
i

Proceedings of the

15th International Conference
on Real-Time and Network Systems

RTNS’07

LORIA, Nancy, France

29-30 March 2007

http://rtns07.irisa.fr

ii

iii

Table of contents

15th conference on Real-Time and Network Systems
RTNS’07

Message from the conference chairs ... vii
Organizing committee ...viii
Program committee ... ix
Reviewers ... x

Keynote presentation

Implementation and Challenging Issues of Flash-Memory Storage Systems.. xi
Tei-Wei Kuo, National Taiwan University, Taiwan

Formal methods

The Timed Abstract State Machine Language: An Executable Specification Language for Reactive
Real-Time Systems.. 15
Martin Ouimet, Massachusetts Institute of Technology, USA
Kristina Lundqvist, Massachusetts Institute of Technology, USA
Mikael Nolin, Maelardalen University, Sweden

Extended Real-Time LOTOS for Preemptive Systems Verification.. 25
Tarek Sadani, LAAS-CNRS / Ensica, France
Pierre de Saqui-Sannes, LAAS-CNRS / Ensica, France
Jean-Pierre Courtiat, LAAS-CNRS, France

Generation of Tests for Real-time Systems with Test Purposes ... 35
Sebastien Salva, LIMOS, France
Patrice Laurençot, LIMOS, France

Architectures and worst-case execution time estimation

Predictable Performance on Multithreaded Architectures for Streaming Protocol Processing.......... 47
Matthias Ivers, Institut für Datentechnik und Kommunikationsnetze, Germany
Bhavani Janarthanan, Institut für Datentechnik und Kommunikationsnetze, Germany
Rolf Ernst, Institut für Datentechnik und Kommunikationsnetze, Germany

A Context Cache Replacement Algorithm for Pfair Scheduling... 57
Kenji Funaoka, Keio University, Japan
Shinpei Kato, Keio University, Japan
Nobuyuki Yamasaki, Keio University, Japan

Exact Cache Characterization by Experimental Parameter Extraction .. 65

iv

Tobias John, Chemnitz University of Technology, Germany
Robert Baumgartl, Chemnitz University of Technology, Germany

Towards Predictable, High-Performance Memory Hierarchies in Fixed-Priority Preemptive
Multitasking Real-Time Systems .. 75
Eugenio Tamura, Pontificia Universidad Javeriana, Cali, Colombia
José Vicente Busquets-Mataix, Universidad Politécnica de Valencia, Spain
Antonio Martí Campoy, Universidad Politécnica de Valencia, Spain

On the Sensitivity of WCET Estimates to the Variability of Basic Blocks Execution Times 85
Hugues Cassé, IRIT, Toulouse, France
Christine Rochange, IRIT, Toulouse, France
Pascal Sainrat, IRIT, Toulouse, France

Scheduling 1

Efficient Computation of Response Time bounds under Fixed-Priority Scheduling............................ 95
Enrico Bini, Scuola Superiore Sant'Anna, Italy
Sanjoy Baruah, University of North Carolina, USA

Approximate Feasibility Analysis and Response-Time Bounds of Static-Priority Tasks with Release
Jitters 105
Pascal Richard, LISI/ENSMA, France
Joel Goossens, Universite Libre de Bruxelles, Belgium
Nathan Fisher, University of North Carolina, Chapel Hill, USA

Schedulability Analysis using Exact Number of Preemptions and no Idle Time for Real-Time Systems
with Precedence and Strict Periodicity Constraints ... 113
Patrick Meumeu Yomsi, INRIA Rocquencourt, France
Yves Sorel, INRIA Rocquencourt, France

Algorithm and Complexity for the Global Scheduling of Sporadic Tasks on Multiprocessors with
Work-Limited Parallelism .. 123
Sebastien Collette, Université Libre de Bruxelles, Belgium
Liliana Cucu, Université Libre de Bruxelles, Belgium
Joel Goossens, Université Libre de Bruxelles, Belgium

Scheduling 2

Schedulability Analysis of OSEK/VDX Applications ... 131
Pierre-Emmanuel Hladik, LINA, France
Anne-Marie Deplanche, IRCCyN, France
Sebastien Faucou, IRCCyN, France
Yvon Trinquet, IRCCyN, France

Improvement of the Configuration and the Analysis of Posix 1003.1b Scheduling 141
Mathieu Grenier, LORIA, France
Nicolas Navet, LORIA, France

An Extended Scheduling Protocol for the Enhancement of RTDBSs Performances.......................... 151

v

Samy Semghouni , Laboratoire Informatique L.I.T.I.S antenne du Havre, France
Bruno Sadeg, Laboratoire Informatique L.I.T.I.S antenne du Havre, France
Laurent Amanton, Laboratoire Informatique L.I.T.I.S antenne du Havre, France
Alexandre Berred, Laboratoire de Mathématiques Appliquées du Havre, France

Scheduling and control

Comparative Assessment and Evaluation of Jitter Control Methods... 163
Giorgio Buttazzo, Scuola Superiore S. Anna, Pisa, Italy
Anton Cervin, University of Lund, Sweden

Reducing Delay and Jitter in Software Control Systems.. 173
Hoai Hoang, Halmstad University, Halmstad, Sweden
Giorgio Buttazzo, Scuola Superiore S. Anna, Pisa, Italy

Task Handler Based on (m,k)-firm Constraint Model for Managing a Set of Real-Time Controllers183
Ning Jia, LORIA - University of Nancy, France
YeQiong Song, LORIA - University of Nancy, France
Francoise Simonot-Lion, LORIA - University of Nancy, France

Networks and distributed systems

Interface Design for Real-Time Smart Transducer Networks - Examining COSMIC, LIN, and TTP/A
as Case Study ... 195
Wilfried Elmenreich, Vienna University of Technology, Germany
Hubert Piontek, University of Ulm, Germany
Jörg Kaiser, Otto-von-Guericke-University Magdeburg, Germany

Delay-Bounded Medium Access for Unidirectional Wireless Links .. 205
Björn Andersson, Institute Polytechnic Porto, Portugal
Nuno Pereira, Institute Polytechnic Porto, Portugal
Eduardo Tovar, Institute Polytechnic Porto, Portugal

Tolerating Arbitrary Failures in a Master-Slave Clock-Rate Correction Mechanism for Time-
Triggered Fault-Tolerant Distributed Systems with Atomic Broadcast .. 215
Astrit Ademaj, Vienna University of Technology, Real-Time Systems Group, Austria
Alexander Hanzlik, Vienna University of Technology, Real-Time Systems Group, Austria
Hermann Kopetz, Vienna University of Technology, Real-Time Systems Group, Austria

Exploiting Slack for Scheduling Dependent, Distributable Real-Time Threads in Unreliable
Networks... 225
Kai Han, Virginia Tech, USA
Binoy Ravindran, Virginia Tech, USA
Douglas Jensen, Mitre Inc. , USA

vi

vii

Message from the conference chairs
RTNS’07

It is our great pleasure to welcome you to the fifteenth Conference on Real-Time and Network
Systems (RTNS’07) in Nancy, France. The primary purpose of RTNS is to provide the
participants, academic researchers or practitioners, with a forum to disseminate their work and
discuss emerging lines of research in the area of real-time and network systems: real-time system
design and analysis, infrastructure and hardware for real-time systems, software technologies and
applications.

The first thirteenth issues of the conference were held within the “Real Time Systems” trade show in
Paris (at first, Palais des Congrès Porte Maillot, then Paris Expo, porte de Versailles). In 2005, it was
decided to make the conference independent of the exhibition, emphasize the role of Systems on
Networks (hence the transformation of the name from RTS to RTNS), and switch to English as the
official language of the conference.

In response to the call for papers, 42 papers were submitted, among which 22 were selected by the
international Program Committee. The presentation are organized in 6 sessions covering all major
aspects of real-time systems: task scheduling (2 sessions), scheduling and control, formal methods,
architecture and worst-case execution time estimation, real-time networks and distributed systems. In
addition to the contributed papers, the RTNS technical program has the privilege to include a keynote
talk by Professor Tei-Wei Kuo, from the National Taiwan University, who will share his views on the
challenging issues raised by the use of flash-memory storage systems in embedded real-time systems..
Furthermore, the second edition of the “Junior Researcher Workshop on Real-Time Computing” is
held in conjunction with RTNS, and is a good opportunity for young researchers to present and get
feedback on their ongoing work in a relaxed and stimulating atmosphere. All these presentations will
provide an excellent snapshot of the current research results and directions in the area of real-time
systems, and will certainly make RTNS a successful event.

Credit for the quality of the program is of course to be given to the authors who submitted high-quality
papers and the program committee members and external referees who gave their time and offer their
expertise to provide excellent reviews (at least three per paper). We are sincerely grateful to all of
them.

RTNS’07 would not be possible without the generous contribution of many volunteers and
institutions. First, we would like to express our sincere gratitude to our sponsors for their
financial support : Conseil Général de Meuthe et Moselle, Conseil Régional de Lorraine,
Communauté Urbaine du Grand Nancy, Université Henri Poincaré, Institut National
Polytechnique de Lorraine and LORIA and INRIA Lorraine. We are thankful to Pascal Mary for
authorizing us to use his nice picture of “place Stanislas” for the proceedings and web site (many
others are available at www.laplusbelleplacedumonde.com). Finally, we are most grateful to the local
organizing committee that helped to organize the conference. Let us hope for a bright future in the
RTNS conference series !

 Nicolas Navet, INRIA-Loria, Nancy, France
 Françoise Simonot-Lion, LORIA-INPL, Nancy, France
 General co-chairs

 Isabelle Puaut, University of Rennes / IRISA, France
 Program chair

viii

Organizing Committee
RTNS’07

General co-chairs
 Nicolas Navet, INRIA-Loria, Nancy, France
 Françoise Simonot-Lion, LORIA-INPL, Nancy, France

Program chair
 Isabelle Puaut, University of Rennes – IRISA, Rennes, France

Junior workshop on real-time systems
 Liliana Cucu, LORIA-INPL, Nancy, France

Local arrangements

Laurence Benini, INRIA, France
Najet Boughanmi, INRIA-Loria, France
Anne-Lise Charbonnier, INRIA, France

 Liliana Cucu, LORIA-INPL, Nancy, France
 Jean-François Deverge, IRISA, Rennes, France

Mathieu Grenier, INRIA-Loria, France
Christophe Païs, IRISA, Rennes, France
Xavier Rebeuf, LORIA-INPL, France
Olivier Zendra, INRIA-Loria, France

ix

Program Committee
RTNS’07

Sanjoy Baruah, University of North Carolina, USA
Guillem Bernat, University of York, UK

Enrico Bini, Scuola Superiore Sant'Anna, Pisa, Italy
Alfons Crespo, Polytechnic University of Valencia, Spain

Jean-Dominique Decotignie, EPFL, Lausanne, Switzerland
Anne-Marie Déplanche, IRCCyN, Nantes, France
Jose. A. Fonseca, University of Aveiro, Portugal

Josep M. Fuertes, Technical University of Catalonia, Spain
Joel Goossens, ULB, Brussels, Belgium
Guy Juanole, LAAS, Toulouse, France

Joerg Kaiser, University of Magdeburg, Germany
Raimund Kirner, TU Vienna, Austria

Tei-Wei Kuo, National Taiwan University, Taiwan
Lucia Lo Bello, University of Catania, Italy

Zoubir Mammeri, IRIT/UPS Toulouse, France
Philippe Marquet, INRIA/LIFL, Lille, France
Pascale Minet, INRIA-Rocquencourt, France
Nicolas Navet, INRIA-Loria, Nancy, France

Nimal Nissanke, London South Bank University, UK
Mikael Nolin, Mälardalen University, Sweden

Marc Pouzet, Université Paris Sud-LRI, France
Pascal Richard, LISI / Poitiers, France

