessors in the same graph, see Fig. 5(a).

4.1. Transformation of precedence graph into prece-
dence chain

As we will justify in paragraph4.3, in order to imple-
ment software architectures specified as a set of periodic
precedence graphs, while meeting the hypothesis of anal-
ysis algorithms, we must transform each periodic prece-
dence graph into a periodic precedence chain, i.e., in a
chain, a task has at most one successor and at most one
predecessor, see Fig. 5(b).

(a) Initial precedence graph

K
2 = = = = =

L=
(b) Associated precedence chain

Figure 5. Transformation of a precedence
graph into a precedence chain

In the case where tasks cannot share a same priority
level, Richard proves in [15] that the transformation from
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a set of graphs to a set of chains preserves the execu-
tion sequences. We simply adapt his transformation to
the OSEK/VDX case. Mathematically, the chain has to
be a linear extension of the partial order defined by the
precedence graph. Moreover, it must exhibit the same be-
haviour with regards to task activation and termination in-
stants so as to be a correct implementation of the specifi-
cation. It means especially that when two tasks of a graph
are unrelated, then the task with the higher priority must
be inserted in the chain before the task with the lower pri-
ority (see Fig. 5). As these two criteria are not sufficient to
define a total order (remember that tasks can share a same
priority level), at least an other criterion must be consid-
ered, for instance the alphabetical order — as the specifica-
tion is not deterministic, any implementation is correct —
(see tasks 74 and 75 in Fig. 5).

As a consequence, in the following sections, we only
consider precedence chains.

4.2. Schedulability Analysis

Due to space limitation, we cannot expand the schedu-
lability analysis of our model. For a detailed presentation
of the computation algorithms, we refer the reader to [6].
Contrary to the section 3, the computation for precedence
chain gives an upper bound of the worst-case response
time.

The computation of the worst-case response time for
precedence chains is based on [5, 15]. However, be-
cause of some specificities of OSEK/VDX - e.g., mixed
scheduling, task groups, same priority level — some major
modifications have to be done.

4.3. Implementation

In order to implement software architectures described
in the form of a set of periodic precedence graphs and to
preserve the meanings of analysis results for the effective
system, we have to explain the implicit hypothesis made
by the analysis technique. It is supposed that a task (that
has at least one predecessor) is activated as soon as all
its predecessors are finished. To be more explicit, it also
means that a task (that has at least one predecessor) is not
activated before all its predecessor are finished. Hence,
considering a task, the termination of its last predecessor
and its activation must be combined in an atomic action.
The only way to obtain such a behaviour in OSEK/VDX
is to use the ChainTask service. The problem now is that
ChainTask implements a 1-to-1 precedence relationship.
So we have to transform the specification into an imple-
mentation, where the only form of precedence authorized
is 1-to-1, that is, a precedence chain. We follow the tech-
nique described in section4.1 to perform the transforma-
tions.

Our problem now is to implement precedence chains
on top of OSEK/VDX. As we did for the periodic task
model, we list the requirements that need to be met:

e the root task of a chain must follow requirements R1
(or R1’), R2, R3 and R4 defined in section 3.3;

e the activation of a non-root task of the chain must
correspond to the termination of its predecessor (re-
quirement R5);

e non-root tasks of the chain must follow requirements
R3 and R4.

We have given in section 3.3 the implementation rules
that must be followed in order to achieve requirements R1
to R4. In order to achieve requirement R5 we have only
one rule to update: for every task of the chain that has
a successor, its Finalization part consists in a call to the
ChainTask service (instead of TerminateTask), where the
target of the service is the successor of the task. Notice
that, as non-root tasks do not need to follow requirements
R1 (or R1) and R2, the activation mechanism described
in section 3.3 must not be used for them. The only possi-
bility for these tasks to be activated is the execution of the
Finalization part of their predecessor in the chain.

5. Further extensions

In this section, we discuss possible extensions of the
work presented above.

5.1. Offsets

With regard to the periodic task model of the section 3,
the assumption made about the first activation dates can be
modified and offsets can be given, i.e. the date of the first
activation is a priori known for each task. For the same
reasons as in [4], it can be proved that the computation
conducted in section 3.2 still gives an upper bound of the
worst-case response time. However in the case where the
offsets are not all equal (tasks are said asynchronous), the
work of Redell and Térngren [14] can be used to reduce
the approximation. In this work, all tasks are assumed:
periodic; with some offsets; independent; with different
priority levels, or not; with deadlines that can be arbitrary
large; and with shared resources managed with PCP. In or-
der to compute the worst-case response time of a task 7,
Redell and Torngren separate all the task instances that
may interfere with 7, into different sets. These sets are
function of the activation date of these instances and the
start date of 7; (as for the computation presented in Sec-
tion 3, where we consider interference before s;(g), and
after). To extend their method to tasks with preemption
threshold, we can simply adapt the interference caused by
the instances that occur after the start time by considering
only instances with a higher priority than the preemption
threshold (Eq(12) in [14]).

5.2. Taking into account system overheads

In [2], Bimbard and George study the overheads of an
OSEK/VDX OS implementation in the context of schedu-
lability analysis. In a first time, they identify the source of
kernel overheads that influence the response time of tasks;
in a second time they show how to take into account these
overheads in the computation of the worst-case response
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time. They give four sources for system overheads : the
execution time of the counter-management-ISR that oc-
curs every tick (see Section 3.3); the computation time
required to activate a task; the computation time required
to schedule the tasks; the computation time to terminate a
task and reschedule. In this paper, because of shared re-
sources, we have to add the computation time needed to
lock and unlock a resource (GetResource and ReleaseRe-
source services).

In [2], the interference of each overhead is included
into worst-case response time computation equations. Ex-
tending this method in order to take into account shared
resources and preemption thresholds seems to be in-
tractable and inefficient. The main reason is that the com-
putation of the response time is not an exact computation
when the mode becomes too complex (e.g. when using the
model with precedence). Some approximations are done.
Hence, worst-case execution times are upper bounds, and
critical instants describe unrealistic execution sequences
(but still give safe values). Extending the worst-case re-
sponse time computation equations so as to take into ac-
count explicitly the overhead of each system activity dur-
ing an execution sequence requires a large amount of
work. In our opinion, when the software architecture is
too complex to be analysed by an exact method, a more
reasonable approach to treat system overheads is to in-
clude them as contributions to the worst-case execution
time of code sections (e;;).

Following this last approach, an immediate improve-
ment could be to derive a worst-case context for each ser-
vice call, so as to use more accurate overhead values. In-
deed, the execution time of a system activity can some-
times be dependant of the number of objects handled by
the system. For instance, in Trampoline[1, 7], the execu-
tion time for inserting a task in the ready list is composed
of a constant part plus a variable one, linear in the number
of higher priority tasks already in the ready list. Such an
approach is immediate because: (i) OSEK/VDX OS is a
static kernel; (ii) we know the software architecture of the
application; (iii) we have access to the source code of our
OSEK/VDX OS implementation.

5.3. ECCx classes

In this paper, we explore the BCCx conformance
classes of the OSEK/VDX OS specifications. Obviously,
they support model of computations that are close to the
schedulability analysis models. However, they are limited
and some application may require more complex services.
Thus, we have to explore the ECCx conformance classes.
The difference between ECCx and BCCx is the possibility
for an extended task to enter a WAITING state, by waiting
for one or more event.

By restricting the use of the event handling services, it
should be simple to adapt the analysis algorithms defined
for precedence graphs. To do so, an extended task could
be considered as a chain of tasks with the same priority,
where the calls to the WaitEvent services denote the limit

between two tasks.

However, we have to perform further work to verify
that this interpretation is correct and to precisely define the
accompanying design rules. Moreover, such an approach
forbids some constructs of interest, for instance the pos-
sibility for a task to wait for different events at the same
time and to be awaken as soon as one of this event is sig-
nalled. Thus, we also have to extend analysis algorithms
in order to be able to relax too restrictive rules.

5.4. Distributed systems

Another natural extension concerns the analysis and
implementation of applications distributed among a set of
networked ECUs (Electronic Control Unit). It is natural
because the OSEK/VDX set of specifications includes an
application-level communication protocol: OSEK/VDX
COM.

On the one hand, depending on the chosen communi-
cation paradigm (COM supports both ”blackboard” and
”mailbox”), on the synchronization between the applica-
tion layer and the communication subsystem, etc., a wide
variety of software architecture can be implemented. On
the other hand, there exists some results on the analysis
of distributed real-time systems[17, 12]. Following the
example of the work described in this paper, we have to
adapt these analysis algorithms to the specific constructs
of OSEK/VDX OS+COM, and to precisely define design
rules that will ensure the predictability of the implemen-
tation.

5.5. Tool support

We are currently developing an open-source imple-
mentation of the OSEK/VDX OS 2.2.3 specifications[1,
7], together with an OSEK/VDX OIL 2.5 compiler in or-
der to ease system generation.

In order to instantiate the work presented in this paper,
we will define new OIL properties, so as to be able to di-
rectly extract schedulability analysis model from the OIL
description of the application. Moreover, we plan to in-
clude specific rules in the OIL compiler to check that an
application complies to the design rules associated to the
selected analysis algorithms (these rules must also be able
to parse and analyse the source code for tasks).

6. Conclusion

We have explored the problem of analysing the schedu-
lability of OSEK/VDX-based applications. We focused
on mono-ECU systems, and considered only the BCCx
conformance classes of the OSEK/VDX OS specifica-
tions. In this context, we did study two cases:

e software architectures composed of a set of indepen-
dent periodic and sporadic tasks;

e software architectures composed of a set of indepen-
dent periodic and sporadic graphs of tasks;
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In both cases, we have defined the software architecture
model. For the first model, we have shown how to adapt
state-of-the-art schedulability analysis algorithms so as to
take into account the specific constructs of OSEK/VDX
OS (mixed preemptive / non-preemptive scheduling, in-
ternal resources and task groups, mutliple tasks per pri-
ority level, etc.). Due to space limitation, we could not
give the details of the schedulability analysis of the sec-
ond model. The intersted reader may refer to [6]. In both
case, we have also defined a set of design rules in order
to ensure the consistency between the analysis model and
the implementation.

Our approach is a pragmatic one. It aims at helping
the designer of an application to fill the semantic gap be-
tween the analysis level and the implementation level. Al-
though real-time operating systems are designed in order
to achieve predictability of the applications, they also of-
fer services the use of which may violates the hypothesis
made by the analysis technique. The most simple answer
to this problem consists in completely forbidding the us-
age of such services. However, this answer is unbearable
in practice, as it hugely increases the complexity of the
implementation. Hence, we try to give more reasonable
answers, by restricting the usage of the problematic ser-
vices (through design rules), while adapting the analysis
algorithms. As we quickly discovered, such an approach
requires a deep knowledge of both domains (analysis and
services). In other words, solving the ”simple” problem of
“implementing an analysable application” is not straight-
forward.

The work presented in this paper is a first attempt to
give reasonable answers. However, the design rules are
still restrictive, so we should explore if they can be re-
laxed. This includes especially the extension of our pro-
posal to the ECCx OSEK/VDX OS conformance classes.
Then, it will be necessary to take into account the case of
distributed systems. Lastly, by extending OIL, we will be
able to provide a tool integrating system generation and
schedulability analysis.
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Abstract the rules of its scheduling policy (e.g. yielding the CPU
after a quantum under RR).
Posix 1003.1b compliant systems provide two well-  The problem addressed here is to assign priorities, poli-

specified scheduling policies, namely sched_rr (Round-cies and quanta to tasks in such a way as to respect dead-
Robin like) and sched_fifo (FPP like). Recently, an op- line constraints. For FPP alone, the well-known Auds-
timal priority and policy assignment algorithm for Posix ley algorithm [2] is optimal. A similar algorithm exists
1003.1b has been proposed in the case where the quanfor both RR and FPP in the case of a system-wide quan-
tum value is a system-wide constant. Here we extend thigum [6]. Here we consider the case where quanta can be
analysis to the case where quanta can be chosen on achosen on a task-per-task basis. As it will be seen in §3.2,
task-per-task basis. The algorithm is shown to be opti- the complexity of the problem is such that an exhaustive
mal with regards to the power of the feasibility test (i.e. search is usually not feasible even on small size problems.
its ability to distinguish feasible and non feasible config- For instance, a task set of cardinalityy with quanta cho-
urations). Though much less complex than an exhaustivesen among 5 different values requires to analyze the fea-
exploration, the exponential complexity of the algorithm sibility of more 10! different configurations (see §3.2).
limits its applicability to small or medium-size problems.

In this context, as shown in the experiments, our proposal Contributions. ~ Traditionally, the RR policy is only con-
allows achieving a significant gain in feasibility over FPP  sidered useful for low priority processes performing some
and Posix with System—wide quanta, and therefore using background Computation tasks “when nothing more im-
the computational resources at their fullest potential. portant is running”. In this paper, as we did in [10, 6],

we argue that the combined use of RR and FPP allows to

successfully schedule a large number of systems that are
1. Introduction unschedulable with FPP alone.

The contribution of the paper is twofold, first we pro-

Context of the paper. This study deals with the pose an algorithm for assigning priorities, policies and
scheduling of real-time systems implemented on Posix quanta that is optimal in the sense that if there exists at
1003.1b compliant Operating System (OS). Posix least a feasible solutidnthen the algorithm will return
1003.1b [7], previously known as Posix4, defines real- a feasible solution. The algorithm being an extension of
time extension to Posix mainly concerning signals, inter- the classical Audsley algorithm [2] and taidsley-RR-
process communications, memory mapped files, syn-FPP from [6], we name it theAudsley-RR-FPP algo-
chronous and asynchronous IO, timers and scheduling (arithm. The worst-case complexity of the algorithm is as-
recap of Posix’s features related to scheduling is given in sessed and a set of optimizations are proposed to reduce
§2.1). This standard has become very popular and most ofthe search space. The second contribution of the paper
today’s OS conform, at least partially, to it. is that we give further evidences that the combined use

of both FPP and RR is effective - especially when quanta
Problem definition. Posix 1003.1b compliant OSs pro- can be chosen for each individual task - for finding fea-
vide two scheduling policiesched_fifoand sched_rr sible schedules even when the workload of the system is
which under some restrictions discussed in §2.1, are re-high.
spectively equivalent to Fixed Preemptive Priority (FPP)
and Round-Robin (RR for short). Thus, under Posix Related work. We identify two closely related lines of
1003.1b, each process is assigned both a priority, aresearch: schedulability analyses and priority assignmen
scheduling policy and, in the case of Round-Robin, a — ; . .

We call here deasiblesolution, a solution that successfully passes

quantum-. At eac_h point ir‘ t?m?v one of the ready_pro- a schedulability test verifying property 2 (see §2.5). la tbllowing, we
cesses with the highest priority is executed, according to make use of the response time bound analysis derived in [9].
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Audsley in [2, 3] proposes an optimal priority assignment inherits its scheduling parameters from its father but may
algorithm for FPP, that is now well-known in the literature also change them at run-time.

as the Audsley algorithm. Later on in [5], this algorithm
has been shown to be also optimal for the non-preemptive
scheduling with fixed priorities. The problem of best as-
signing priorities and policies under Posix 1003.1b was
first tackled in [9] but the solution relies on heuristics and
is not optimal in the general case. Then, in [6], an optimal
solution is proposed for the case where the quantum value
is a system-wide constant.

As in [6], the problem addressed here is different than
in the plain FPP case because the use of RR leads to the
occurrence of scheduling “anomalies”, which are some-
times counter-intuitive. For instance, as it will be seen in
82.5, increasing the quantum value for a task can leads
sometimes to a greater worst-case response time for this
task. Similarly, decreasing the set of higher priority gsk
can increase the response time (see [6]). This prevents
us from using the proposed priority and assignment algo-
rithm with the schedulability assessed by simulation, or
with a feasibility test that would not possess some spe-
cific properties discussed in 82.5. Indeed there would be
cases where the algorithm would discard schedulable as-
signments and thus not be optimal. In this study, feasi-
bility is assessed by the analysis published in [9], which

ensures that the computed response time bounds decrease

when the set of higher priority tasks is reduced. This prop-
erty enables us to use an Audsley-like algorithm for the
assignment that will be shown to be optimal with regard
to the power of the test, that is its ability to distinguish

feasible or non feasible configurations.

Organisation. Section2 summarizes the main features

— sched_fifa fixed preemptive priority with First-In
First-Out ordering among same-priority processes.
In the rest of the paper, it will be assumed that all
sched_fifdasks of an application have different pri-
orities. With this assumption and without change
during run-timesched_fifas equivalent to FPP.

sched_rr: Round-Robin policy (RR) which allows
processes of the same priority to share the CPU. Note
that a process will not get the CPU until a higher pri-
ority ready-to-run processes are executed. The quan-
tum value may be a system-wide constant (e.g. QNX
0S), process specific (e.g. VxWorks OS) or fixed for
a given priority interval.

sched_otheis an implementation-defined scheduler.

It could map onteched_fifmr sched_ryor also im-
plement a classical Unix time-sharing policy. The
standard merely mandates its presence and its doc-
umentation. Because we cannot rely on the same
behaviour ofsched_otheunder all Posix compliant
OSs, it is strongly suggested not to use it if a porta-

bility is a matter of concern. We will not consider it
in our analysis.

Associated with each policy is a priority range. Depend-
ing on the implementation, these priority ranges may or
may not overlap but most implementations allow over-
lapping. Note that these previously explained scheduling
mechanisms similarly apply to Posix threads with the sys-
tem contention scope as standardised by Posix 1003.1c

standard [7].

of the scheduling under Posix 1003.1b and introduces the

model and notations. In section 3, we present the opti-

mal priority, policy and quantum assignmexudsley-RR-
FPP* algorithm. Efficiency of the proposal is then as-
sessed in section 4.

2. Scheduling under Posix 1003.1b: model
and basic properties

In this section we present the system model and sum-
marize the main features related to scheduling of Posix

2.2. System model

The activities of the system are modeled by a Bet
of n periodic and independent tasks= {7y, 72, ..., 7 }-
Each task; is characterized by a tupl€’;, T;, D;) where
each request of;, called an instance, has an execution
time of C;, a relative deadlin®; and a period equal to;
time units. One denotes hy ; the j' release ofr;. As
usual, the response time of an instance is the time elapsed
between its arrival and its end of execution.

Under Posix 1003.1b, see §2.1, each tasossesses

1003.1b. We then present the assumptions made in thisboth a priorityp; and a scheduling policyched;. In this
study and derive some basic properties of the schedulingstudy, we choose the convention “the smaller the numeri-
under Posix 1003.1b that will be used in the subsequentcal value, the higher the priority”. In addition to the pror

sections.

2.1. Overview of Posix 1003.1b scheduling

ity, under RR, each task is assigned a quantum valtiie
The priority and scheduling policy assignménts fully
defined by a set of tuples(r;, p;, sched!’) (i.e. one for

In the context of OS, we define a task as a recurrent each task). A quantum assignment un@erdenoted by

activity which is either performed by repetitively launch-

ing a process or by a unique process that runs in cycle.

Posix 1003.1b specifies 3 scheduling policisshed_ry
sched_fifoand sched_other These policies apply on a

process-by-process basis: each process run with a partic-

ular scheduling policy and a given priority. Each process

U, defines the set of quantum valug8” wherey)” is
the quantum of;. The whole scheduling is fully defined
by the tuple(P, ¥p) which is called aconfigurationof
the system.

Under assignmeriP, the set of taskg is partitioned
into separate layers, one layer for each priority leyel
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where the IayeerjP is the subset of tasks assigned to pri- pending. Inside each priority layer, instances are sched-
ority level j. UnderP, T,ZZ 0 (resp_Tl;’(j)) denotesthe set uled either according to FPP or RR with the restrictions
of all tasks possessing a higher (resp. lower) priority than that all instances belonging to the same layer have the
4. A layer in which all tasks are scheduled with RR (resp. same policy.
FPP) is called an RR layer (resp. FPP layer). In the fol-  FPP policy is achieved when a ready instancgis ex-
lowing, P or ¥ will be omitted when no confusions are ecuted when no higher priority instances is pending. Un-
possible. A list of the notations is provided in appendix at der RR, a task; has repeatedly the opportunity to execute
the end of the paper. during a time slot of maximal length,"” . If the task has

In the following, a task; is saidschedulableinder as- ~ no pending instance or less pending work than the slot
signmen{P, ¥'p) if its response time bound, as computed is long, then the rest of the slot is lost and the task has
by the existing Posix 1003.1b schedulability analysis [9], to wait for the next cycle to resume. The time between
is no greater than its relative deadline (i.e. maximum du- two consecutive opportunities to execute may vary, de-
ration allowed between the arrival of an instance and its pending on the actual demand of the others tasks, but it is
end of execution). The whole system is said schedulablepounded byz_p;-p” =3, crr %\37’ in any interval where

if all tasks are schedulable. Note that the test presentetdie considered task has pénding instances at any moment.
in [9] is sufficient but not necessary, there are thus task |, [9], worst-case response time bounds for priority lay-
sets which won't be classified as schedulable while there o 5 have been derived in a way that is independent from
exist configurations under which no deadlines are missed.i,q scheduling policies used for each layer. This analysis
) is based on the concept of majorizing work arrival func-
2.3. Assumptions tions, which measure a bound on the processor demand,
In this study as explained i§2.1, only sched_fif@nd  for each task, over an interval starting at a “generalized
sched_rrare considered for portability concern. Due to cyitical instant”. The majorizing work arrival function on

the complexity of assigning priorities and schedulingpoli o, interval of length for a periodic task; is:
cies, the following restrictions are made:

t
1. context switch latencies are neglected, but they could si(t) = C; - {7-‘ : (1)
be included in the schedulability analysis of [9] as !
classically done (see, for instance, [11]), The worst-case response time bound can be expressed as
2. since a priority level without any tasks has no effect
. . . maXj«j=(€ij — Qi j) 2
on the scheduling, we impose the priority range to be X< (€05 — i) 2)
contiguous, wherej* = min{j | e;; < a;;4+1}, wherea, ; is the
3. two tasks having different scheduling policies have release of the' instance ofr; after the critical instant
different priorities, i.e., Vi # j, sched; # ande; ; is a bound on the execution end of this instance.
sched; = p; # p;, Sincer; isaperiodictaskg; ; = (j—1)-7; ( = 1,2, ...).