Guillermo Rodríguez-Navas, University of Balearic Islands, Palma de Mallorca, Spain
Bruno Sadeg, LITIS - University of Le Havre, France

Maryline Silly-Chetto, IRCCyN, Nantes, France
Daniel Simon, INRIA-Rhônes Alpes, France

Françoise Simonot-Lion, LORIA-INPL, Nancy, France
Eduardo Tovar, Polytechnic Institute of Porto, Portugal

Yvon Trinquet, IRCCyN, Nantes, France
Francisco Vasques, University of Porto, Portugal

François Vernadat, LAAS, Toulouse, France
Laurence T. Yang, St. Francis Xavier University, Canada

x

Reviewers

RTNS’07

Slim Abdellatif

Bjorn Andersson
Patricia Balbastre

Sanjoy Baruah
Mongi BenGaïd
Guillem Bernat
Marko Bertogna

Enrico Bini
Hadrien Cambazard

Chien-Wie Chen
Annie Choquet-Geniet

Yuan-Sheng Chu
Michele Cirinei
Alfons Crespo

Jean-Dominique Decotignie
Anne-Marie Déplanche

Andreas Ermedahl
Sébastien Faucou

Mamoun Filali
Jose A. Fonseca
Josep M. Fuertes

Joel Goossens
Emmanuel Grolleau

Pierre-Emmanuel Hladik
Ping-Yi Hsu
Guy Juanole
Joerg Kaiser

Thomas Kiebel
Raimund Kirner

Anis Koubaa

Tei-Wei Kuo
Didier Lime

Jian-Hong Lin
Lucia Lo Bello

Zoubir Mammeri
Philippe Marquet

Pascale Minet
Ricardo Moraes
Alexandre Mota
Nicolas Navet

Nimal Nissanke
Mikael Nolin

Harald Paulitsch
Marc Pouzet

Peter Puschner
Pascal Richard

Bernhard Rieder
Guillermo Rodríguez-Navas

Bruno Sadeg
Michael Schulze

Maryline Silly-Chetto
Daniel Simon

Françoise Simonot-Lion
Klaus Steinhammer

Eduardo Tovar
Yvon Trinquet

Francisco Vasques
François Vernadat
Ingomar Wenzel
Laurence T. Yang

xi

Keynote presentation
RTNS’07

Implementation and Challenging Issues of
Flash-Memory Storage Systems

Tei-Wei Kuo

National Taiwan University

Flash memory is widely adopted in the implementations of storage systems, due to its nature in
excellent performance, good power efficiency, and superb vibration tolerance. However, engineers
face tremendous challenges in system implementations, especially when the capacity of flash memory
is expected to increase significantly in the coming years. This talk will address the implementation
issues of flash-memory storage systems, such as performance and management overheads. Summary
on existing solutions will be presented, and future challenges will also be addressed.

Prof. Tei-Wei Kuo received the B.S.E. degree in Computer Science and Information
Engineering from National Taiwan University in Taipei, Taiwan, ROC, in 1986. He
received the M.S. and Ph.D. degrees in Computer Sciences from the University of
Texas at Austin in 1990 and 1994, respectively. He is currently a Professor and the
Chairman of the Department of Computer Science and Information Engineering,
National Taiwan University. Since February 2006, he also serves as a Deputy Dean of
the National Taiwan University. His research interests include embedded systems, real-

time operating systems, and real-time database systems. He has over 140 technical papers published or
been accepted in journals and conferences and a number of patents. Prof. Kuo works closely with the
industry and serves as a review committee member of several government agencies and
research/development institutes in Taiwan.

Dr. Kuo serves as the Program Chair of IEEE Real-Time Systems Symposium (RTSS) in 2007 and a
Program Co-Chair of the IEEE Real-Time Technology and Applications Symposium (RTAS) in 2001.
He is also an Associate Editor of several journals, such as the Journal of Real-Time Systems (since
1998) and IEEE Transactions on Industrial Informatics (since 2007). Dr. Kuo also serves as the
Steering Committee Chair of IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA) since 2005. He is an Executive Committee member of the IEEE
Technical Committee on Real-Time Systems (TC-RTS) since 2005. Dr. Kuo received several
prestigious research awards in Taiwan, including the Distinguished Research Award from the ROC
National Science Council in 2003, and the ROC Ten Outstanding Young Persons Award in 2004 in
the category of scientific research and development.

xii

 RTNS’07 – Session 1

Formal methods

13

14

The Timed Abstract State Machine Language: An Executable Specification
Language for Reactive Real-Time Systems

Martin Ouimet, Kristina Lundqvist, and Mikael Nolin
Embedded Systems Laboratory

Massachusetts Institute of Technology
Cambridge, MA, 02139, USA

{mouimet, kristina}@mit.edu, mikael.nolin@mdh.se

Abstract

We present a novel language for specifying real-time
systems. The language addresses a key challenge in the
design and analysis of real-time systems, namely the inte-
gration of functional and non-functional properties into a
single specification language. The non-functional proper-
ties that can be expressed in the language include timing
behavior and resource consumption. The language en-
ables the creation of executable specifications with well-
defined execution semantics, abstraction mechanisms, and
composition semantics. The language is based on the the-
ory of abstract state machines. Extensions to the theory
of abstract state machines are presented to enable the
explicit specification of non-functional properties along-
side functional properties. The theory is also extended
to define the execution semantics for the hierarchical and
parallel composition of specifications. The features of
the specification language are demonstrated using a light
switch example and the Production Cell case study.

1 Introduction

The benefits and drawbacks of using formal methods
have been documented heavily [10, 13]. Cited benefits
include the detection of defects early in the engineering
cycle, precise and concise specifications , and automated
analysis [29]. Cited drawbacks include the heavy use of
arcane mathematical notations, the lack of scalability of
most methods, and the large investment typically required
to use formal methods [13]. Besides the negative conno-
tation that the term ”formal methods” has taken in some
circles, the benefits of unambiguous specifications and au-
tomated analysis during the early phases of the lifecycle
have been generally accepted [5].

In the design and development of reactive real-time
systems, the design and specification problem is more
challenging than for traditional interactive systems be-
cause both functional behavior and non-functional behav-
ior are part of the system’s utility and must be specified

precisely and concisely [9]. Furthermore, the specifica-
tion and analysis of system designs is often performed
at various levels of abstraction [17]. For example, the
non-functional properties of system architectures can be
specified and analyzed using an Architecture Descrip-
tion Language (ADL) such as the Society of Automotive
Engineers’ Architecture Analysis and Design Language
(AADL) [28]. At the software application level, func-
tional behavior can be specified and analyzed using state-
transition systems such as finite state automata [18] or
Petri nets [11]. Timing behavior can be specified and ana-
lyzed at either level using special purpose languages such
as real-time logic or through specialized methods such as
rate-monotonic analysis [12]. The need for multiple lan-
guages to specify and analyze system behavior can be ex-
pensive and error-prone because there is no formal con-
nection between the different specifications resulting from
the use of multiple languages [17]. This situation leads to
redundant specifications that may not be consistent with
one another.

This paper introduces the Timed Abstract State Ma-
chine (TASM) specification language, a novel specifica-
tion language that removes the need to use many other
specification languages. More specifically, TASM incor-
porates the specification of functional and non-functional
behavior into a unified formalism. Furthermore, TASM is
based on the theory of abstract state machines, a method
for system design that can be applied at various levels of
abstraction [8]. The TASM language has formal seman-
tics, which makes its meaning precise and enables exe-
cutable specifications.

The motivations and benefits of using Abstract State
Machines (ASM), formerly known as evolving algebras,
for hardware and software design have been documented
in [6]. On the practical-side, ASMs have been used suc-
cessfully on a wide range of applications, ranging from
hardware-software systems to high-level system design
[8]. Furthermore, there is enough evidence to believe that
ASMs could provide a literate specification language, that
is, a language that is understandable and usable without
extensive mathematical training [13].

15

The anecdotal evidence supporting the success of the
ASM method [6] suggests that tailoring the formalism to
the area of reactive real-time systems could achieve sim-
ilar benefits. The work presented in this paper extends
the ASM formalism to make it amenable to real-time sys-
tem specification. More specifically, the ASM formalism
is extended to enable the explicit specification of timing
behavior and resource consumption behavior. The result-
ing specification language, The Timed Abstract State Ma-
chine (TASM) language enables the specification of func-
tional and non-functional properties into a unified formal-
ism. The TASM language provides executable specifica-
tions that can express both sequential and concurrent be-
havior.

This paper is divided into five sections in addition
to this Introduction. The following section situates the
present work in relation to other research on similar top-
ics. The abstract state machine formalism is introduced in
section 3. Section 4 explains the modifications that have
been made to the presented formalism to make it amenable
to specification of real-time systems. Each extension is il-
lustrated through the use of a light switch example. Sec-
tion 5 provides a more substantial example of the feature
of the TASM language through the production cell case
study [19]. Finally, the Conclusion and Future Work sec-
tion, Section 6, summarizes the contributions of the re-
search and explains the additions that are to come in future
development.

2 Related Work

In the academic community, there are numerous math-
ematical formalisms that have been proposed for specify-
ing and analyzing real-time systems. The formalism pre-
sented in this paper is similar to the timed transition sys-
tems formalism presented in [16]. The two formalisms
differ in the concurrency semantics since timed transition
systems adopt an interleaving model whereas ASM the-
ory adopts a general model of concurrency [8]. The most
popular formalisms developed in academia can be classi-
fied into three main families: automata, process algebra,
and Petri nets [3].

In the automata family, timed automata are finite state
automata extended with real-valued clocks and communi-
cation channels. The formalism has been used on a vari-
ety of applications and is the formalism used in the model
checker UPPAAL [18]. The formalism is well-suited for
analysis by model-checking, but the lack of structuring
mechanisms makes abstraction and encapsulation difficult
to achieve [4]. Statecharts and the associated tool STATE-
MATE [15] augment automata with structuring mecha-
nisms (superstates). Statecharts also include time con-
cepts through the use of delays and timers.

In the Petri net family, a large number of variations on
the traditional Petri net model have been developed, in-
cluding various models of time [11]. Non-determinism
is an essential part of Petri nets, which makes Petri net

unsuitable for the specification of safety-critical real-time
systems where predictability is of highest importance [4].

In the process algebra family, various offsprings of
Communicating Sequential Processes (CSP) [2] and the
Calculus of Communicating Systems (CCS) [20] have
been defined, including multiple versions of timed process
algebra [2]. However, in this formalism, it is difficult to
express non-functional properties other than time (e.g., re-
source consumption). Timed LOTOS (ET-LOTOS) [2] is
an example of a language from the process algebra family.
Other well known formalisms include the Synchronous
languages ESTEREL and LUSTRE [4].

In the industrial community, especially in the
aerospace and automotive industries, the Unified Mod-
eling Language (UML) [21] and the Architecture Anal-
ysis and Design Language (AADL) [28] have come to
dominate notational conventions. At its onset, UML did
not have formal semantics and remained a graphical lan-
guage with limited support for automated analysis. Since
its inception, many tools have defined their own seman-
tics for UML, but the international standard [21] still does
not contain a standard definition of the formal semantics.
AADL contains formal semantics but is still in the early
development stages, so it could not be completely eval-
uated. It is also unclear whether AADL can be used to
specify low level functional behavior or if it is only appli-
cable to architectural reasoning.

In the abstract state machine community, ASMs have
been used to model specific examples of real-time sys-
tems [7, 14]. Some extensions have been proposed to the
ASM theory to include timing characteristics [27] but the
extensions make no mention of how time is to be speci-
fied (only the theoretical semantics are proposed) and do
not address concurrency. The composition extensions for
ASMs presented in this paper are based on the XASM lan-
guage [1]. The XASM language does not include time
or resource specification and only deals with single agent
ASMs. The specification of resource consumption has not
been addressed in the ASM community.