If 7; isin an FPP layer, then
4. all sched_fifotasks must possess distinct priorities

(sched; = sched; = sched_fifo = p; # pj). ei;j=min{t > 0]|3;(t)+s;; =t}, 3)
With this assumption and without priority change at
run-time,sched_fifas equivalentto fixed-preemptive  wheres;(t) = ZWGTIP( N si(t) is the demand from

priority (FPP). Thus, several tasks having the same |;

her priority tasks (i.e. task irf;” ands; ; =
priority are necessarily scheduled undsshed_rr gher priorty ( (o)) 5id

S>J_, C; is the demand from previous instances and the

policy, ' g
currentinstance of;. If 7; isin an RR layer, then
5. the quantum value can be chosen on a task-per-task _ .
basis in the interval® ,i,, ¥1nay], WhereW,;, and ei; =min{t >0 | W;(t) +s;; =1}, 4)

Ua.x are natural numbers whose values are OS- ) o
specific constraints or chosen by the application de- Where the demand from higher priority tasks and of all
signer. other tasks of the RR layer.is

2.4. Schedulability analysis under Posix: a recap [9] U,(t) = min ({&TJ-‘ . @;PP _ wf’”) +35i(t), st (t)) ,
In this paragraph, we summarize the schedulability VT

analysis [9] of a configuratior{?, ¥5) under Posix. —up . ®)
Tasks scheduled under Posix can be described as a supetherey; = — ¢ 77 is the sum of the quanta of all other
position of priority layers [9]. At each point in time, one @sks of the RR layer and

of the ready instances with the highest priority (let’s say . _ B
p;) is executed as soon as and as long as no instances in “ (z) = Iggg(Si(W +38i(u+a) +5i(u+ ) —u),
the higher priority layers (instances of taskgjp,,,,)) are (6)
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wheres; (u+2z) = ZrkeT,]j\{n} si(u+x) is the demand A T T s
from other tasks tham; in 7;7;. The algorithm for com- 7 Z ’
puting the worst-case response time bounds can be found ?

in [9]. Itis to stress that this schedulability analysisti$-s ——— T T2,%2 =2
ficient but not necessary; some task sets may fail the test S P t

while they are perfectly schedulable. This will certainly
induce conservative results but the approach developed .
here remains valid with another - better - schedulability ~ Figure 1. Scheduling of task set 7 = {r, 7}
test as long as it is sufficient and possesses the properties With Round-Robin and quantum assign-
described in §2.5. ment ¥ = {11 = 2,9, = 2}.

2.5. Scheduling under Posix 1003.1b: basic properties
Under FPP, as well as under RR, any higher priority ]
task will preempt a lower priority task thus the following Z = T ™Y1 =2

properties hold for any task : A
T2,%2 =3
1. allready instances, with higher priorities thanwill — m{ : @ : T t

delay the end-of-execution of the instances;oft is 0 5 10

worth noting that this delay is not dependent on the

relative priority ordering among these higher priority Figure 2. Scheduling of task set 7 = {7, o}

instances and their quantum values, with Round-Robin and quantum assign-
ment ¥, = {wl = 27¢2 = 3}

A A

2. lower priority instances, whatever their policy, will
not interfer with the execution of instancesmfand
thus won't delay their end-of-execution.

increasing) the quantum value of the other tasks of its

" RR layer, diminishes (resp. increases) the response time
bound ofr; computed with the chosen schedulability anal-
ysis.

These two properties ensure that the following lemma
which is well-known in the FPP case, holds.

Lemma 1 [3] The worst-case response time of an in-
stance ofr; only depends on the set of same priority tasks,
the values of their quantum and the set of higher priority ~ To be optimal, the Audsley algorithm requires that the
tasks. The relative priority order among higher priority schedulability test fulfills some properties (see §3.3). In
tasks and the values of their quantum has no influence. particular, removing a task with a higher priority must not
lead to increased response times. In the case of Posix

However, despite lemma 1 holding, scheduling under 1003 1p, this imposes constraints on the schedulability
RR leads to scheduling anomalies. Indeed, scheduling unyast which must fulfill property 2.

der Posix is often counter-intuitive. For instance, it has
been shown in [4], that early end-of-executions can lead
to missed deadlines in configurations that would be feasi- .
9 Property 2 Let ; be a task in RR or FPP layer, reduc-

ble with WCETs. Similarly, removing a task with a higher ing its set of higher and same priority tasks, while keep-

E.”gletg ]Egir;g; T:ﬁ Cliezaiorllt?(sl]r;creased response times for ing the quantum allocation unchanged within its Round-

Here, we highlight that increasing the quantum size of Robin layer (ifr; is scheduled un_der RR), diminishes or
. . X . eaves unchanged the response time boungdadmputed
a task can increase its response time. Figures 1 and ﬂ

present the scheduling of task Bt— {r1, 7} where with the chosen schedulability analysis.

T = (Cl = 2,T1 = 5) andTQ = (4,10) All the

tasks belong to the same layer and the chosen quantum It has been shown in [6] that the conservative response
assignments aré’ = {¢; = 2,4, = 2} (figure 1) and  time bound computed with [9] ensures that property 2

U = {41 = 2,19 = 3} (figure 2) . holds. The proof, given in [6] in the context of a unique
As it can be seen on figures 1 and 2, surprisingly the sysrem-wide quantum value, is still valid when different
response time ofy is 6 with a quantum o and8 with values for the quanta are possible. As it will be shown

3. However, with the schedulability analysis used in this in section 3, a schedulability test which ensures that prop-
study, property 1 holds and will be used to restrain the erty 2 is verified, allows to use an extension of the Audsley
search space in section 3. A proof is given in appendix A. algorithm and preserves its optimality with regards to the

ability of the test to distinguish between feasible and non-
Property 1 Let 7; be a task in a RR layer, increasing feasible solutions (i.e., what is called the power of thé tes
(resp. reducing) its quantum value, while reducing (resp. in the following).
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3. Optimal assignment algorithm with task-
specific quanta

We present here an optimal priority, scheduling pol-
icy and quanta assignment for Posix 1003.1b systems
when the feasibility is assessed with schedulability analy
sis which verifies property 2 described in §2.5. This algo-
rithm heavily relies on both the Audsley algorithm and the
algorithm previously proposed for system-wide quantum
values (calledAudsley-RR-FPkn [6]). Here we extend
previous works to the case where quanta can be chosen
on a task-per-task basis, the corresponding algorithm is
named theAudsley-RR-FPR With the assumption made
in section 2, the policy is implied by the number of tasks
having the same priority level: should only one task be as-
signed priority level i then its policy is FPP (i.e. a RR layer
of cardinality 1 is strictly equivalent to an FPP layer, see
82.1), otherwise the policy is necessarily RR. The prob-

lem is thus reduced to assigning priorities and quanta to 1
tasks in a RR layer. 2

3
3.1. Audsley-RR-FPP* algorithm 4

In the same way as the original Audsley algorithm 5
(abridged by AA in the following), the idea is to start
assigning the priorities from the lowest priorityto the 6
highest priorityl (line 3 in algorithm 1). The difference 7
with AA, is that, at each priority level, the algorithm is not

looking for a single task but for a set of tasks (lile For 8
each such set of tasks, our algorithm examines all possible ¢
guantum assignments until it finds one suitable one. 10

Underlying idea. The underlying idea of the algorithm ~ 1?

is to move , when needed, the maximum amount of work-

load to the lower priority levels and to schedule the tasks 2
under RR. When an instaneg; is assigned the same pri- 13
ority as 7, and both are scheduled under RR; can 4
delay 71,5, less than ifr; ; would be scheduled with a  *°
higher priority. The same argument holds for the delay *°
induced byr, , to 7; ;. Thus, as illustrated with an exam- 17
ple in [10], where a task set that is not feasible under FPP18
alone, becomes feasible with RR. Of course, in the general'®
case, combining the use of both policies is the most effi- 20
cient and, as it will be shown, leads to an optimal priority 21
and policy assignment. 22

Input: task set? = {7y, m2..., 70}
Result schedulable priority, scheduling policy and
quantum assignmef, = (P, ¥y,)
Data: i: priority level to assign
R: task-set with no assigned priority
P: partial priority and policy assignment
Up: partial quantum allocation

R=T,

P =10

fori=ntoldo

try to assign priority i

search a schedulable subset of ta&ksnder
quantum allocatio ;. } -, ez, INR

if no subsef; is schedulable at priority then
falure, return partid

assi gnenent :

return (P, Up);

else

let 7; a schedulable subset at priorityvith
quantum allocatioR )y }r, c7:;

assign priority, policy and

ouant um
if #7; = 1then

| P =PU{(r,i,sched_fifo)}rer;
else

P =PU{(1x, 1, sched_rr)}r.cT:;
Up =Up U{Yk}neT;

end
renve  7; from R:
R =R\T;

end

if R = (0 thenreturn (P, ¥p);
end

Algorithm 1: Audsley-RR-FPP algorithm with task-
Step of the algorithm. For each priority leveli specific quantum.

(line 3), theAudsley-RR-FPPalgorithm attempts to find

a schedulable subs@i in subsetR (line 5) whereR is
made of all the tasks which have not been yet assigned
a priority, a policy and a quantum. The algorithm tries
all possible subsets dR, one by one, and all possible
guantum assignments for each subset until a schedulable
configuration is obtained or all configurations have been
considered. In the latter case, the system is not schedula-
ble (lines 7-8). Otherwise, we have found a schedulable
subset, denoted by;, which, in the RR case, possesses
quantum assignmetity } -, 7, (lines 7 and 8). Precisely,

145



: priority greater than i appears and goes deeper and deeper until a leaf is reached,
E - priority i ° depth 0 i.e., untilthe se_Tﬁ is fuIIy defined. When a leaf is_ reached,
B E . the sghedulablllty off; is (_’:\sse_ssed. [f; is f§a5|ble_, the
algorithm returns, otherwise, it backtracks till the firstv
tex such that not all its child vertices have been explored.
@ depth 1 To assess the schedulability @f, all possible quan-
S ] 7 G, tum assignments are successively considered. In the
same manner as for the priority allocation, a tree -called
depth 3 guantum-search-treereflects the choices for quantum

[=i] i& - E/— — — — values. A depth-first strategy is used as well to explore

the search space. In this case, a node|hdschildren

@ @ @ @ depth 4 where each child models a different quantum value. Here,
_ . we label the edge between vertices of depthndk + 1
Figure 3. Search tree constructed in the search of | i the quantum value of th@ + 1) task of7;. Thus

a fegsible subset R = {71, 7,73} at prior_ity_z‘. a vertex of depthk models the choices performed for the
For instance, node b models the partial priority as- . st tasks off-.

signment where is assigned priority i while node
¢ means that; is assigned a greater priority.

3.2. Complexity and improvements
Size of the search space. Assigningn tasks to differ-

7; is schedulable when all tasks @f are feasible at pri- €Nt non-empty layers is like subdividing a setrofle-
ority i while all tasks without assignment (i.e., tasks in Ments into non-empty subsets. Letoe the number of
R\T) have a priority greater thain At each step, at least [@yers. The number of possible assignments is equal, by
one task is assigned a priority and a policy (lines 11 to definition, to the the Stirling number of the second kind
17). Note that, when RR is used at least once, lessithan (S€€ [1], page 824):

priority levels are needed (early exit on line 21). o i

Looking for the set of schedulable tasks/;. There are k! i—0 ¢

27#R possible subset; of R that can be assigned prior-

ity level i (line 5). Since the quantum can tai{g” = where lf ) is the binomial coefficient, i.e., the number
:f)ma" t_ d]mif[l +1 d|f_ferent V?Il:es’ thehre ag?/) |t|: 'tdlf' of ways of picking an unordered subsetialements in a
erent quantum assignments for each subisefFirst, we set ofk: elements.

explain the basic exhaustive tree-search used to set prior- The complexity depends on the number of tasks sched-

gfj&)szqsg, ngnfﬁﬁ:aégs?oxvm\ﬁ#z? eaaz;\mlfsrssi;?e:(;r;tto uled under RR since their quantum values have to be cho-
d g P ' sen. When there arelayers, at least — &k + 1 tasks are

Amethod that speeds-L_Jp the Se‘?‘rch by pruning away SUb'in an RR layer (i.e.n — k + 1 tasks in a single RR layer
trees that cannot contain a solution is provided in §3.2. . -
Abi i fruct flects the priority choi d and one task in each of the remainihg- 1 FPP layers)
th margfre(;:hs ruchurde rlebtl-:‘C S be ';’T'O” ny omt(ajsban and up tomax(n, 2(n — k)) (i.e., tasks are “evenly” dis-
€ search for Ihe schedulable SUbSet IS performed by €X5,, 10 among RR layers). Since the quantum can take
ploring the tree. In the following, we cafiriority-search- ]| = Wmax — i + 1 different values, there are be-
tree the search tree modeling the priority choices. As an B o mmd max(n,2(n—k)) d'%f
illustration, figure 3 shows the priority-search-tree earr tween ||y | and [|¢] fiferent quan-

- _ ; tum assignments for a configuration/ofayers.
sponding to the s&® = {r, 72, 73}. Each edge is labeled " o . B
either with “= i” (i.e., priority equal toi) or *> i” (i.e., In addition, n tasks can be subdivided intb =

priority greater than). A label “= " (resp. “> i") on 1,2,...,n many layers and there afé different possible

the edge between vertices of deptrand k + 1 means priority orderings among thé priority layers. Thus, a
that the(k + 1) task of R belongs to the layer of prior- lower bound for the search space of the problem of as-

ity ¢ (resp. belongs to a layer of priority greater thgn §igning priority, policy and quantum for a set oftasks

Thus, a vertex of depth models the choices performed IS

for the k first tasks ofR. For instance, on figure 3, the n k I

ver_texe implies that tasks belon_gs to Iayerofprio_rity’r Z (_1)(k—i) . ( ; ) S ||¢Hn—k+1 )

while taskr, does not. Each leaf is a complete assignment k=1 i=0

for priority level 4, for instance leaf g corresponds to set o . _
T = {r,m}. In a similar way, we derive an upper bound by replacing

Hz/JHn_]H_l with Hw”max(n,Q(n—k)).
For instance, as can be seen on figure 4, the size of
The search is performed according to a depth-first strat- the search space comprises abbut0'® scheduling con-
egy. The algorithm considers the first child of a vertex that figurations for a set 00 tasks. The search space grows
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1e+90

given in this paragraph shows that it is possible to identify

! Size ov‘the probler}v (lower bnhnd) —

evso [ ASTAR EEE S e lndoalhriun // priority and policy assignments that are not schedulable
o o~ whatever the quantum allocation. Thanks to property 2
// and property 3, one can identify and prune away branches
1er60 e of the priority-search-tree which necessarily lead to sub-
Le+50 // sets7; that are not schedulable whatever the quantum as-
o o signments. Furthermore, with property 3, one can reduce
// oa® Lo in a similar manner the number of quantum assignments
lex20 ~ o aeE to consider for a particular subsgtin a quantum-search-
o0 e e tree.
oo /f: soe7?” B e With the basic algorithm explains in §3.1, feasibility of
fefﬁ?f I T a priority allocation is assessed at the leafs when all tasks
s 10 15 0 2 0 s 4w 45 50 have been given a priority by testing all quantum assign-

Number of tasks (n)

ments. The idea is here to evaluate feasibility at interme-
diate vertices as well, by assigning a priority lower than
1 to the tasks for which no priority choice has been made
yet. Under that configuration, if a task which is as-
signed the priority is not schedulable whatever the quan-
tum assignment, there is no need to consider the children
of this vertex. Indeed, from property 2, since the priority
more than exponentially, thus an exhaustive search is notassignment of the children of this node will increase the
possible in practice in a wide range of real-time problems. set of same or higher priority tasks, the response time of
7; cannot decrease. Thus, all child vertices corresponds
Audsley-RR-FPP*.  Our algorithm looks at each priority ~ t0 priority assignments that are not schedulable. Now, it
leveli for a subsef; in R which is schedulable at prior- ~ remains to identify priority and policy assignments that
ity 7 (line 5). Since at least one task is assigned to eachare not schedulable whatever the quantum allocation. The
priority level, the number of tasks belonging®when  following property, proven in appendix A.3, can be stated.
dealing with priority level: is lower than or equal té. In
addition, we know that there ate)||" different quantum
assignments for a subsetotasks. Thus, at each priority

Figure 4. Complexity of the problem for a num-
ber of tasks varying from to 50 when the quantum
value can be chosen in the interyal5].

Property 3 LetS be a schedulability test for which prop-
erty 2 holds. Let be a task set an® be a global priority

. _ _ i _ and policy assignment. Let be a task with the maximum
level i, the algorithm examine}"’_, ( i) [yl = quantum value,,.. in an RR layer. Let the quantum val-

' ues of all other tasks in the RR layer be set to the minimum

Ymin. Ifthe response time bound gf computed withs,
is greater than its relative deadline, then, whatever the
guantum assignment undg, 7; will remain unschedula-

n ) _ 1 n+1 ble with S.
Sl + 1) 1= WD)

i—1 L—(llvfl + 1) Thus, at each vertex of the priority search tree, a priority
assignmerP is not feasible whatever the quantum assign-

This complexity for a varying number of tasks is shown on ment, if a task, which has a priority is not feasible with
figure 4, for instance, for a set af) tasks withy,,,;,, = 1 the quantum allocation given in property 3.
and Y., = 5 it is approximately equal ta2 - 10°. Similarly, we can cut branches when exploring the
Figure 4 shows also the size of the search space andquantum-search-tree of a st The idea is again to eval-
for comparison, the worst-case complexity of the solution yate feasibility at intermediate vertices. Since an inferm
proposed in [6] in the case where the quantum size is agjate vertex models a partial quantum assignment for a set
system-wide constant. Although we achieve a great com-7; e assign the lowest quantum value to each task in
plexity reduction with regards to an exhaustive search, the\hich has no quantum assigned yet. In that case, if a task
complexity remains exponential in the number of tasks. -, for which the quantum has already been set at this ver-
Thus, in practice, our proposal is not suited for large-size tex is not schedulable, then there is no need to consider the
task sets that W0u|d, for instance, be better handled bych“dren of this vertex. |ndeed, given property 1’ the re-
heuristics guiding the search towards promising parts of sponse time ofy, can only increase when the the children

(]| + 1)* — 1 assignments in the worst-case. Thus, for
priority level from 1 to n, the algorithm considers in the
worst-case a number of assignments given by:

the search space. This is left as future work. of this vertex are considered.
The finding of this paragraph allows a very significant
Complexity reduction. As seen before, thdudsley- decrease in the average number of configurations tested

RR-FPP performs an exhaustive search for each priority by theAudsley-RR-FPPalgorithm. For instance, for task
level. To a certain extent, it is possible to reduce the num- sets constituted of 10 tasks, the algorithm examines on
ber of sets that are to be considered. Indeed, the property 3average only about000 configurations before coming up
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with a feasible solution or concluding that the task set is avoid the case where a higher priority tasks is moved to a
unfeasible while it would require about 107 tests other-  non-empty layer since property 2 does not cover this situ-
wise. ation.

3.3. Proof of optimality
Here we show that thAudsley-RR-FPPalgorithm is
optimal in the sense that if there is a priority, policy and

quantum assignment that can be identified as feasible by H€re our aim is to quantify the extent to which using
the schedulability analysis, it will be found by the algo- task-specific quanta enables us to improve the schedula-

rithm. Let us first remind the following theorem which Pility of the system by comparison 1) with FPP and 2)

has been provenin [2, 3, 5, 9] for various contexts of fixed With System-wide quanta.
priority scheduling.