3 The Abstract State Machine (ASM) For-
malism

The abstract state machine formalism revolves around
the concepts of an abstract machine and an abstract state.
System behavior is specified as the computing steps of the
abstract machine. A computing step is the atomic unit of
computation, defined as a set of parallel updates made to
global state. A state is defined as the values of all vari-
ables at a specific step. A machine executes a step by
yielding a set of state updates. A run, potentially infinite,
is a sequence of steps.

The following subsection presents the basic concepts
of ASM theory. For a complete description of the theory
of abstract state machines, the reader is referred to [8].
Our proposed extensions to the base theory are explained
in section 4.

16

3.1 Basic ASM Specification
The term specification is used to denote the complete

document that results from the process of writing down a
system design. This section introduces specifications that
contain only a single abstract state machine, also known
as basic or single-agent ASMs in the ASM community
[8].

A basic abstract state machine specification is made up
of two parts - an abstract state machine and an environ-
ment. The machine executes based on values in the en-
vironment and modifies values in the environment. The
environment consists of two parts - the set of environment
variables and the universe of types that variables can have.
In the TASM language all variables are strongly typed.
The machine consists of three parts - a set of monitored
variables, a set of controlled variables, and a set of rules.
The monitored variables are the variables in the environ-
ment that affect the machine execution. The controlled
variables are the variables in the environment that the ma-
chine affects. The set of rules are named predicates, writ-
ten in precondition-effect style, that express the state evo-
lution logic.

Formally, a specification ASMSPEC is a pair:

ASMSPEC = 〈E, ASM〉
Where:

• E is the environment, which is a pair:

E = 〈EV, TU〉
Where:

– EV denotes the Environment Variables, a set of
typed variables

– TU is the Type Universe, a set of types that in-
cludes:

∗ Reals: RV U = R
∗ Integers: NV U = {. . ., −1, 0, 1, . . .}
∗ Boolean constants: BV U = {True, False}
∗ User-defined types: UDV U

• ASM is the machine, which is a triple:

ASM = 〈MV, CV,R〉
Where:

– MV is the set of Monitored Variables = {mv |
mv ∈ EV and mv is read-only in R}

– CV is the set of Controlled Variables = {cv | cv
∈ EV and cv is read-write in R}

– R is the set of Rules = {(n, r) | n is a name
and r is a rule of the form if C then A where C
is an expression that evaluates to an element in
BV U and A is an action}

An action A is a sequence of one or more updates to
environment variables, also called an effect expression, of
the form v := vu where v ∈ CV and vu is an expression
that evaluates to an element in the type of v.

Updates to environment variables are organized in
steps, where each step corresponds to a rule execution.
In the rest of this paper, the terms step execution and rule
execution are used interchangeably. A rule is enabled if
its guarding condition, C, evaluates to the boolean value
True. The update set for the ith step, denoted Ui, is de-
fined as the collection of all updates to controlled variables
for the step. An update set Ui will contain 0 or more pairs
(cv, v) of assignments of values to controlled variables.

A run of a basic ASM is defined by a sequence of up-
date sets.

3.1.1 Light Switch Example Version 1

A small example is presented to illustrate some of the fea-
tures of the TASM language. Here the example shows a
basic ASM specification describing the logic for switch-
ing a light on or off based on whether a switch is up or
down. The specification is divided into sections, identi-
fied by capital letters followed by a colon. Comments in
the specification are preceded by the escape sequence “//
”.

ENVIRONMENT:

USER-DEFINED TYPES:
light_status := {ON, OFF}
switch_status := {UP, DOWN}

VARIABLES:
light_status light := OFF
switch_status switch := DOWN

MAIN MACHINE:

MONITORED VARIABLES:
switch

CONTROLLED VARIABLES:
light

RULES:

R1: Turn On
if light = OFF and switch = UP then

light := ON

R2: Turn Off
if light = ON and switch = DOWN then

light := OFF

A sample run with the initial environment ((light,
OFF), (switch, UP)) yields one update set:

U1 = ((light, ON))

After the step has finished executing, the environment
becomes: ((light, ON), (switch, UP)).

17

4 The Timed Abstract State Machine Lan-
guage

Here we describe the TASM language. We do this by
introducing a series of modifications and extensions to the
ASM formalism from Section 3.

4.1 Time
The TASM approach to time specification is to spec-

ify the duration of a rule execution. In the TASM world,
this means that each step will last a finite amount of time
before an update set is applied to the environment. Syn-
tactically, time gets specified for each rule in the form of
an annotation. The specification of time can take the form
of a single value t, or can be specified as an interval [tmin,
tmax]. The lack of a time annotation for a rule is assumed
to mean t = 0. Semantically, a time annotation is inter-
preted as a value ∈ R. If a time annotation is specified
as an interval, the rule execution will last an amount ti
where ti is taken randomly from the interval, which is in-
terpreted as a closed interval on R. The approach uses
relative time between steps since each step will have a fi-
nite duration. The total time for a run of a given machine
is simply the summation of the individual step times over
the run. The time extensions are formally detailed in the
following section, and the example from the previous sec-
tion is extended to include time annotations.

4.2 Resources
The specification of non-functional properties includes

timing characteristics as well as resource consumption
properties. A resource is defined as a global quantity
that has a finite size. Power, memory, and communica-
tion bandwidth are examples of resources. Resources are
used by the machine when the machine executes rules.

Because resources are global quantities, they are de-
fined at the environment level. The environment E is ex-
tended to reflect the definition of resources:

E = 〈EV, TU,ER〉
Where:

• EV and TU remained unchanged from Section 3.1

• ER is the set of named resources:

– ER = {(rn, rs) | rn is the resource name, and
rs is the resource size, a value ∈ R}

Similarly to time specification, syntactically, each rule
specifies how much of a given resource it consumes. The
specification of resource consumption takes the form of
an annotation, where the resource usage is specified ei-
ther as an interval or as a single value. The omission of
a resource consumption annotation is assumed to mean
zero resource consumption. The semantics of resource
usage are assumed to be volatile, that is, usage lasts only
through the step duration. For example, if a rule consumes

128 kiloBytes of memory, the total memory usage will be
increased by 128 kiloBytes during the step duration and
will be decreased by 128 kiloBytes after the update set
has been applied to the environment.

Formally, a rule R of a machine ASM is extended to
reflect time and resource annotations:

R = 〈n, t, RR, r〉
Where:

• n and r are defined in Section 3.1

• t denotes the duration of the rule execution and can
be a single value ∈ R or a closed interval on R

• RR is the set of resources used by the rule where
each element is of the form (rr, ra) where rr ∈ ER
is the resource name and ra is the resource amount
consumed, specified either as a single value ∈ R or
as a closed interval on R

When a machine executes a step, the update set that is
produced will contain the duration of the step, as well as
the amounts of resources that were consumed during the
step execution. We use the special symbol ⊥ to denote
the absence of an annotation, for either a time annotation
or a resource annotation. The role of the ⊥ symbol will
become important in Section 4.3 and Section 4.4. Update
sets are extended to include the duration of the step, t ∈ R
∪ {⊥} and a set of resource usage pairs rc = (rr, rac) ∈
RC where rr is the resource name and rac ∈ R ∪ {⊥} is
a single value denoting the amount of resource usage for
the step. If a resource is specified as an interval, rac is a
value randomly selected from the interval.

The symbol TRUi is used to denote the timed update
set, with resource usages, of the ith step of a machine,
where ti is the step duration, RCi is the set of consumed
resources, and Ui is the set of updates to variables from
section 3.1:

TRUi = (ti, RCi, Ui)

For the remainder of this paper, the term update set
refers to an update set of the TRUi form.

4.2.1 Light Switch Example Version 2

The light switch example from the previous section is ex-
tended with time annotations and resource annotations.
The sample resource is memory. For brevity, only the
modified rules of the main machine are shown. The re-
mainders of the specification are the same as in Version
1.

R1: Turn On
t := [4, 10]
memory := 512
if light = OFF and switch = UP then

light := ON

R2: Turn Off

18

t := 6
memory := [128, 256]
if light = ON and switch = DOWN then

light := OFF

A sample run with the initial environment ((light,
OFF), (switch, UP)) yields the following update set:

TRU1 = (5, ((memory, 512)), ((light, ON)))

The duration of 5 time units was randomly selected
from the interval [4, 10].

4.3 Hierarchical Composition
The examples given so far have dealt only with a sin-

gle sequential ASM. However, for more complex sys-
tems, structuring mechanisms are required to partition
large specifications into smaller ones. The partitioning
enables bottom-up or top-down construction of specifica-
tions and creates opportunities for reuse. The composi-
tion mechanisms included in the language are based on the
XASM language [1]. In the XASM language, an ASM can
use other ASMs in rule effects in two different ways - as
a sub ASM or as a function ASM. A sub ASM is a ma-
chine that is used to structure specifications. A function
ASM is a machine that takes a set of inputs and returns a
single value as output, similarly to a function in program-
ming languages. These two concepts enable abstraction
of specifications by hiding details inside of auxiliary ma-
chines.

The definition of a sub ASM is similar to the previous
definition of machine ASM :

SASM = 〈n,MV,CV, R〉
Where n is the machine name, unique in the specifi-

cation, and other tuple members have the same definition
as mentioned in previous sections. The execution and ter-
mination semantics of a sub ASM are different than those
of a main ASM. When a sub ASM is invoked, one of its
enabled rules is selected, it yields an update set, and it
terminates.

The definition of a function ASM is slightly different.
Instead of specifying monitored and controlled variables,
a function ASM specifies the number and types of the in-
puts and the type of the output:

FASM = 〈n, IV,OV,R〉
Where:

• n is the machine name, unique in the specification

• IV is a set of named inputs (ivn, it) where ivn is the
input name, unique in IV , and it ∈ TU is its type.

• OV is a pair (ovn, ot) specifying the output where
ovn is the name of the output and ot ∈ TU is its type

• R is the set of rules with the same definition as pre-
viously stated, but with the restriction that it only op-
erates on variables in IV and OV.

A function ASM cannot modify the environment and
must derive its output solely from its inputs. The only
side-effect of a function ASM is time and resource con-
sumption.

A specification, ASMSPEC, is extended to include
the auxiliary ASMs:

ASMSPEC = 〈E, AASM, ASM〉
Where:

• E is the environment

• AASM is a set of auxiliary ASMs (both sub ASMs
and function ASMs)

• ASM is the main machine

Semantically, hierarchical composition is achieved
through the composition of update sets. A rule execu-
tion can utilize sub machines and function machines in
its effect expression. Each effect expression produces an
update set, and those update sets are composed together
to yield a cumulative update set to be applied to the envi-
ronment. To define the semantics of hierarchical composi-
tion, we utilize the semantic domain R ∪ {⊥} introduced
in Section 4.2. The special value ⊥ is used to denote the
absence of an annotation, for either a time annotation or a
resource annotation.

We define two composition operators, ⊗ and ⊕, to
achieve hierarchical composition. The ⊗ operator is used
to perform the composition of update sets produced by ef-
fect expressions within the same rule:

TRU1 ⊗ TRU2 = (t1, RC1, U1)⊗ (t2, RC2, U2)
= (t1 ⊗ t2, RC1 ⊗RC2, U1 ∪ U2)

The ⊗ operator is commutative and associative. The
semantics of effect expressions within the same rule are
that they happen in parallel. This means that the time an-
notations will be composed to reflect the duration of the
longest update set:

t1 ⊗ t2 =





t1 if t2 = ⊥
t2 if t1 = ⊥
max(t1, t2) otherwise

The composition of resources also follows the seman-
tics of parallel execution of effect expressions within the
same rule. The ⊗ operator is distributed over the set of
resources:

RC1 ⊗RC2 = (rc11, . . . , rc1n)⊗ (rc21, . . . , rc2n)
= (rc11 ⊗ rc21, . . . , rc1n ⊗ rc2n)
= ((rr11, rac11)⊗ (rr21, rac21), . . . ,

(rr1n, rac1n)⊗ (rr2n, rac2n))
= ((rr11, rac11 ⊗ rac21), ...