4. Experimental results

4.1. Experimental setup.

Theorem 1 [3] Let (P, ¥p) be a schedulable configura- In the following experiments, we only consider task
tion up to priority 7, i.e. tasks that have been assigned sets that are unschedulable with FPP alone. Since we
the priorities fromn to i are schedulable. If there exists a choose to consider periodic tasks with deadlines equal to
schedulable configuratiof4, ¥ 4), then there is at least  periods O; = T;), we use the Rate Monotonic priority
one schedulable configuratid®, ¥o) having an identi-  assignment, which is optimal in that context. The global
cal configuration agP, ¥p) for priorities n to i. loadU (i.e., > ., %) has to be necessarily greater than

n-(2Y/™ —1) (from [8]) in order to be able to exhibit non-
feasible task sets. In the following, we choose a quantum
value of 1 for the system-wide quantum or, when task-
specific quanta is considered, a quantum value which can
be chosen in the intervél, 5]. The actual parameters of
an experiment are defined by the tugte U). The uti-
lization rate (%) of each taskr; is uniformly distributed

in the interval[£ - 0.9, £ - 1.1] wheren is the number of
tasks. The computation timg; is randomly chosen with

an uniform law in the intervalll, 30] and the period’; is
upper bounded b§00. The results shown on figure 5 have
been obtained with 200 task sets randomly generated with
the aforementioned parameters.

From theorem 1, we can prove the optimality of
Audsley-RR-FPR Indeed, ifAudsley-RR-FPPhappens
to fail at level:, the priority, scheduling policy and quan-
tum assignmentP, ¥») provided byAudsley-RR-FPP
leads to a schedulable solution up to levet 1. Since
Audsley-RR-FPP performs an exhaustive search to as-
sign leveli, there cannot be armgchedulableassignment
(Q, ¥o) possessing the same assignmentrRasy ») for
priority 7 + 1 to n. Thus, from theorem 1, there is no
schedulable assignment.

We give here an intuitive proof of theorem 1, which ba-
sically is valid under Posix thanks to lemma 1 and prop-
erty 2. It should be pointed out that theorem 1, and thus
the optimality result ofAudsley-RR-FP® does not hold
where property 2 is not verified by the schedulability test 4.2. Schedulability improvement over FPP and system-

Theorem 1 holds if a schedulable configuration wide quanta
(A, ¥ 4) can be transformed into a schedulable configu-  Figure 5 shows the percentage of task sets that are
ration (Q, ¥o) for which the configuration is the same not schedulable with FPP alone and become schedulable
as (P, ¥p) for priority 7 to n. This transformation can  when using theAudsley-RR-FPRtask-specific quanta)
be done iteratively by changing the configuration of cer- andAudsley-RR-FPBsystem-wide quanta - see [6]) algo-
tain tasks in(A, ¥ 4) to the configuration they have in rithms that are both optimal in their context. One observes
(P,¥p). The procedure is the following: for priority that the improvement with task-specific quanta is very im-

levelk fromn to ¢, assign in(A, ¥ 4 ) the priorityk+n —i portant, at least 3 times better than with a system-wide

to the tasks of priorityk in (P, ¥p) (i.e., the set7;”) guantum. When the load is lower th&h%, a solution is

and set their quantum value to their valug§ in ¥p found in almost all cases, the percentage of successes re-
(vr; € TP, pt = pl +n —i, sched] = schedl maining greater thafi0% up to a load equal t88%. As

and ¢;,I’A — 1;,}’?)_ Since at each step, tasks TQP it was to be expected, when the load gets higher, feasible

have the same quantum assignment, the same set of highggcheduling solution tends to rarefy.

and equal priority tasks under the current configuration  Our experiments show that the combined used of RR
(A, U 4) as undel(P, Up), they remain schedulable un- and FPP with process-specific quanta allows to schedule
der (A, ¥ 4) by lemma 1. From property 2, the other a large number of task sets which are neither schedulable
tasks ¢ \ 7,”) meet their deadline too since the quan- with FPP nor with a system-wide quantum. Itis worth not-
tum assignment and the set of higher and same prioritying that context switch latencies were neglected while RR
task is reduced or stay unchanged under current configurainduces more context switches than FPP. This fact weak-
tion compared to the initial configuratidmd, ¥ 4). Note ens to a certain extent our conclusions. A future work is
that in the proof the priority range has been artificially ex- to find the feasible quantum allocation that minimizes the
tended by adding. — ¢ lower priority levels in order to  global number of context switches.
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where (equation 5 of §2.4) A.3. Proof of property 3
We show that the bound on the execution epgdfor a
T (t) = min q s;,j 1 ) @;vp —p¥P) 4 gi(t%s;(m)) ’ task in an RR layer undég?, is minimum undef® when
v, 7 ‘ the quantum ofr; is equal toy,,., while the quanta of
the other tasks in the layer are set/t@;,. Let U be the
whereg, © — ¢¥7 is the sum of the quanta of all other ~ corresponding quantum assignment where
tasks of the RR layer. Since ;, s;(t) ands](z) are
independent of the quantum assignment (see §2.4), it |s{slTJ-‘ ,@f’? —p¥P) = {Sl_ﬂ-‘ ( Z Vrmin)
enough to compare the first term of then() to decide . ' Ymaz T e€TP\{r}
which task will have the smallest response time bound. "

Two cases arise: and one notes that whatever a different quantum assign-
mentv .
Sig —Up Sig — !
1. [ e W (Y T =) > {—w (W T =P 5ij sij |~ '
¥, P % i o ¢ i ] . ) 2, . A 4
| B s || @
then we conclude; ; > e, , €T\ {7i} ¥:
2. otherwise: since, by definitiong,,q. > w;l’;’ and i < zp,‘f’;’.
From equation 7, the execution end bound of 7; ;
Sij —Up vpy o | Sid —, v, is thus minimum with¥» among the set of all possible
PP (W =977 < wq;;, (T =), qguantum assignments.
Notations

’
andeiyj < €4

- T ={m,...,7n}: asetofn periodic tasks
Whens} (z) is the minimum, we have; ; = e; ;. _ p: priority and policy assignment
From this finding we can deduce that for any other as- P policy g

signmenttl/;), if the two following requirements are met: — Up: a specific quantum allocation under assignment
P
requirement 1: the quantumpf’” of r; in \IJ;, is lower — (P, ¥p) : a priority, policy and a quantum assign-
than or equal to its quantumf”’ under¥p , ment

— 7.7 subset of tasks assigned to priority leveinder

requirement 2: the sum of the quanta of all other tasks of P

the RR layer7,” underiIJ'P is greater than or equal to

’

the one undewp, i.e.,@h’ B w;l/;, > @PP e - T,];(i): subset of tasks assigned to a higher priority

— : than: underP
Wherewf”’ =D reT ¥27 is the sum of the quan- !
tum of all tasks of the RR layeF,” under quantum - 7}7’(1.): subset of tasks assigned to a lower priority

allocationVp, thani underpP

— ¢¥7: Round-Robin quantum for task under¥
then we have: !

4

ol v

) - E;PP: sum of the quanta of all tasks in lay&runder
S —U ! Si —U

’7—73—"(1/%7)—1/)}}7’)2 {—J—‘W%P—UJ?P)' (7) v

—si(t)=C; - [TLW majorizing work arrival function

and thusr; ;, e; ; < e; ; which implies that the response on aninterval of length for a periodic taskr;

time bound ofr; under(P, ¥7,) is greater than or equal to = 5i(t) = >, err  sk(t): the demand from higher
the response time bound undét, ). priority tasks undep

A.2. Proof of property 1 —s,; = Y1, Ci: the demand from previous in-

Since the prerequisites of property 3 are exactly re- stances plus demand of current instanceof 7;

quirements 1 and 2 of 8A.1, the response time bound of _ Si(z) = TP\ }Sk(x) is the demand from all
Tk P; Ti

7; in property 3, is no less undefP, W) than under other tasks than; at priority leveli under assignment
(P,¥p). Sincer; is not schedulable und¢P, ¥p), it P

cannot be schedulable undér, ¥,).
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Abstract

The performance criteria generally used in real-time
database systems (RTDBSs) are the transactions success
ratio and the system quality of service. The main schedul-
ing policy used for real-time transactionsis earliest dead-
linefirst (EDF) where the shortest is the transaction dead-
ling, the highest is its priority. With EDF, the successful
transactions are not necessarily the most important trans-
actionsin the system. Moreover, it iswell-known that EDF
isnot efficient in overload conditions. In this paper, wein-
troduce the notion of transaction importance and present
a new priority assignment technique based on both trans-
actions importance and deadlines. This assignment pol-
icy leads to a new scheduling policy, called generalized
earliest deadline first (GEDF). In order to show the ben-
efits of using GEDF for managing real-time transactions,
we have designed an RTDBS simulator and carried out
Monte Carlo simulations.

1 Introduction

Real-time database systems (RTDBSs) must guarantee
the transactions ACID (Atomicity, Consistency, Isolation,
Durability) properties on one hand, and they must sched-
ule the transactions in order to meet their individual dead-
lines, on the other hand [[14]. An RTDBS can be con-
sidered as a combination of a traditional database system
(DBS) and a real-time system (RTS).

Most performance studies in RTDBSs use EDF
scheduling policy which is based on a priority assignment
according to the deadlines, i.e. the earliest the transac-
tion deadline is, the highest the priority is. However, such
successful transactions are not necessarily the most im-
portant transactions in the system. Moreover, it is well-
known that EDF is not efficient to schedule transactions
(or tasks) in overload conditions, leading to the degrada-
tion of the system performances. This results from the
assignment of high priorities to transactions that finally

*This work is supported by grant ACI-JC #1055

miss their deadlines. These high-priority transactions also
waste system resources and delay other transactions [[21]].
To overcome these disadvantages, the study dealt with
in [[7] introduced an extension of EDF called adapted ear-
liest deadline (AED). AED is a priority assignment pol-
icy which stabilizes the overload performance of EDF
through an adaptive admission control mechanism in an
RTDBS environment. In this method, the incoming trans-
actions are assigned to either hit or miss group. Using a
feedback mechanism, the capacity of the hit group is ad-
justed dynamically to improve the performances. Trans-
actions in miss group only receive processing if the hit
group is empty. In [13], Pang et al. proposed an ex-
tension of AED, called adaptive earliest virtual deadline
(AEVD), to address the fairness issue in an overloaded
system. In AEVD, virtual deadlines are computed based
on both arrival times and deadlines. Since transactions
with longer execution times will arrive earlier relative to
their deadlines, AEVD can raise their priorities in a more
rapid pace as their durations in the system increase. Con-
sequently, longer transactions can exceed the priorities of
shorter transactions that have earlier deadlines but later ar-
rival times. The results of comparative performance study
of AED and AEVD reported in [[13] have established that
AEVD provides better performances than AED. To re-
solve some weaknesses of AEVD, Datta et al. [4] have
introduced priority based scheduling policy, called adap-
tive access parameter (AAP) method where they use ex-
plicit admission control. An other study done in [5] deals
with the problem of repeatedly transactions processing in
an RTDBS. In this work, Dogdu gave a number of pri-
ority assignment techniques based on the execution his-
tories of real-time transactions that overcome the biased
scheduling in favor of the short transactions when using
EDF policy.