((rr1n, rac1n ⊗ rac2n))

19

In the TASM language, resources are assumed to be
additive, that is, parallel consumption of amounts r1 and
r2 of the same resource yields a total consumption r1 +
r2:

rac1 ⊗ rac2 =





rac1 if rac2 = ⊥
rac2 if rac1 = ⊥
rac1 + rac2 otherwise

Intuitively, the cumulative duration of a rule effect will
be the longest time of an individual effect, the resource
consumption will be the summation of the consumptions
from individual effects, and the cumulative updates to
variables will be the union of the updates from individual
effects.

The ⊕ operator is used to perform composition of up-
date sets between a parent machine and a child machine.
A parent machine is defined as a machine that uses an aux-
iliary machine in at least one of its rules’ effect expression.
A child machine is defined as an auxiliary machine that is
being used by another machine. For composition that in-
volves a hierarchy of multiple levels, a machine can play
both the role of parent and the role of child. An exam-
ple of multi-level composition is given at the end of this
Section. To define the operator, we use the subscript p
to denote the update set generated by the parent machine,
and the subscript c to denote the update set generated by
the child machine:

TRUp ⊕ TRUc = (tp, RCp, Up)⊕ (tc, RCc, Uc)
= (tp ⊕ tc, RCp ⊕RCc, Up ∪ Uc)

The⊕ operator is not commutative, but it is associative.
The duration of the rule execution will be determined by
the parent, if a time annotation exists in the parent. Other-
wise, it will be determined by the child:

tp ⊕ tc =

{
tc if tp = ⊥
tp otherwise

The distribution of the ⊕ operator over the set of con-
sumed resources is the same as for the ⊗ operator:

RCp ⊕RCc = (rcp1, . . . , rcpn)⊕ (rcc1, . . . , rccn)
= (rcp1 ⊕ rcc1, . . . , rcpn ⊕ rccn)
= ((rrp1, racp1)⊕ (rrc1, racc1), . . . ,

(rrpn, racpn)⊕ (rrcn, raccn))
= ((rrp1, racp1 ⊕ racc1), ...

((rrpn, racpn ⊕ raccn))

The resources consumed by the rule execution will be
determined by the parent, if a resource annotation exists in
the parent. Otherwise, it will be determined by the child:

racp ⊕ racc =

{
racc if racp = ⊥
racp otherwise

Intuitively, the composition between parent update sets
and child update sets is such that the parent machine over-
rides the child machine. If the parent machine has anno-
tations, those annotations override the annotations from

child machines. If a parent machine doesn’t have an an-
notation, then its behavior is defined by the annotations of
the auxiliary machines it uses.

Figure 1 shows a hierarchy of machines for an sample
rule execution. Each numbered square represents a ma-
chine. Machine ”1” represents the rule of the main ma-
chine being executed; all other squares represent either
sub machines or function machines used to derive the up-
date set returned by the main machine. Machine ”3” is
an example of a machine that plays the role of parent (of
machine ”7”) and child (of machine ”1”).

1

2
 3
 4

6
5
 7

Figure 1. Hierarchical composition

Each machine generates an update set TRUi, where
i is the machine number. The derivation of the returned
update set is done in a bottom-up fashion, where TRUret

is the update set returned by the main machine:

TRUret = TRU1 ⊕ ((TRU2 ⊕ (TRU5 ⊗ TRU6))⊗
(TRU3 ⊕ TRU7)⊗
TRU4)

4.3.1 Light Switch Example Version 3

The example from the previous sections is extended to il-
lustrate the use of auxiliary ASMs. The example has been
extended with a function ASM and a sub ASM.

FUNCTION MACHINE: | SUB MACHINE:
TURN_ON | TURN_OFF

|
INPUT VARIABLES: | MONITORED VARIABLES:

switch_status ss | switch
|

OUTPUT VARIABLE: | CONTROLLED VARIABLES:
light_status ls | light

|
RULES: | RULES:

|
R1: Turn On | R1: Turn Off
t := [4, 10] | t := 6
memory := 128 |
if ss = UP then | if switch = DOWN then

ls := ON | light := OFF
|

R2: Else | R2: Else
else then | else then

ls := OFF | skip

The two modified rules of the main machine are shown
below:

R1: Turn On
t := 1
if light = OFF and switch = UP then

20

light := TURN_ON(switch) //uses fASM

R2: Turn Off
memory := 1024
if light = ON and switch = DOWN then

TURN_OFF() //uses sASM

The first step of two sample runs are shown below:

• Initial environment: ((light, OFF), (switch, UP))
Update set: (1, ((memory, 128)), ((light, ON)))

• Initial environment: ((light, ON), (switch, DOWN))
Update set: (6, ((memory, 1024)), ((light, OFF)))

The first sample run invokes the function ASM and ob-
tains the step duration from the main ASM definition and
the resource consumption from the function ASM. The
second sample run obtains the variable updates and rule
duration from the sub ASM and the resource consumption
from the main ASM.

4.4 Parallel Composition
To enable specification of multiple parallel activities in

a system, the TASM language allows parallel composition
of multiple abstract state machines. Parallel composition
is enabled through the definition of multiple top-level ma-
chines, called main machines. Formally, the specification
ASMSPEC is extended to include a set of main ma-
chines MASM as opposed to the single main machine
ASM for basic ASM specifications:

ASMSPEC = 〈E,AASM, MASM〉
Where:

• E is the environment

• AASM is a set of auxiliary ASMs (both sub ASMs
and function ASMs)

• MASM is a set of main machines ASM that exe-
cute in parallel

The definition of a main machine ASM is the same
as from previous sections. Other definitions also remain
unchanged.

The semantics of parallel composition regards the syn-
chronization of the main machines with respect to the
global progression of time. We define tb, the global time
of a run, as a monotonically increasing function over R.
Machines execute steps that last a finite amount of time,
expressed through the duration ti of the produced update
set. The time of generation, tgi, of an update set is the
value of tb when the update set is generated. The time of
application, tai, of an update set for a given machine is
defined as tgi + ti, that is, the value of tb when the update
set will be applied. A machine whose update set, gener-
ated at global time tgp, lasts tp will be busy until tb = tgp

+ tp. While it is busy, the machine cannot perform other
steps. In the meantime, other machines who are not busy
are free to perform steps. This informal definition gives

rise to update sets no longer constrained by step number,
but constrained by time. Parallel composition, combined
with time annotations, enables the specification of both
synchronous and asynchronous systems.

We define the operator ¯ for parallel composition of
update sets. For a set of update sets TRUi generated dur-
ing the same step by i different main machines:

TRU1 ¯ TRU2 = (t1, RC1, U1)¯ (t2, RC2, U2)

=





(t1, RC1 ¯RC2, U1) if t1 < t2

(t2, RC1 ¯RC2, U2) if t1 > t2

(t1, RC1 ¯RC2, U1 ∪ U2) if t1 = t2

The operator ¯ is both commutative and associative.
The distribution of the ¯ operator over the set of resource
consumptions is the same as for the ⊗ and ⊕ operators:

RC1 ¯RC2 = (rc11, . . . , rc1n)¯ (rc21, . . . , rc2n)
= (rc11 ¯ rc21, . . . , rc1n ¯ rc2n)
= ((rr11, rac11)¯ (rr21, rac21), . . . ,

(rr1n, rac1n)¯ (rr2n, rac2n))
= ((rr11, rac11 ¯ rac21), ...

((rr1n, rac1n ¯ rac2n))

The parallel composition of resources is assumed to be
additive, as in the case of hierarchical composition using
the ⊗ operator:

rac1 ¯ rac2 =





rac1 if rac2 = ⊥
rac2 if rac1 = ⊥
rac1 + rac2 otherwise

At each global step of the simulation, a list of pending
update sets are kept in an ordered list, sorted by time of
application. At each global step of the simulation, the up-
date set at the front of the list is composed in parallel with
other update sets, using the ¯ operator and the resulting
update set is applied to the environment. Once an update
set is applied to the environment, the step is completed and
the global time of the simulation progresses according to
the duration of the applied update set.

To enable communication between different machines,
the TASM language provides synchronization channels,
in the style of the Calculus of Communication Systems
(CCS) [20]. A synchronization channel is defined as a
global object, uniquely identified by its name, that is used
by two machines to synchronize. When using a commu-
nication channel, one machine plays the role of sender
and the other machine plays the role of receiver. The
syntax for using a communication channel is based on
CCS. For an example communication channel named x,
a sender would use x! to send a notification and a receiver
would use x? to receive a notification. For more details on
the features of the TASM language, the reader is referred
to [22].

21

Component Action Duration Power
Feed Move block 5 500
Deposit Move block 5 500
Robot Rotate 30o 1 1000
Robot Drop a block 1 1000
Robot Pickup a block 1 1000
Press Stamp a block 11 1500

Table 1. Durative actions

5 Production Cell Example

This section illustrates the features of the TASM lan-
guage through the modeling of a more substantial exam-
ple, the production cell case study [19]. The production
cell consists of a series of components that need to be co-
ordinated to achieve a common goal. The purpose of the
production cell system is to stamp blocks. Blocks come
into the system from the loader, which puts the block on
the feed belt. Once the block reaches the end of the feed
belt, the robot can pick up the block and insert it into the
press, where the block is stamped. Once the block has
been stamped, the robot can pick up the block from the
press and unload it on the deposit belt, at which point the
stamped block is carried out of the system. The schematic
view of the production cell system is shown in Figure 2.

Loader
 Feed Belt

Press

Robot

Arm A

Arm B

Deposit Belt

Figure 2. Top view of the production cell

All components operate concurrently and must be syn-
chronized to achieve the system’s goal. The robot has two
arms, arm A and arm B, which move in tandem and can
pick up and drop blocks in parallel. For example, the robot
can drop a block in the press while picking up a block
from the feed. A controller coordinates the actions of the
system by sending commands to the robot.

Some simplifications and extensions have been made
to the original problem definition [19]. For example, the
elevating rotatory table has been omitted. The original ex-
ample has been extended to reflect the reality that certain
actions are durative, that is, they last a finite amount of
time. The example has also been extended to include a re-
source, power consumption. The list of durative actions,
with their power consumptions, are shown in Table 1.

All other actions are assumed to be instantaneous and
are assumed to consume no power. In the TASM model,
each component of the production cell is modeled as a

main machine. The model also contains a main machine
for the controller. Sub machines and function machines
are used, mostly to structure the actions of the robot. The
robot waits for a command from the controller and then
executes that command before waiting for another com-
mand. Listing 1 shows the first rule of the submachine
that updates the robot’s position. Listing 2 shows the sec-
ond rule of the main machine Feed, which carries a block
from the loader to the robot. The time annotation specifies
the amount of time that it takes for the block to travel from
the loader to the robot.

Listing 1 Rule 1 of submachine UPDATE POSITION
R1: Rotate CW
{

t := 1;
power := 1000;

if command = rotatecw then
robot_angle := rotateClockwise();
armapos := armPosition(ARM_A_FEED_ANGLE,

ARM_A_DEPOSIT_ANGLE,
ARM_A_PRESS_ANGLE,
rotateClockwise());

armbpos := armPosition(ARM_B_FEED_ANGLE,
ARM_B_DEPOSIT_ANGLE,
ARM_B_PRESS_ANGLE,
rotateClockwise());

}

Due to lack of space, other rules and other component
specifications are omitted; the complete list of machines
is shown in Table 2.