In this paper, we introduce a new approach based on
a weight technique: a weight is assigned to a transaction
according to the importance of its tasks. We also propose
a new priority assignment technique which uses both the
deadline and the transaction importance. This assignment
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policy leads to a new scheduling policy, called General-
ized Earliest Deadline First (GEDF) developed to over-
come the weakness of EDF scheduling policy. GEDF may
be considered as a generalization of EDF due to its flex-
ibility and its adaptability to the system workload condi-
tions (in normal conditions, GEDF behaves like EDF). To
show the effectiveness of GEDF scheduling policy on RT-
DBS performances, we analyze the system performances
according to the transactions success ratio and quality of
service (QoS). To this purpose, Monte Carlo simulations
are conducted on the RTDBS simulator we have devel-
oped. This simulator is based on components generally
encountered in RTDBSs [10}[15}[14]). The results are com-
pared to EDF scheduling technique under various execu-
tion constraints and conditions, such as the transactions
arrival process, system load, conflicts level, concurrency
control policy and database size.

The remainder of this paper is organized as follows. In
Section[2] we describe the system model and some simula-
tor components. Then, we present our weighted approach
of transactions and the GEDF scheduling policy we pro-
pose. Section 3 is devoted to the Monte Carlo simulation
experiments and the results we obtained. We then present
the performance evaluation results of the GEDF schedul-
ing policy. Finally, in Section [4] we conclude the paper
and give some aspects of our future work.

2 Simulator and system model

We base our work on a system model dealt with in our
previous work [[16} [17], where some other real-time char-
acteristics are added, e.g. temporal data, update trans-
actions and the implementation of the freshness man-
ager. We have also developed a new priority assign-
ment policy where the importance criterion is added and
on which is based the new scheduling approach, called
GEDF. Note that we do not use an admission control
mechanism (ACM) to reduce or to manage the submitted
transactions according to the system workload. In our ap-
plication, all transactions are accepted in the system. We
think that it is more profitable to study the behavior of
GEDF vs EDF without influence the system workload by
using an ACM. The general mechanism of the simulator
components is discussed briefly in subsection

Due to decreasing of main memory cost and its rela-
tively high performance [2| (18], main memory databases
have been increasingly applied to real-time data manage-
ment such as stock trading, e-commerce, and voice/data
networking. In this work, we consider a main memory
database model. The RTDBS is materialized by the simu-
lator we developed and available on line [. In the follow-
ing, we will focus on the components related to the data
and transactions model and the new scheduling technique.
Other components of the simulator are detailed in earlier
papers [16] [17].

1The simulator is available on-line at the following URL :
http://litis.univ-lehavre.fr/ semghouni/

2.1 Data and transactions

The database is composed of independent data objects
classified into two classes: temporal data (TD) and non-
temporal data (NTD). The state of a temporal data ob-
ject may become invalid with the passage of time. As-
sociated with its state, there is an absolute validity inter-
val, denoted avi [20]. A Temporal data d; is considered
temporally inconsistent or stale if the current time is later
than the timestamp of d; (time of its last update) followed
by the length of the absolute validity interval of d;, i.e.
currenttime > timestamp; + avi;. Here, we do not
restrict the notion of temporal data to data provided by
physical sensors. Instead, we consider a broad meaning
of sensor data. Any item whose value reflects the time-
varying real world status is a temporal data item [[14], for
example, information on the state of a deposit stock. A
data whose state does not become invalid with the passage
of time is a non-temporal data object [20].

We consider only firm real-time transactions and we
classify them into update and user transactions. Update
transactions are periodic and only write temporal data
which capture the continuously state changing environ-
ment. We assume that an update transaction is responsi-
ble for updating a single temporal data item in the system.
Each temporal data item is updated following a more-less
approach where the period of an update transaction is as-
signed to be more than half of the validity interval of the
temporal data [19].

We assume that user transactions can read or write non-
temporal data and can only read temporal data [[9]. The
user transactions arrive in the system according to a Pois-
son process with an average rate A. The number of op-
erations generated for each user transaction is uniformly
distributed in the user transaction size interval, denoted
Usersinervai- Data accessed by the operations of the
transaction are randomly generated and built according
to the level of data conflicts (see subsection [2.4). Trans-
actions execute “read” operations on data with a proba-
bility ¢ and "write” operations with a probability (1-).
For more details, see transaction characteristics in Table [II
page Bl

To distinguish the important transactions from the oth-
ers, transactions are weighted according to their impor-
tance. The importance criterion is called transaction sys-
tem priority, and is denoted by S Priority. In the follow-
ing, we will describe fully how this importance criterion
is assigned to each transaction.

2.2 Transactions system priorities (SPriority)

The transaction system priority (SPriority) is a param-
eter related to each transaction. It expresses the degree
of importance of the task(s) executed by a transaction and
defines its rank among all the transactions in the system.
This parameter is assigned to each transaction when it is
generated. The proposed GEDF scheduling policy (see
section[Z.3) uses this parameter in addition to the deadline
to schedule transactions. We also consider the SPriority
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as one of the criteria used to evaluate the system quality
of service (see subsection [Z.5).

In order to maintain temporal data consistency, i.e. to
ensure that data in the database reflect the state of the envi-
ronment, we consider that the rank of update transactions
is higher than that of user transactions. The update trans-
actions class is more important than that of the user trans-
actions because one of the main design goals of RTDBSs
is to both guarantee the temporal data freshness [[14] and
maintain the database consistency. Consequently, we di-
vide the interval of SPriority values, i.e. [0, MaxV alue],
into two intervals: the first interval [0, N] is devoted to
the SPriority values of update transactions and the second,
|N, M axV aluel, is devoted to the SPriority values of user
transactions. The value of V is application-dependentand
is fixed by the system manager. In our model, we consider
that the zero value of SPriority, i.e. SPriority=0, corre-
sponds to the highest rank that a transaction can have in
the system. To assign the SPriority value to each transac-
tion, we use the following technique:

Transaction weight technique (WTec) We use two
weight functions according to the transaction class to as-
sign the SPriority value:

Update transactions class: \We consider that tem-
poral data items which are updated frequently, i.e. which
have short update period, are data items that contain im-
portant information (for example, position of an aircraft).
We relate the importance of a temporal data item to its
update frequency because its absolute validity interval is
also short (more-less [[19] approach), which makes its up-
date more critical.

Let MaxPeriod be the longest period among the peri-
ods of update transactions. The SPriority of an update
transaction 7" is computed according to the following for-
mula:

Periodr
x MaxPeriod (1)

User transactions class: The user transaction im-
portance SPriority uses criteria based on both the transac-
tion "write” set operations and the transaction “read” set
operations. A user transaction 7' is assigned a SPriority
value by the following formula:

SPriorityypdate = N

S Priorityyser = MaxValue—

vy X WeightT - (1 - ’Y) X DBAValue (2)
where

e Weightr denotes the weight of the current user
transaction and is given by
WeightT =
Z;nzl WU)Tit(iNTD

i, Wreadrp  +

- 22:1 Wreadyrp) (3)

— Wreadrp, Wwritenytp and Wreadytp de-
note respectively the weight assigned to a read

where

operation of a temporal data, the weight as-
signed to a write operation of a non-temporal
data and the weight assigned to a read opera-
tion of a non-temporal data (see the transaction
characteristics in Table [ in page ).

— n,m, and [ are the numbers of operations
("Read” TD, "Write” NTD and "Read” NTD)
in each user transaction.

e v €]0,1] is a rational value assigned to the transac-
tion weight in the SPriority formula (see Table [I] in

page ).

e DBAv e IS an uniform random variable whose
values are between 0 and (MaxValue — N). We
recall that IV is the value that divides the SPri-
ority interval [0, M axzV alue] according to transac-
tions class, i.e. SPriorityupdate € [0, N] and
SPriorityyser €N, MaxValuel.

o Mazimum(y x Weightr — (1 —7) X DBAvaiue) <
MaxValue — N, because the user transactions
S Priority belongs to | N, MaxV alue].

Motivations: the choice of Formula 2 to assign the SPri-
ority value to a user transaction is motivated by the follow-
ing arguments:

e To favor the results obtained by transactions reading
temporal data, we consider that their results are gen-
erally more important than those obtained by transac-
tions which read non-temporal data. Thus, a transac-
tion which will read many temporal data is assigned
a higher rank than others (see Formula 3).

o To favor database freshness, we consider that write
operations are more important than read operations,
because their function is to refresh the database regu-
larly. Thus, a transaction which will write many data
items on the database is assigned a higher rank than
others (see Formula 3).

e To reduce data access conflicts in database, we con-
sider that transactions that execute many read oper-
ations on the database are transactions that can in-
duce many data access conflicts when the database
is in update state. Optimistic conflict resolution ap-
proach (OCC-Wait-50) creates long wait durations
for conflicts resolution, whereas pessimistic conflict
resolution approach (2PL-HP) induces many restarts
and aborts. In both situations, the system is over-
loaded and its performances are degraded. In order
to avoid those weaknesses, the rank of a transaction
which reads many non-temporal data is decreased in
the system (see Formula 3).

e The database administrator can influence a transac-
tion priority by modifying its importance in the sys-
tem. This interaction is modelized in Formula 2 by
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DBAy 414 For example, it is used to give high pri-
ority to an urgent transaction or to give high priorities
to transactions that need high services.

2.3 Transaction scheduler (TS)

In RTDBSs, transactions can be periodic with syn-
chronous release times, periodic with asynchronous re-
lease times or aperiodic. EDF protocol is considered as
the best policy among RTS scheduling policies that are
adapted to RTDBSs to schedule transactions. EDF can fit
any workload of periodic or non-periodic real-time trans-
action [11]. EDF effectiveness to schedule synchronous
and asynchronous tasks was dealt with in [[12} [3].

With EDF scheduling policy, transactions are sched-
uled according to their deadlines. However, the deadline
criterion is not sufficient to express task(s) importance of a
transaction in the system. Although EDF has been shown
to improve the average success ratio of the transactions, it
discriminates against longer transactions under overload
conditions [[7, [13].

In order to optimize the system quality of service and
to schedule transactions according to both the importance
criterion, i.e. SPriority, and the deadlines, we propose
an adapted scheduling policy, called generalized earliest
deadline first (GEDF), which is described in the following
subsection.