Listing 2 Rule 2 of main machine Feed
R2: Block goes to end of belt
{

t := 5;
power := 500;

if feed_belt = loaded then
feed_block := available;
feed_sensor!;

}

We use these two listings to illustrate the seman-
tics of parallel composition. For a partial initial envi-
ronment ((feed belt, loaded), (command, rotatecw),
(robot angle, 30), (armapos, intransit), (armbpos,
intransit)) with the two main machines Feed and Robot
with associated auxiliary machines, two update sets are
generated by the main machines:

TRUFeed,1 =(5, ((power, 500)),((feed block, available))
TRURobot,1 =(1, ((power, 1000)), ((robot angle, 0.0),

(armapos, atfeed), (armbpos, atpress)))

The parallel composition of these two update sets
yields the environment described below. For brevity, only
the environment variables whose values are changed are
shown. The time t denotes the global simulation time:

• t < 1: (((power, 1500)), ∅)
• t = 1: (((power, 1500)), ((feed block, available)))

22

Name Type Purpose
Controller Main Sends commands to the robot
Loader Main Loads blocks onto the feed belt
Feed Main Carries blocks from the loader
Robot Main Processes commands
Press Main Stamps blocks
Deposit Main Carries blocks out of the system
allEmpty Function Determines whether the robot is loaded
armPosition Function Returns the position of an arm
rotateClockwise Function Changes the robot angle by +30o

rotateCounterClockwise Function Changes the robot angle by -30o

DROP ARM A Sub Drop a block from arm A
DROP ARM B Sub Drop a block from arm B
DROP BLOCKS Sub Invokes the drop submachines
EXECUTE COMMAND Sub Executes a command
PICK UP ARM A Sub Picks up a block with arm A
PICK UP ARM B Sub Picks up a block with arm B
PICK UP BLOCKS Sub Invokes the pick up submachines
UPDATE POSITION Sub Updates the angle of the robot

Table 2. List of all machines used in the pro-
duction cell model

• 1 < t < 5: (((power, 1000)), ∅)
• t = 5: (((power, 1000)), ((robot angle, 0.0),

(armapos, atfeed), (armbpos, atpress))
• t > 5: (((power, 0)), ∅)

The complete model, including all the components,
was run for a scenario where the loader fed a total of 5
blocks into the system, with the initial state shown in Fig-
ure 2. It took a total of 219 simulation steps and 103 time
units for all 5 blocks to go through the system, given the
controller strategy.

6 Conclusion and Future Work

The contributions of this paper span two different ar-
eas. On the theoretical side, the paper presents extensions
to the ASM formalism to facilitate the specification of
real-time systems. The specification includes both func-
tional and non-functional properties, integrated into a uni-
fied formalism. The incorporation of timing, resource, and
functional behavior into a single language fills an impor-
tant need of the real-time system community [9, 17]. This
is achieved both for basic TASM specifications and for the
composition of specifications. The resulting formalism
keeps the same theoretical foundations of ASM theory but
is better suited for modeling real-time systems because of
the support to explicitly state resource consumption and
timing behavior. On the practical side, this paper defines a
formalism that has the potential of being both formal and
usable. By basing the formalism on the theory of abstract
state machines, the purpose is to bring the stated benefits
of using abstract state machines to the designers of reac-
tive real-time systems.

On the theoretical side, verification techniques and
test-case generation techniques are currently being sur-
veyed and studied to understand how these capabilities
could be applied to the proposed language. Prelimi-
nary results suggest leveraging existing verification tools

(e.g., UPPAAL [18]) by defining semantic preserving for-
mal mappings between the TASM language and the for-
malisms of existing verification tools [25]. On the prac-
tical side, the TASM language is the first step towards a
framework for validation and verification of high-integrity
embedded systems [24]. The language will serve as the
basis for the framework and an associated toolset to write
and analyze real-time system specifications is being devel-
oped [23]. The TASM language will be incorporated into
a suite of tools that will be used to verify timing and re-
source consumption behavior of embedded real-time sys-
tems [26].

References

[1] M. Anlauff. XASM - An Extensible, Component-Based
Abstract State Machines Language. In Abstract State Ma-
chines - ASM 2000, International Workshop on Abstract
State Machines. TIK-Report 87, 2000.

[2] J. Bergstra, A. Ponse, and S. Smolka. A Handbook of Pro-
cess Algebra. North-Holland, 2001.

[3] M. Bernardo and F. Corradini. Formal Methods for the
Design of Real-Time Systems. Springer-Verlag, 2004.

[4] G. Berry. The Essence of ESTEREL. In Proof, Language
and Interaction: Essays in Honour of Robin Milner. MIT
Press, 2000.

[5] B. W. Boehm. Software Engineering Economics. Prentice-
Hall, 1981.

[6] E. Börger. Why Use Evolving Algebras for Hardware and
Software Engineering? In Proceedings of the 22nd Semi-
nar on Current Trends in Theory and Practice of Informat-
ics, SOFSEM ’95, volume 1012 of LNCS. Springer-Verlag,
1995.

[7] E. Börger, Y. Gurevich, and D. Rosenzweig. The Bakery
Algorithm: Yet Another Specification and Verification. In
Specification and Validation Methods. Oxford University
Press, 1995.

[8] E. Börger and R. Stärk. Abstract State Machines. Springer-
Verlag, 2003.

[9] B. Bouyssounouse and J. Sifakis. Embedded Systems De-
sign: The ARTIST Roadmap for Research and Develop-
ment. Springer, 2005.

[10] J. P. Bowen and M. G. Hinchey. Ten Commandments of
Formal Methods. IEEE Computers, 28(4), April 1994.

[11] A. Cerone and A. Maggiolo-Schettini. Time-based Expres-
sivity of Time Petri Nets for System Specification. In The-
oretical Computer Science, volume 216. Springer-Verlag,
1999.

[12] A. K. Cheng. Real-Time Systems: Schedulability, Analysis,
and Verification. John Wiley and Sons, 2003.

[13] E. M. Clarke and J. Wing. Formal Methods: State of
the Art and Future Directions. ACM Computing Surveys,
28(3), 1996.

[14] J. Cohen and A. Slissenko. On Verification of Refinements
of Asynchronous Timed Distributed Algorithms. In Inter-
national Workshop on Abstract State Machines. Springer-
Verlag, 2000.

[15] D. Harel and A. Naamad. The STATEMATE Semantics of
Statecharts. ACM Transactions on Software Engineering

23

and Methodology, 5(4), 1996.
[16] T. A. Henzinger, Z. Manna, and A. Pnueli. Timed Tran-

sition Systems. In Real-Time: Theory in Practice, REX
Workshop, pages 226–251, 1991.

[17] A. Jantsch and I. Sander. Models of Computation and Lan-
guages for Embedded System Design. IEE Proceedings -
Computers and Digital Techniques, 152(2), March 2005.

[18] K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a Nut-
shell. International Journal on Software Tools for Technol-
ogy Transfer, 1:134–152, 1997.

[19] C. Lewerentz and T. Lindner. Production Cell: A Com-
parative Study in Formal Specification and Verification. In
KORSO - Methods, Languages, and Tools for the Construc-
tion of Correct Software, 1995.

[20] R. Milner. Communication and Concurrency. Prentice
Hall, 1980.

[21] Object Management Group, Inc. Unified Modeling Lan-
guage: Superstrucure. Version 2.0. OMG Specification,
August 2005.

[22] M. Ouimet. The TASM Language Reference Manual, Ver-
sion 1.1. Available from http://esl.mit.edu/tasm, November
2006.

[23] M. Ouimet, G. Berteau, and K. Lundqvist. Modeling an
Electronic Throttle Controller using the Timed Abstract
State Machine Language and Toolset. In Proceedings
of the Satellite Events of the 2006 MoDELS Conference,
LNCS, October 2006.

[24] M. Ouimet and K. Lundqvist. The Hi-Five Framework
and the Timed Abstract State Machine Language. In Pro-
ceedings of the 27th IEEE Real-Time Systems Symposium
- Work in Progress Session, December 2006.

[25] M. Ouimet and K. Lundqvist. Automated Verification of
Completeness and Consistency of Abstract State Machine
Specifications using a SAT Solver. In Proceedings of the
3rd International Workshop on Model-Based Testing (MBT
’07), Satellite Workshop of ETAPS ’07, April 2007.

[26] M. Ouimet and K. Lundqvist. Verifying Execution Time
using the TASM Toolset and UPPAAL, January 2007.
Technical Report ESL-TIK-000212, Embedded Systems
Laboratory, Massachusetts Institute of Technology.

[27] H. Rust. Using Abstract State Machines: Using the Hyp-
perreals for Describing Continuous Changes in a Dis-
crete Notation. In Abstract State Machines – ASM 2000.
Springer-Verlag, March 2000.

[28] SAE Aerospace. Architecture Analysis & Design Lan-
guage Standard. SAE Publication AS506, 2004.

[29] J. M. Wing. A Specifier’s Introduction to Formal Methods.
IEEE Computers, 23(9), 1990.

24

Extended Real-Time LOTOS for Preemptive Systems Verification

Tarek Sadani(1)(2), P. de Saqui-Sannes(1)(2), J-P. Courtiat(1)

1LAAS-CNRS, 7 avenue du colonel Roche, 31077 Toulouse Cedex 04, France
2ENSICA, 1 place Emile Blouin, 31056 Toulouse Cedex 05, France

tsadani@ensica.fr; desaqui@ensica.fr; courtiat@laas.fr
Fax: +33 5 61 61 86 88

Abstract

Real-time systems not only interact with their envi-
ronment and hopefully deliver their expected outputs on
time. Unlike transformational systems, they may be inter-
rupted at any time while keeping the capacity to restart
later on without loosing their state information. There-
fore, a real-time system specification language should in-
clude a suspend/resume capability. In this paper, we pro-
pose to extend the timed process algebra RT-LOTOS with
a suspend/resume operator. Extended RT-LOTOS speci-
fications are translated to Stopwatch Time Petri nets that
may be analyzed using the TINA tool. We define an RT-
LOTOS to SwTPN translation pattern. A formal proof is
included. Case studies show the interest of our proposal
for preemptive systems specification and verification.

1 Introduction

A wealth of formal models have been proposed in the
literature to describe and analyze real-time systems. Few
of them enable explicit description of suspend/resume op-
erations. Examples include Stopwatch Time Petri nets[6]
and Stopwatch automata[11]. As a timed process algebra,
RT-LOTOS[13] also makes it possible to describe impor-
tant features of real-time systems (e.g., parallelism, re-
action to stimuli from the environment, delay, temporal
indeterminism). RT-LOTOS supports adisrupt operator
which allows a processQ to suspend another processP
for ever. Suspension in RT-LOTOS is hence reduced to
unrecoverable abortion. Clearly, RT-LOTOS misses re-
sume capabilities. This weakness is inherited from (un-
timed) LOTOS. In [15] it is shown that LOTOS misses
some mechanisms to deal with suspend/resume behaviors.
This paper’s contribution is to extend RT-LOTOS with
a suspend/resumeoperator. The proposed extension is
given a formal semantics without disturbing the seman-
tic model of RT-LOTOS. It is worth to be noticed that
discussion goes beyond language aspects. The challenge
is to have extended RT-LOTOS specifications effectively
model checked. We propose to translate RT-LOTOS spec-
ifications into Stopwatch Time Petri nets (SwTPN)[6].

The latter are rigorously analyzed using TINA[8], the
Time Petri net analyzer developed by LAAS-CNRS.
The paper is organized as follows. Section 2 presents
RT-LOTOS. Section 3 explains the expected benefits of
adding a suspend/resume operator to RT-LOTOS. Sec-
tion 4 presents SwTPN. Section 5 discusses RT-LOTOS
to SwTPN translation, it includes a formal proof. Section
6 presents three examples. Section 7 surveys related work.
Section 8 concludes the paper and outlines future work.

2 RT-LOTOS

Real-Time LOTOS, or RT-LOTOS for short, is a
timed extension of the ISO-based formal description
technique LOTOS (Language of Temporal Ordering of
Specification)[20]. LOTOS relies on the CCS process
algebra and inherits a multiple rendez-vous mechanism
from Hoare’s CSP. RT-LOTOS enables explicit and se-
mantically well-founded description of temporal mecha-
nisms. Three generic temporal operators have been added
to LOTOS: First, a deterministic delay expressed by the
delayoperator. For instance,delay(d)makes it possible
to delay a processP for a certain amount of timed. Sec-
ond, a non-deterministic delay expressed by thelatency
operator. For instance,latency(l)makes it possible to de-
lay a process for a value that is non-deterministically se-
lected in [0, l]. Its usefulness and efficiency have been
demonstrated in [12]. The third temporal operator is a
time-limited offer associated with an action. For instance,
g{t} allows one to limit the amount of time allocated to
offer an actiona.

The following processesP andPL illustrate the use of
the three temporal operators of RT-LOTOS.

process P[a]: exit:= process PL[a]: exit:=
delay(2)a{5}; exit delay(2)latency(6)a{5};exit

endproc endproc

ProcessP starts with a 2 time units delay. Once the delay
expires, actiona is offered to the environment during 5
time units. If the process’s environment does not synchro-
nize ona before this deadline, a time violation occurs and
the process transforms intostop. ProcessPL differs from
P, for it contains alatencyoperator. Actiona is delayed
by a minimum delay of 2 units of time and a maximum

25

delay of 8 units of time (in case thelatencygoes to its
maximum value). From the environment’s point of view,
if the latency lastsl time units, the process behaves like
delay(2+l)a{5-l} (cf. the left part of Figure 1). Of course,
if the duration of the latency goes beyond 5 units of time, a
temporal violation occurs and processPL transforms into
stop(cf. the right part of Figure 1).

Figure 1. Delay, latency and Limited offering

The originality and interest of the latency operator is
more obvious when one combines that operator with the
hiding operator. In LOTOS, hiding allows one to trans-
form an externalobservableaction into aninternal one.
In RT-LOTOS, hiding has the form of a renaming opera-
tor which renames actiona into i(a). In most timed exten-
sions of LOTOS, hiding implies urgency. It thus removes
any time indeterminism inherent to the limited time offer-
ing. In RT-LOTOS, a hidden action is urgentas soon as
it is no longer delayed by some latency operator. Let us,
e.g., consider the RT-LOTOS behaviorhide a in PL
where actiona is hidden in processPL. If l is the duration
of the latency,i(a) will necessarilyoccur at date2 + l, if
l < 5. (cf. Figure 2). But, if (l > 5), a temporal violation
occurs (similarly to the situation where actiona was an
observable action).

Figure 2. Hiding in RT-LOTOS

3 An RT-LOTOS Suspend/Resume opera-
tor

3.1 Rationale
Is RT-LOTOS well-suited to specify that a process ex-

ecution may be stopped and resumed later on? To answer
that question, let us consider the behavior of a simplified
washing machine. It is made up of two processes named
Machine and Cover, respectively.

process Machine[start,b_wash,e_wash]:exit:=
start; b_wash; e_wash; exit
endproc
process Cover[open, close]: exit:=
open; close; Cover[open,close]
endproc

Machine may be suspended by Cover at any time during
its execution, and resumed after the completion of each
Cover instance (each instance of Cover yields an’open;
close’action sequence).
The RT-LOTOS disrupt[> operator is not appropriate to

model that kind of behavior. Machine[...][> Cover[...] al-
lows Machine to be suspended, but not to be resumed. An
infinite sequence of ’open; close’ actions will follow Ma-
chine’s interruption.
The use of the parallel composition operator||| would not
be more appropriate, since the resulting interleaving of ac-
tions in Machine[...] ||| Cover[...], does not ensure that
Cover will terminate before Machine is resumed1.

Another solution is to adopt a state-oriented style. Us-
ing the choice[] and the enabling� operators, we explic-
itly define all the possible suspending points in Machine
(actions are indivisible). For this sake the behavior of Ma-
chine is changed as follows:

Process Machine2[start,b_wash,e_wash,open,close]
:exit

((start; exit)
[](Cover[open, close] >> (start; exit)))
>>((b_wash; exit)
[](Cover[open, close] >> (b_wash; exit)))
>>((e_wash; exit)
[](Cover[open, close] >> (e_wash; exit)))

endproc

The definition of Cover has also to be changed to a
non recursive one. This is to avoid an infinite sequence of
Cover’s actions and to ensure Machine actually resumes.
However this ’contortion’ lowers the readability and com-
positionality of the specification (although Machine is a
simple sequence of actions) and allows only three times
the ‘open; close’ sequence.
Let us now consider a timed extension of the washing ma-
chine.

Hide b_wash, e_wash in
process Machine[start,b_wash, e_wash]: exit:=
start;delay(1,2)b_wash;delay(40,70)e_wash;exit
endproc

After the occurrence of start,b wash is delayed by a 1 up
to 2 units delay. Washing takes between 40 and 70 units
of time. Actionsb wash ande wash are internalized and
therefore urgent. In this revisited specification, it is im-
possible to define all the suspension points because we are
considering a dense time model. Moreover using a spec-
ification technique based on the modification of the sus-
pended behavior (Machine2) is no longer possible; it does
not preserve the timing constraints in the original Machine
process. Let us consider the following behavior expressed
in state-oriented fashion:

(delay(1,2)b_wash; exit)
[](Cover[open,close]>>delay(1,2)b_wash; exit)

The choice offered between the two alternatives is
resolved in the interaction with the environment. Cover is
executed if the environment offersopen, unlessb wash
is executed (after a delay between 1 and 2 units of time).
Until the choice is resolved the two alternatives age
similarly. Let us now suppose the environment offers
action open after 1 unit of time, which leads to the
following execution:

(delay(1,2)b wash...) [] (Cover[open, close]� ...)
1→

(delay(0,1)b wash...) [] (Cover[open, close]� ...)
Cover[...]−→

(delay(1,2)b wash; exit)

1||| may be seen as a non deterministic solution to model coroutines.

26

After the elapsing of 1 unit of time,b wash must
be enabled at most after 1 time unit. In the resulting
behavior, after the completion of process Cover,b wash
has to wait for a delay between 1 and 2 units of time,
whereas 1 unit of time of this delay has already elapsed
(the timing context is not restored).

3.2 Syntax and Semantics of the Suspend/Resume
operator

Section 3.1 pointed out that RT-LOTOS lacks a mech-
anism for a modular description, of a processP whose
temporal evolution can be suspended and then resumed at
the same point.

To remedy to this situation we propose to add a
suspend/resume operator to RT-LOTOS. It is repre-
sented by [g� (g being the gate used to resume), which is
a mix between the disrupt[> and the enabling� opera-
tors (we extend[> to handle resumption).P[g�Q models
the possible suspension of main behaviorP by Q, Q is ex-
ecuted till it terminates or executes actiong, in the last
case, the control returns to processP, in the same point it
has been suspended. This special gateg is not fixed syn-
tactically in the operator, and the user is free to use any
gate name.

Special attention is provided to give the proposed ex-
tension a simple semantics, which further suits abstract
reasoning. We follow on the recommendation made
in [5] on providing preemption primitives at first-class
level and with full orthogonality to other concurrency
and communication primitives. The behavior (P[g�Q) is
formally defined using Plotkin-style structural semantics
(SOS rules).

We introduce the following semantic operator�g].
The latter expresses thatP has been suspended byQ. This
operator appears only at the semantic level. It may not be
used in RT-LOTOS specifications.
In the following GP denotes the set of observable and
hidden gates ofP.

1) P
a−→P ′

P [g�Q
a−→P ′[g�Q

a ∈ GP \{exit}

2) P
exit−→P ′

P [g�Q
exit−→P ′

3) Q
a−→Q′

P [g�Q
a−→P�g]Q′

4) Q
a−→Q′

P�g]Q
a−→P�g]Q′

a ∈ GQ\{g}

5) Q
t−→Q′

P�g]Q
t−→P�g]Q′

6) Q
g−→Q′

P�g]Q
g−→P [g�Q′

7) P
t−→P ′,Q

t−→Q′

P [g�Q
t−→P ′[g�Q′

Rule 1 defines the normal execution of P. It says
that after any actiona of P, Q is still given the chance to
suspend P (Q is still active).
Rule 2 says that if P has successfully completed its

execution, then Q can no longer be executed.
Rule 3 defines control passing between P and Q at the
occurrence of one of the first actions of Q.
Rule 4 and rule 5 say that Q is the only active behavior.
The suspended behavior P can not perform any action
(rule 4). Further, it cannot age (rule 5).
Rule 6 permits the resuming ofP . As soon asQ executes
action g, P is resumed andQ is restarted. Instead of
writing P � g] Q, we could have writtenP�g](Q,Q0),
where the operandQ0 is used to keep the initial sate of
Q. We then writeP� g](Q,Q0)

g−→P [g�(Q0, Q0).
Rule 7 says that regarding time,[g� behaves as [> (the
aging of P induces the aging Q).

One could think that we are missing some rule, to de-
fine the behavior ofP� g]Q whenQ terminates success-
fully, in order to get rid of the suspended behaviorP , but
the termination ofQ is supported by rule 4 where the sus-
pended behavior is kept (this is not a problem, sinceQ
cannot do any action after its termination, thereforeP can-
not be resumed). Moreover, if this termination is captured
by an enabling, all the whole behavior (P� g]Q) is for-
gotten.

4 Time Petri Nets with Stopwatches

Interruptions and suspend/resume operations are com-
mon mechanisms in real-time systems. Several modeling
formalisms allowing description of behaviors which can
be suspended and resumed with a memory of their sta-
tus have been proposed in the literature. [11] proposes a
subclass of Linear Hybrid Automata (LHA) :Stopwatch
Automata (SWA). In SWA the derivative of a variable
in a location is either 0 or 1, to account for a computa-
tion progress and suspension. [11] proves that SWA with
hidden delays are as expressive as LHA. The reachabil-
ity problem for this class of automata is undecidable[2].
As no expressive enough decidable subclass of SWA has
been identified, [11] proposes an ’over-approximating’ al-
gorithm for model checking safety property of SWA. The
approach is based on a DBM encoding of state classes.
The authors admit that such an over-approximation is of-
ten too coarse.
Several extensions of Time Petri nets (TPN)[23] have
been proposed for modeling action suspension and
resumption[10] Scheduling-TPNs[25] where resources
and priorities primitives are added to the original TPN
model. In Inhibitor Hyperarc TPNs (IHTPN’s)[26], spe-
cial inhibitor arcs are introduced to control the progress
of transitions. [6] proves that the state space reachabil-
ity problem of these extensions is undecidable even for
bounded nets.2 Efficient state space over-approximation
methods are available for all these extensions. As for SWA
the overapproximation obtained is often too coarse.

In this paper, we consider a TPN model[23] extended
with suspend/resume capabilities[6]. SwTPN’s extend

2The state space reachability problem of bounded Petri nets and
bounded Time Petri nets is known to be decidable.

27

TPN’s with stopwatch arcs that control transitions
progress.