2.3.1 GEDF Scheduling policy

GEDF is a dynamic scheduling policy where transactions
are processed in an order determined by their priorities,
i.e. the next transaction to run is the transaction with the
highest priority in the active queue. The priority is as-
signed according to both the deadline which expresses
the criticality of time and the SPriority (see subsection
[2.2) which expresses the importance of the transaction.
We consider that the zero value of the Priority, i.e.
Priority = 0, corresponds to the highest priority in the
system. Transaction 1" is assigned a priority by the for-
mula:

Priority(T) = (1—a)x Deadline(T )+ax S Priority(T) (4)

where 0 < a < 1, (see Table[I) is the weight given to
the S Priority in the priority formula and is application-
dependent. Note that if two transactions have the same
priority, we use timestamp of the transaction for data con-
flicts resolution.

2.3.2 GEDF contributions

e Update transactions are assigned high priorities with
GEDF, which guarantee both the temporal data fresh-
ness and the database consistency (see subsection

B2).

e Important transactions are assigned high priorities.
This gives them more chances to be scheduled and
executed before their deadlines.

e Each transaction executes a group of operations
(Read/Write). The operation group of a transaction
can be seen as more or less important than opera-
tions groups of other transactions. EDF policy can
not express this importance. Whereas, with GEDF
policy, we can express both the criticality of time
and the transactions importance in the priority as-
signment policy.

e By varying the parameter a, GEDF can be adapted
to the system load in order to optimize its perfor-
mances. This assertion will be explained deeply in
subsection 3.4

e GEDF can be seen as an extension of EDF schedul-
ing policy. In fact, it is sufficient to initialize the
SPriority of transactions with the same value or to
initialize the weight parameter in priority formula to
zero value, i.e. a = 0, then GEDF becomes an EDF
scheduling policy. This property is used to preserve
the EDF qualities, while avoiding its weakness (see
subsection [3.4).

2.4 Conflicts level

Data conflicts result from the behavior of the transac-
tions in the database. We assume that some data are more
important than others and they are frequently requested
by user transactions. In order to reproduce this behavior
in the transaction action (read or write), we assign each
data item a drawing probability in the following manner.

Letry < rp < ... <1 < ... < 7Ty, denote the
ranking of the data items Dy, Ds, ..., Dy, ..., D, re-
spectively. We use a ranking function defined as follows:
r; = 1 + 1, where 7 is the index of data item D;.

The probability of drawing the data item D is given by

T
Probp, = 7
where R = > | r;, is the sum of all ranks. Thus, data
with high probabilities will be more drawn than those with
low probabilities.

We select the data item Dj according to the
above probabilities, i.e. we generate a uniform
random variable ¢/ in ]0,1] and select D, if
Ue]X ! Probp,, ¥ | Probp,l, by convention
k=1ifU €]0, Probp,].

2.5 System performance metrics
2.5.1 Transaction success ratio (SRatio)

To assess the system performances, we consider transac-
tion success ratio as the main metric. The success ratio is
given by:

CommitTrype

SRatiorype = o e,
atl0Type SubmittGdTTyl)e ’

where CommitT indicates the number of transactions
committed by their deadlines, SubmittedT indicates all
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[ Database characteristics |

[ Notation [ Definition [ Values |
A User transaction arrival rate. 0.6t0 2.4.
Time Duration of one experiment. 1000 clock cycles.
Dsize Number of data in the DB. 1000.
TD-size Number of temporal data in the DB. 15% x Dsize, i.e. 150 data.
Min_avi, Max_avi Minimal and maximal avi. Min_awvi=5 clock cycles, Max_avi=100 clock cycles.
[ Transaction characteristics |
[ Notation [ Definition [ Values |
) Probability to execute a "Read” or a "Write™ operation. p(Read) = 2/3, o(Write) = 1 — p(Read)

Usersrnerval User transaction size interval.

o Initialization of ~.

Updatesize Number of operations in an update transaction.
D_ypr Deadline of update transaction (more-less approach).
P_ypr Period of update transaction (more-less approach).
Slack Function Initialization of « and 3.

SPriority Intervals of SPriority.

[5, 20] combined operations.

1 write operation.

D*U})T =1 X Avi.

P—UpT =3 X Avi.

a=4and 3 =0.9.

SPriorityypdate € [0,16] and SPriorityyser €]16, 80].
v =4/5.

Wreadrp Reading weight of one temporal data. Wreadrp = 1.

WwritenTD Writing weight of one non-temporal data. Wuwritentp = 2.

WreadNTD Reading weight of one non-temporal data. WreadnTp = 1.
[ System characteristics |
[ Notation [ Definition [ Values |

Quantum Execution capacity in one clock cycle. 20 Tasks/clock cycle

Task Indivisible action. one Read or Write operation.

ReadTime Consumption of a read operation. 1 quantum unit.

WriteTime Consumption of a write operation. 2 quantum units.

a Initialization of the parameter a in (4) when using GEDF. a=0,%,%, 525,20 &.

R Initialization of R in QoS function. R =4

SP Scheduling policy. "EDF”, "GEDF”.

CcC Concurrency Control protocol. 72PL-HP” or "OCC-Wiait-50".

Table 1. Simulation parameters.

submitted transactions to the system in the sampling pe-
riod and T'ype indicates the type of transactions class, i.e.
user Or update.

2.5.2 System Quality of Service (QoS)

The QoS can be seen as a global metric which mea-
sures the amount of service provided by the system to the
users. In this part, we define two parameters of the sys-
tem QoS: (a) the success ratios of committed user and up-
date transactions; (b) and the satisfaction degree (denoted:
SatDegree) of the system on the important transactions,
i.e. maximization of the commit of important transactions
among the committed transactions.

As in the case of SRatio, the SatDegree is also special-
ized according to the class of transactions and is measured
as follows:

2.6 General mechanism of the simulator

User transactions are submitted to the system follow-
ing a Poisson process with an average rate A into the ac-
tive queue. The deadline controller (DC) supervises the
transactions deadlines, and informs the transaction sched-
uler (TS if a transaction misses its deadline in order to
abort it. The freshness manager (FM) exploits the ab-
solute validity interval (avi) to check the freshness of a
data item before a user transaction accesses it and blocks
all user transactions reading stale temporal data. Transac-
tions data conflicts are resolved by the Concurrency con-
troller (CC) according to transactions priorities. CC in-
forms TS in the following cases: (a) when a transaction
is finished (committed) and its results are validated in the
database, (b) when a transaction is blocked waiting for a
conflict resolution, (c) when a transaction is restarted, fol-
lowing the commit of other transactions, (d) when a trans-
action is rejected because its restart is impossible, i.e. its

CommitT: e . .
SatDegreep,,, — 2iz1 """ Exp(—R x SPriority;) pest execution time is higher than its deadline minus the
. fsfmlttedTTwe Exzp(—R x SPriority;) ‘currenttime (BETr > DT — currenttime), (€) or when

where R is a scale parameter and T'ype indicates the
type of transactions class, i.e. either user or update. The
construction of Sat Degree coefficient satisfies two facts:

o it takes values between 0 and 1, and

e it increases from O to 1 according to the number of
the committed transactions with smaller S Priority.

It follows that in order to maximize the sys-
tem QoS, we have to maximize the quadruplet

(SRatioyser, SatDegreeyser, SRatioypdate, SatDegreeypdate)-

a transaction is transfered from the blocked queue to the
active queue, i.e. its data conflicts are resolved.

3 Simulations and results

3.1 Simuations parameters

To assess the performances of GEDF scheduling pol-
icy in comparison to EDF scheduling policy, we carried
out Monte Carlo simulations. This allows us to study the
transactions success ratio behavior and the system quality
of service. Given the system parameters of Table [T} we re-
peat the experiment 1000 times in each simulation in order
to obtain a sample of 1000 values for the performances,
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i.e. SRatio and QoS. Each point shown in Figures [Il land
(success ratio) and Figures [3] and [6] (quality of service)
represents the computed average of performance results
deduced from each simulation sample.

The workload of the system is varied according to both
the database size and the arrival rate A of user transac-
tions. When A = 0.6, the number of user transactions ar-
riving to the system during one experiment is about 600.
When A = 2.4, this number is about 2400. The database
workload is related to the number of temporal data (TD)
in the database and increases substantially when TD in-
creases. In our simulations, the number of temporal data
represents 15% of the database size, which leads to 7000
to 12000 update transactions in one experiment.

The absolute validity interval (avi) of each temporal
data is randomly generated from the interval [Min awvi,
Max_avi], i.e. [5,100]. Min_awi is fixed to 5 clock cycles
and Max_awi is fixed to 100 clock cycles in order to have
enough workload of temporal data (minimum 15 updates
and maximum 335 updates in the experiment duration).
Each update transaction is assigned a period and a dead-
line according to the avi of the temporal data it accesses
(for more details, see more-less approach [19]).

The parameters o and § of the slack function SF
(see [16} [17]) are assigned the values 4 and 0.9 in or-
der to obtain an average behavior of transactions load in
the system. The probability to execute a read operation
is assigned a value of 2, and a write operation proba-
bility is % We assume that a write operation requires
two quantum units for execution and a read operation re-
quires one quantum unit. The parameter ~ is assigned
the value % = 0.8 in order to minimize the effect of the
DBAyv e, 1.€. database administrator interaction, in the
SPriority (Formula 2). In order to show the influence of
the S Priority weight on the GEDF behavior and on the
system performances, we varied the value of the param-
eter a in Formula 4 page [4l The assigned values used in
simulationsarea = 0, 1, %, 1, 1, ¢, = Or 5. This variation
allows to deduce the appropriate assigned value to the pa-
rameter a according to the system workload (see subsec-
tion[3.4).

For the simulations we have implemented two main
concurrency controllers: 2PL-HP, a pessimistic protocol,
where a low priority transaction is aborted and restarted
upon a conflict to avoid priority inversion and deadlock
problems [1], and OCC-Wait-50, an optimistic proto-
col [6, [8], which incorporates a wait control mechanism
in the classical OCC. This mechanism monitors transac-
tion conflicts states and dynamically decides when, and
for how long, a low priority transaction should wait for its
conflicting higher priority transactions to complete.