Definition 1. A Stopwatch Time Petri net is
a tuple 〈P, T, Pre, Post, Sw,m0, IS〉 where
〈P, T, Pre, Post,m0, IS〉 is a Time Petri net and
Sw : T → P → N is a function called the stopwatch
incidence function.Sw associates an integer with each
(p, t) ∈ P × T. Values greater than 0 are represented by
special arcs, called stopwatch arcs (possibly weighted).
They are represented with diamond shaped arrows. Note
that these arcs do not convey tokens. As usual, a transition
t is enabled at markingm iff m ≥ pre(t). In addition, a
transition enabled atm is active iffm ≥ Sw(t), otherwise
it is said suspended. Figure 3 shows a Stopwatch Time
Petri net. The arc from placep0 to transition t2 is a
stopwatch arc (grey shadowed diamond) of weight 1. The

Figure 3. SwTPN example

firing of t0 will freeze the timing evolution oft2. t2 will
be fireable when its total enabling time reaches 2 time
units. If we replace the stopwatch arc by a normalprearc,
t2 will never be fired because of the continuous enabling
condition.3

[6] proves that space reachability is undecidable for
SwTPN’s, even when bounded. In [6] the authors adapted
the algorithm published in [7]. This construction yields
exact state space abstraction, but as a consequence of the
above undecidability result, boundedness of the SwTPN
does not imply finiteness of the graph of state classes.
To ensure termination on a class of bounded SwTPN’s.
[6] proposes a new overapproximation method based
on quantization of the polyhedra representing temporal
information in state classes. The exact behavior of the
SwTPN can be approximated as closely as desired; both
the exact and approximate computation methods have
been implemented in an extension of the TINA tool [8].
However, the exact characterizations of the behavior of
a SwTPN, obtained by the algorithm of [6] are finite
in many practical cases, such as the experimentations
reported in this paper.

3in the TPN model, a transition t with an associated static interval
[a,b] can be fired if it has ’continuously’ been enabled during at least ’a’
time units, and it must fire if continuous enabling reaches ’b’ time units,
unless it conflicts with another transition.

5 Translating the Suspend/Resume RT-
LOTOS operator to SwTPN

Two verification techniques have been developed for
RT-LOTOS specifications. The first one is implemented
by the rtl tool. The latter compiles an RT-LOTOS spec-
ification into a Timed automata and generates a minimal
reachability graph. A more efficient technique was pro-
posed in [28][27]. An RT-LOTOS specification is trans-
lated into a Time Petri net using thertl2tpn tool, and veri-
fied using a Time Petri net analyzer.

Unfortunately neither Timed automata nor Time Petri
net can represent clocks whose progression can be sus-
pended and later resumed at the same point. Hence none
of these models can be used as intermediate model for ver-
ifying the RT-LOTOS extension proposed in this paper.
This is why we investigate a translation from RT-LOTOS
to SwTPNs. This opens avenues to verification based on
state space analysis methods proposed in [6]. The pro-
posed translation method can be seen as providing RT-
LOTOS terms with a SwTPN semantics. On this net se-
mantics depends the quality of our translation. As defined
in [24] a good net semantics should satisfy the ’retriev-
ability’ principle. Accordingly, we must not introduce any
auxiliary transitions into the resulting SwTPN. By defin-
ing a one to one mapping of actions between RT-LOTOS
and SwTPN we guarantee that a run of a system under de-
sign will necessarily lead to the same execution sequence
in both the RT-LOTOS term and in its associated SwTPN.
Moreover, the proposed RT-LOTOSsuspend/resumeop-
erator is compositional. It is then inevitable, during the
translation process, to consider SwTPNs as composable
entities. Unfortunately, SwTPN miss such a structuring
facilities. To fill this gap, we introduce the concept ofSw-
Componentas a basic building block.

5.1 Stopwatch Component
A Sw-Componentencapsulates a labeled SwTPN

which describes its behavior. It is handled through its in-
terfaces and interactions points. ASw-Componentper-
forms an action by firing a corresponding transition. A
Sw-Componenthas two sets of labels.Act : the alpha-
bet of the component.Time: a set of three labels, in-
troduced to represent the intended temporal behavior of a
component. Atv label represents a temporal violation in
a time-limited offer. Adelay or latency label represents
a deterministic delay or a non deterministic delay, respec-
tively.
A Sw-Component is graphically represented by a box con-
taining a SwTPN (cf. Figure 4). The black-filled boxes at
the component boundary represent interaction points. A
token in the ”out” place of a component means that the
component has successfully completed its execution.

C =< Σ, Act, Lab, I, O > is aSw-Componentwhere:

• Σ =< P, T, Pre, Post, Sw, m0, IS > is a SwTPN.

• Act = Ao∪Ah∪{exit}. Ao (observable actions) and

28

Figure 4. Sw-Component

Ah (hidden actions) are finite, disjoints sets of transi-
tions labels.Ao ∪{exit} represents the component’s
interaction points. During the translation processAo

andAh will be used to model observable and hidden
RT-LOTOS actions, respectively.

• Lab : T → (Act ∪ Time) is a labelling func-
tion which labels each transition inΣ with an ac-
tion name (Act) or with a time-event (Time =
{tv, delay, latency}). Let TAct (resp. TTime) be
the set of transitions whose label belongs toAct
(resp.Time).

• I ⊂ P is a non empty set of places defining the input
interfaces of the component.

• O ⊂ P is the output interface of the component. A
component has an output interface if it has a transi-
tion(s) labelled by exit. If so,O is the outgoing place
of those transitions. Otherwise,O = ∅.

Moreover, a set of invariants is associated with theSw-
Components:
[H1] The encapsulated SwTPN contains no source
transition.
[H2] The encapsulated SwTPN is 1-bounded.
[H3] If all the ’input’ places are marked, all other places
are empty(I ⊂M ⇒M = I).
[H4] If the out place is marked, all other places are empty
(O 6= ∅ ∧O ⊂M ⇒M = O).
H2 is called the ”safe marking” property. This assumption
is made by most analysis methods.

5.2 Translation Pattern for the Suspend/Resume op-
erator

Let CP be aSw-Componentassociated with an RT-
LOTOS behaviorP. The set of first actionsFA(CP) is
defined in Appendix A.
We denote as usual, byp• = {t ∈ T/post(t, p) ≥ 1}
the set of outgoing transitions ofp, and by•p = {t ∈
T/pre(t, p) ≥ 1} the set of incoming transitions ofp.

In Figure 5,CP [g�Q is the component whereCP can
be suspended byCQ and then resumed at the same point.
To model this behavior we introduce a shared placeSR. It
is connected with all transitions ofCP with stopwatches
arcs of weight 1, except theexit transition (if there is one).

∀t ∈ TCP
lab(t) 6= exit ⇒ Sw(SR, t) = 1. If the SR

CP CQ

CP[g»Q

Figure 5. Suspend/Resume pattern

place is unmarked, the execution ofCP is suspended.
MoreoverCP is suspended at the occurrence of the first
action ofCQ (SOS rule 3).SRis then an input place of
the first action ofCQ.
After the successful termination ofCP , the latter can not
be suspended anymore, andCQ is deactivated (SOS rule
2). HenceSRhas to be an input place for the ’exit’ transi-
tion of CP . SR• = FA(CQ) ∪

⋃
t∈TCP

∧lab(t)=exit .

After the execution of actiong in CQ, CP is resumed
(SOS rule 6). For this, actiong restores the token inSR.
The latter is an output place for theg transition ofCQ.
•SR= {g}.
Finally, the output interfaces of the two components are
merged. OP [g�Q = {out} if (OP 6= φ ∨ OQ 6= φ).
Let us notice that if the alphabet of the componentCQ

does not include the special gateg, the operator behaves
exactly as a disabling.

The definition ofCP [g�Q follows:

CP [g�Q = <
∑

P [g�Q

, ActP ∪ActQ,

LabP [g�Q, IP ∪ IQ ∪ {SR}, OP [g�Q >

where :
∑

P [g�Q

=
〈
PP [g�Q, TP [g�Q, P reP [g�Q,

PostP [g�Q, SwP [g�Q,m0, ISP [g�Q>

PP [g�Q = PP ∪ PQ ∪ {SR} ∪ {out}\OQ\OP

TP [g�Q = TP ∪ TQ

PreP [g�Q = PreP ∪ PreQ ∪
⋃

t∈FA(CQ)

(SR, t)

∪
⋃

(t∈TP)∧Lab(t)=exit

(SR, t)

PostP [g�Q = PostP ∪ PostQ ∪⋃
t∈TQ∧Lab(t)=g

(t, SR)

29

SwP [g�Q = SwP ∪ SwQ∪⋃
t∈TP∧Lab(t) 6=′exit′

(SR, t)

ISP [g�Q = ISP ∪ ISQ

Moreover, a set of arcs is introduced to con-
nect the places inIQ with the exit transition of CP

(
⋃

t∈TCP
∧Lab(t)=′exit′∧p∈IQ

(p, t)). The aim of these arcs
is to purgeCQ. A purge is the operation which consists in
emptying the suspending componentCQ from a remain-
ing tokens in its input interface after the successful termi-
nation ofCP . Reciprocally, ifCQ terminates successfully,
CP is purged. For readability reason we do not represent
purgearcs in the above translation pattern.

5.3 Proof of translation consistency
We prove that the translation preserves the RT-LOTOS

semantics of the new suspend/resume operator and that
the associatedSw-Component(cf. Figure 5) satisfies the
good properties (H1–H4).

The proof is made by induction: assuming that two
Sw-ComponentCP (respectivelyCQ) are equivalentto
RT-LOTOS behaviorsP (respectivelyQ), we prove that
CP [g�Q is equivalent toP [g�Q (the behavior over time
must be accounted for). IntuitivelyP [g�Q andCP [g�Q

are timed bisimilar iff they perform the same action at the
same time and reach bisimilar states.

More precisely, what we have to prove is that, from
each reachable state, if a time move (respectively an ac-
tion move) is possible inP [g�Q , it is also possible in
CP [g�Q and vice-versa. We then ensure that the proposed
translation preserves the sequences of possible actions as
well as the occurrence dates of these actions. The proof is
given in Appendix B.

6 Three case studies

Washing Machine:
The extended RT-LOTOS specification of the Washing-

Machine of section 3 follows:

Specification WM[start,open,close]:exit
behavior hide b_wash, e_wash in

Machine[start,b_wash,e_wash]
[close>>
Cover[open,close]

where

process Machine[start,b_wash,e_wash]:exit:=
start;delay(1,2)b_wash;delay(40,70)e_wash;exit
endproc

process Cover[open, close]: exit:=
open; close; Cover[open,close]
endproc

endspec

Following the translation procedure proposed in sec-
tion 5 we obtain the SwTPN of Figure 6. Using the con-
struction that preserves markings andLTL (Linear Tempo-
ral Logic) properties, proposed in [6] we obtain the state

class graph of Figure 7. If we check the detailed textual
description of the class graph output by TINA, we can lo-
cate the following suspended transitions:start in class 1,
b wash in 12, e wash in class 9 anddelay in classes 10
and 13.

Figure 6. Washing-Machine SwTPN

Figure 7. Washing-Machine class graph

A system of three tasks:The suspend/resumeoperator
can be used for the modeling of scheduling problems in
dense time semantics. The problem of real-time schedu-
lability analysis involves establishing that a set of concur-
rent processes will always meet its deadlines when exe-
cuted under a particular scheduling discipline on a given
system. A schedulability discipline can be described by
an RT-LOTOS specification which defines how a sched-
uler chooses among processes competing for processing
time. The schedulability analysis is performed in two
steps: First the RT-LOTOS specification is translated into
SwTPN, whose states space is generated using a Petri net
analyzer which further permits checking for missed dead-
lines. If no state with a missed deadline is reachable, then
the system is schedulable.

Let us consider the case study presented in [10]. A
controller controls three types of tasks by initiating a re-
questinti. The three tasks are executed on the same (and

30

unique) processor.Task3 andTask1 are periodic with a
period of 150 (respectively 50) units of time.Task2 is
sporadic with a minimum interarrival time of 100.Task1

has priority over bothTask2 andTask3. Task2 has pri-
ority overTask3.

The RT-LOTOS specification is given follows.