In the following subsection, we introduce the discus-
sions of simulation results while comparing EDF and
GEDF using the defined weight technique to assign SPri-
ority of transactions. We also introduce a discussion on
GEDF flexibility and how it is possible to exploit this flex-
ibility in order to improve the system performances. Due
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1
1]

(a) Success ratio of update transactions when using EDF.
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(b) Success ratio of update transactions when using GEDF with
a= é,a:éanda:%.
Figure 1. Influence of scheduling policy on
update transactions with 2PL-HP protocol.

to the lack of space, we discuss in the following only the
influence of scheduling policy when using 2PL-HP proto-
col, and the system QoS when using OCC-Wait-50 proto-
col. We can argue that the simulations results revealed that
the two protocols have a similar behavior on the system
performances when using either EDF or GEDF schedul-

ing policy.

3.2 Influence of the scheduling policy

In order to analyze the influence of the scheduling pol-
icy on the success ratio performances, we compare the re-
sults obtained under EDF and GEDF when using 2PL-HP
protocol and when varying the system workload. Figures
[@and Rlillustrate graphically this comparison.

The best performances for update transactions are ob-
tained with GEDF scheduling policy (Figure [I(b)): the
success ratio is maximal, i.e. 100%. We can see also in
Figure [L(b)| that for all variations of a > 0, i.e. SPriority
weight, we obtain the same performances on the update
success ratio results for all system workload conditions.
We can conclude that when increasing the user transac-
tions number, there is no effect on the update transactions
performances. This result may be explained by the higher
priority given to update transactions which ensures their
processing before user transactions. When we look at the
performances with EDF scheduling policy (Figure [I(a)),
we notice a progressive decreasing of the success ratio
when the workload progressively becomes heavy.

With EDF, there is no difference between the two
classes of transactions, since only the deadline is taken
into account. Thus, user transactions can be scheduled
prior to update transactions if their deadlines are immi-
nent, which affects and decreases the success ratio of
update transactions and degrades the temporal data con-
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sistency in the database. This affects considerably the
success ratio of user transactions, especially when the
system workload is heavy. In the following, we com-
ment the user transactions performances on three inter-
vals: A € 0.6, 1.2[ (light workload to average workload),
A € [1.2,1.5] (average workload) and A €]1.5,2.4] (high
workload).

When we consider the values of A\ in the inter-
val [0.6,1.2[ (see Figure [2(a)), we notice that when
the system is not overloaded, EDF gives better perfor-
mances on user transactions SRatio than GEDF with
all variations of the parameter a. Indeed, when using
GEDF scheduling policy, the lower priority transactions
must wait for the commit of the higher priority transac-
tions to be executed even if their deadlines are imminent.
This has a negative effect when the system workload is
light, which reduces the chances of lower priority trans-
actions to commit, i.e. the user transaction success ratio
decreases.

When the value of A is in the interval [1.2,1.5], i.e. av-
erage workload (see Figure [2(b)), we can see that GEDF
provides better results than EDF according to the varia-
tions of the SPriority weight parameter. The reversible
points corresponding to those situations can be seen re-
spectively in Figure 2(B)} A ~ 1.2 for GEDF with a = £,
A = 1.25 for GEDF with @ = 1, A ~ 1.28 for GEDF with
a = %, A~ 1.32 for GEDF with @ = %, A ~ 1.38 for
GEDF with a = , A ~ 1.45 for GEDF with a = £, and
A = 1.48 for GEDF with a = 3. We will see in subsec-
tion 3.4 how the reversible points can be used to enhance
the system performances in this interval.

When the system workload is heavy, i.e. A €]1.5,2.4],
the situation is reversed completely in favor of GEDF
that provides better performances than EDF (for exam-
ple SRatio(GEDF(a = 3)) ~ SRatio(EDF) + 10%
when A = 2.4) with all values assigned to the parame-
ter a. We also deduce that when the workload increases,
the improvement of the system performances is corre-
lated with the increasing of the value assigned to the pa-
rameter a. The results obtained by GEDF can be ex-
plained by the fact that the temporal data consistency
is more safeguarded with GEDF than with EDF pol-
icy (see the success ratio of update transactions in Fig-
ure [I(B)). With GEDF, the waiting time of fresh data
is reduced thanks to the success ratio of update trans-
actions, which is maximal, i.e. 100%. This gives to
the user transactions reading temporal data the maximum
chances to meet their deadlines, decreasing then the sys-
tem load. Moreover, only the important transactions are
scheduled in the system. When the system workload
is heavy, GEDF scheduling policy reduces the useless
aborts and restarts, that are inherent to EDF scheduling
policy, i.e. transactions that are aborted and restarted
by other transactions which finally miss their deadlines.

3.3 System Quality of Service (QoS)

In the following, we discuss and compare the sys-
tem quality of service (QoS) registered under EDF and
GEDF when using OCC-Wait-50 protocol. Figures [3(a)]
and [3(b)] illustrate graphically this comparison. When
we look at the QoS given on update transactions (Fig-
ure [B(@)), we deduce that all variants of GEDF give the
optimal performances@ on SRatio and SatDegree, i.e
(SRatioypdate, SatDegreeypaate) = (1,1). We can
conclude that GEDF scheduling policy is better than EDF
and gives high QoS on update transactions in all sys-
tem workload conditions. Thus GEDF scheduling policy
maintains the temporal data consistency in all workload
conditions.

When we consider QoS on user transactions (Fig-
ure [3(B)), the values of (SRatioyser, SatDegreeyser)
given by GEDF scheduling policy are related to the vari-
ation of the parameter a, i.e. the SPriority weight. In
the following, we comment the QoS of user transactions
in three intervals A € [0.6,1.1[, A € [1.1,1.5] and
A € [1.5,2.4] where we illustrate respectively the three
system situations: light workload, average workload, and
high workload.

When X is in the interval [0.6,1.1], EDF
gives the best QoS on user transactions, i.e.
QoSEpr (SRatioyser, SatDegree,ser) >
QoScepr(SRatioyser, SatDegreeyser)  With  all
variations of the parameter a. This can be explained by
the high SRatio registered with EDF when the system
workload is light (as detailed in subsection 3.2) which
gives high SatDegree on the committed user transactions.

When X is in the interval [1.1, 1.5[, we note that EDF
SRatio is higher than GEDF SRatio before the reversible
points deduced in subsection[3.2] The situation is reversed
in favor of GEDF with SatDegree according to the value
assigned to the parameter a. The reversible points can be
seen respectively in Figure [3(B)} A = 1.1 for GEDF with
a = 3, A = 1.15 for GEDF with @ = %, and A = 1.3
for GEDF with a = % These cases indicate that the num-
ber of committing important transactions with GEDF is
higher than that of EDF. When we combine the results
with the reversible points deduced in subsection we
can argue that GEDF gives a better QoS than EDF. We
can see these cases, for example, in Figure 3(b)] in the in-
tervals A € [1.25, 1.5 when a = £, A € [1.38,1.5[ when
a =+, and X € [1.48,1.5[ when a = 3. With GEDF, the
importance criterion (SPriority) of a transaction influences
its scheduling order. This gives the important transactions
the best chances to commit before their deadlines.

When A > 1.5, GEDF variants give
the best QoS on user transactions, ie.
QoScEDF (SRatiousemSatDeyreeuser) > QoSEpF
(SRatioyser, SatDegreeyser)  (see  Figure  B(D)).
This can be explained by the best capacity of GEDF

2In Figure [3(@) the SRatio and SatDegree of update transactions
when using GEDF is maximal, i.e. 100% in all conditions and for all
a> 0.
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Figure 4. The weight assignment to the
SPriority and Deadline according to the
system load when using GEDF.

to schedule transactions when the workload is heavy,
which ensures a better SRatio (see subsection [3.2] ).
We can also explain this result by the GEDF capacity
to succeed in the commit of important transactions
than EDF.

3.4 GEDF flexibility according to the system
workload

In this subsection, we show the GEDF flexibility and
its capacity to allow the system manager to interact and to
adapt to different system workload situations. To this pur-
pose, we exploit the GEDF variants to enhance the system
performances.
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Figure 5. Comparison between EDF and flexible GEDF
transactions SRatio performances.

Our objective is to obtain the optimal output of the sys-
tem on user transaction SRatio and QoS. To this purpose,
we have deduced by simulations the adequate values of the
parameter a according to the system workload intervals.
Figure dlshows the weight values assigned to the SPriority
and deadline which we use in GEDF priority assignment
formula according to the system workload intervals. In
Figure [ we can see for example when ) is between 0.6
and 1.2, the assigned value to « is 0 and when X is between
1.5 and 1.7 the assigned value to a is £. The intervals of
the parameter o values are deduced by simulation in order
to have the best results with GEDF.

A comparison of success ratio obtained by GEDF
scheduling policy when varying the parameter a according
to system load (see Figure ) and EDF scheduling policy
are summarized in Figure Bl The curves in Figure [5(b)]
show the effectiveness of the GEDF scheduling policy to
provide a good output of the system, i.e. we obtain the
best success ratio of user transactions for all experimental
conditions, unlike with EDF. When A < 1.2, the parame-
ter a is assigned zero value, i.e. GEDF becomes an EDF
scheduling policy and allows to exploit the EDF character-
istics when the system is not overloaded. When \ > 1.2
and according to the workload intervals, we use the ade-
quate values for the parameter a. This allows GEDF to
give the best performances on user transactions success
ratio. In addition, we can see the influence of the param-
eter a on update transactions (SRatio). When a = 0, the
SRatio decreases up to A = 1.2 and when o > 0, the
SRatio becomes optimal, i.e. 100% (see Figure 5(@)).

The related QoS results obtained on the user transac-
tions when exploiting the GEDF flexibility in compari-
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son to the EDF scheduling policy are summarized in Fig-
ure[@l We can argue that GEDF provides better QoS on
user transactions in all system conditions workload, and
it optimizes not only the S Ratio but also the satisfaction
degree, i.e. SatDegree, on the user transactions in all
workload conditions (note that SatDegree(GEDF) ~
SatDegree(EDF) + 15%, when A = 2.4).

4 Conclusion

In this paper, we have proposed a weighted approach
which expresses the transactions tasks importance and a
new scheduling policy (GEDF) to improve the system per-
formances in firm RTDBS. The GEDF scheduling policy
uses the deadline and the importance criterion to schedule
transactions. The impact of the GEDF scheduling policy
on RTDBS performances, i.e. transaction success ratio
and system QosS, is studied under different system work-
load situations and when using different concurrency con-
trol protocols. The study is done in comparison with EDF
scheduling policy performances. We have also discussed
the GEDF scheduling policy results and have shown its
flexibility according to the system workload and its ef-
fectiveness to improve the transactions success ratio and
system QoS in firm RTDBS.

In our future work, we plan to deduce the function that
expresses the value of the parameter o in Formula 4 ac-
cording to the system workload in order to give GEDF
scheduling policy a better flexibility. We also project to
extend our study to other scheduling policies and con-
currency control protocols to compare their performances
with the results obtained in this paper.
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