Specification Three_Tasks_System : noexit
behviour hide int1,int2,int3, endT1, endT2, endT3 in
(Controller [int1,int2,int3]
|[int1,int2,int3]|
((Task1[int1,endT1]

[endT2>> Task2[int2,endT2])
[endT3>> Task3[int3,endT3]))
where

process Controller [int1,int2,int3] :noexit :=
Launcher1[int1]

||| Launcher2[int2]
||| Launcher3[int3]
where

process Launcher1[int1]: noexit :=
delay(50)(int1;stop

||| Launcher1[int1])
endproc

process Launcher2[int2]: noexit :=
delay(150,INF)(int2;stop

||| Launcher2[int2])
endproc

process Launcher3[int3]: noexit :=
delay(150)(int3;stop

||| Launcher3[int3])
endproc

endproc

process Task1[int1, endT1]:noexit:=
int1;delay(10,20)endT1; Task1[int1, endT1]
endproc

process Task2[int2, endT2]:noexit:=
int2;delay(18,28)endT2; Task2[int2, endT2]
endproc

process Task3[int3, endT3]:noexit:=
int3;delay(20,28)endT3; Task3[int3, endT3]
endproc

endspec

Figure 8 depicts the resulting SwTPN. For this exam-

Figure 8. 3-Tasks system SwTPN

ple TINA builds a graph of 615 classes and 859 transi-
tions. All the markings are safe (none of the places of the
net contains more than one token), which implies schedu-
lability. Transitionst0, t2 and t3 don’t satisfy the prop-
erty (m \•ti) ∩ t•i = ∅. As a consequence the net of Fig-

ure 8 might be not safe, but the timing constraints pre-
vent from the insertion of a new token inp1, p3 or p5.
None of placesp1, p3 andp5 contains more than one to-
ken in all possible computations, which means that the
controller never initiates a task while its previous instance
is pending. In other words, none of theTaski misses its
deadline. Note that, quantitatives properties, like worst
case response time (WCRT) may be checked by adding
observers to the extended RT-LOTOS specification.

A Distributed Control system with Time-outs:
The description of the system is taken from [17]. The
latter consists of two sensors and a controller that gener-
ates control commands to a robot according to the sensors
readings (cf. Figure 9).

The two sensors share a single processor and the prior-
ity of sensor 2 for using the processor is higher than the
priority of sensor1. If sensor1 loses the processor because
of preemption by sensor2, it can continue the construction
of its reading after the processor is released by sensor2.
Each sensor constructs a reading and sends the latter to
the controller. Each sensor takes 1 to 2 milliseconds of
CPU time to construct a reading. Once constructed, the
reading of sensor1 expires if it is not delivered within 4
milliseconds and the reading of sensor 2 expires if it is not
delivered within 8 milliseconds. The Controller accepts a
reading from each sensor in either order and then sends
a command to the robot (signal action). The two sensors
readings that are used to construct a robot command must
be received within 10 milliseconds, if not, the first sensor
reading is disregarded. The controller takes 3 to 5 mil-
liseconds to synthesize a robot command.

Controller1 Controller2

Robot

Sensor1 Sensor2

Figure 9. The robot controller architecture

From the extended RT-LOTOS specification of the
system we obtain a SwTPN with 38 places and 34
transitions. Using the construction of [6], TINA builds
in 80.59 secs4a state graph of 40 723 classes and 76 806
transitions.

7 Related Work

E-LOTOS and ET-LOTOS: A suspend/resume oper-
ator has been proposed for E-LOTOS[21]. An excep-
tion is specified inside the operator for resuming. Let us

4All the experiments described in this paper have been performed on
a PC with 512 MB memory and a processor at 3.2 GHz.

31

comment on the use of an exception for resuming. In
E-LOTOS an exception is a visible urgent event. Note
that this definition violates the RT-LOTOS philosophy
which states that one cannot enforce urgency on visible
events. The only way to introduce urgency in RT-LOTOS
is through thehide operator. Moreover, a systematic use
of urgency for resuming may introduce unnecessary con-
straints and thus may result on deadlock situations. We
think the specifier should have the freedom to specify
when urgency is needed for resuming.

In [18] the authors propose a suspend/resume operator
for ET-LOTOS. It allows self suspension. A visible action
g is used for both self suspension and resuming. How-
ever an ambiguous interpretation of an occurrence of gate
g may produce undesirable effects in case of recursive be-
haviours.

A key issue is not addressed in [18] [21]. The problem
of suspension and resuming is addressed at the speci-
fication level. The problem of verifying the resulting
behaviours is not tackled. At the present knowledge of
the authors, there is no analysis tools implemented for
such extensions. Our approach proposes a translation into
SwTPN Thus extended RT-LOTOS specifications can
effectively be model checked using the TINA tool.

Schedulability Analysis:A large number of tech-
niques have been developed to model and solve schedul-
ing problems. in [19] timed automata have been used to
solve non-preemptive scheduling problems. in [1] stop-
watch automata are used for solving preemptive schedul-
ing problems. In this paper we use an algebraic way for
specifying a tasks system and a scheduling discipline.
Techniques for real time schedulability analysis that rely
on process algebra have already been published in [14][4].
These papers consider tasks as sequential processes.
Schedulability analysis is performed either by reachability
analysis [14] or by checking a bisimulation-based equiva-
lence [4]. Unlike the process algebra presented in [14] [4],
RT-LOTOS is not a formalism dedicated to schedulability
analysis. RT-LOTOS is instead a wide-spectrum process
algebra not endowed with built-in mechanisms for prior-
ity assignation or for resolving indeterminism in resource
access. Nevertheless, the example in section 6 shows
that extended RT-LOTOS may be used for schedulabil-
ity analysis. In fact RT-LOTOS supports a wide-spectrum
process model with various forms of inter-process inter-
action, communication and timing constraint expression.
RT-LOTOS supports a dense time model. Conversely,
[14] and [4] are discretely timed. When feasible, i.e. when
a scheduling discipline may be described in extended RT-
LOTOS, schedulability analysis based on RT-LOTOS is
less restrictive than schedulability analysis based on the
cited approaches. The difference comes from the expres-
siveness of RT-LOTOS, and consequently from the type
of processes and time constraints that can be specified and
analyzed in RT-LOTOS. In extended RT-LOTOS, both
shedulability and functional correctness may be verified

on the same specification. However, schedulability analy-
sis with the approach proposed in this paper, is limited to
fixed priority policies. This is because priorities are en-
coded in the static operators of extended RT-LOTOS.
A comparison of our work with existing approaches re-
lating process algebras and Petri nets[9][22][16] can be
found in [27].

8 Conclusions

The RT-LOTOS formal description technique supports
three generic temporal operators that enable explicit and
semantically well-founded description of real-time mech-
anisms and constraints. Nevertheless, real-time systems
description in RT-LOTOS has been hampered by the lack
of suspend/resumeoperator.

In this paper, we propose to extend RT-LOTOS with
a suspend/resume operator ’[g�’ which permits to sus-
pend a behavior and to resume it later on. The proposed
extension is given a formal semantics. Formal verifica-
tion of extended RT-LOTOS specifications is also dis-
cussed. The paper presents an intermediate level model:
Sw-Component. The latter are used as a gateway between
extended RT-LOTOS and Stopwatch Time Petri nets, a
new formalism supported by TINA [8].The use of an ex-
tended RT-LOTOS with asuspend/resumeoperator is il-
lustrated on three examples. The RT-LOTOS to SwTPN
translation procedure has now to be integrated into the
rtl2tpn tool [28]. The translation algorithm of thedisrupt
operator is easily adapted to handle extended RT-LOTOS
specifications.
This work is not limited to the verification of real-time
systems directly specified in RT-LOTOS. The ultimate
goal is to provide a more powerful verification environ-
ment for real-time systems modelled in TURTLE[3], a
real-time UML profile built upon RT-LOTOS.

References

[1] Y. Abdeddaim and O. Maler. Preemtive job-shop schedul-
ing using stopwatch automata. InProc. of TACAS’02,
pages 113–126.

[2] R. Alur, C. Courcoubetis, N. Hallbwachs, T. Henzinger, P.-
H. Ho, X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine.
The algorithmic analysis of hybrid systems. 138:3–34,
1995.

[3] L. Apvrille, J.-P. Courtiat, C. Lohr, and P. de Saqui-
Sannes. TURTLE : A real-time UML profile supported
by a formal validation framework.IEEE Transactions on
Software Engineering, 30(4), July 2004.

[4] H. Ben-Abdallah, J.-y. Choi, D. Clarke, Y.-S. Kim, I. Lee,
and H.-L. Xie. A process algebraic approach to the
schedulability analysis of real time systems. 15(3):189–
219, 1998.

[5] G. Berry. Preemption in concurrent systems. In Springer-
Verlag, editor,Proc. of FSTTCS, volume 761 ofLNCS,
pages 72–93, 1993.

[6] B. Berthomieu, D. Lime, O. Roux, and F. Vernadat. ,
reachability problems and abstract state spaces for time
petri nets with stopwatches, to appear 2007. 2006.

32

[7] B. Berthomieu and M. Menasche. Une approche par
énuḿeration pour l’analyse des réseaux de Petri temporels.
In Actes de la conférence IFIP’83, pages 71–77, 1983.

[8] B. Berthomieu, P. Ribet, and F. Vernadat. The TINA tool:
Construction of abstract state space for petri nets and time
petri nets. International Journal of Production Research,
42(14):2741–2756, 2004.

[9] E. Best, R. Devillers, and M. Koutny.Petri Net Alge-
bra, volume ISBN: 3-540-67398-9 2001 ofMonographs
in Theoretical Computer Science: An EATCS Series.
Springer-Verlag, New York, 2001.

[10] G. Bucci, A. Fedeli, L. Sassoli, and E. Vicario. Time state
space analysis of real-time preemptive systems,-ieee trans.
on software engineering-. 30(2):97–111, 2004.

[11] F. Cassez and K. Larsen. The impressive power of stop-
watches. In11th Int. Conf. on Concurrency Theory, vol-
ume 1877 ofLNCS, pages 138–152, University Park, P.A,
USA, 2000. Springer-Verlag.

[12] J.-P. Courtiat. Formal design of interactive multimedia
documents. InFORTE’2003, volume 2767 ofLNCS,
Berlin, 2003.

[13] J.-P. Courtiat, C. Santos, C. Lohr, and B. Outtaj. Experi-
ence with RT-LOTOS, a temporal extension of the LOTOS
formal description technique.Computer Communications,
23(12):1104–1123, 2000.

[14] A. Fredette and R. Cleaveland. Rtsl: A language for real-
time schedulability analysis. InProc. of the Real-Time
Systems Symposium, pages 274–283, Durham, North Car-
olina, 1993. Computer Society Press.

[15] H. Garavel and R.-P. Hautbois. An experiment with the
lotos formal description technique on the flight warning
computer of airbus 330/340 aircrafts. InProc. of the first
AMAST International Workshop on Real-Time Systems,
IOWA, USA, 1993.

[16] H. Garavel and J. Sifakis. Compilation and verification of
lotos specifications.Proc the IFIP WG 6.1 International
Symposium, pages 379–394, 1990.

[17] T. A. Henzinger and P.-H. Ho. HYTECH: The cornell HY-
brid TECHnology tool. InHybrid Systems, pages 265–
293, 1994.

[18] C. Hernalsteen and A. Fevrier. Introduction of a sus-
pend/resume operator in et-lotos. volume 1231 ofLNCS,
pages 400–414, 1997.

[19] T. Hune, K. G. Larsen, and P. Pettersson. Guided synthe-
sis of control programs using uppaal.Nordic Journal of
Computing, 8:43–64, 2001.

[20] ISO. LOTOS - a formal description technique based
on the temporal ordering of observational behaviour.
(8807:1989), September 1989.

[21] ISO. Information technology – enhancements to lotos (e-
lotos). (15437:2001), 2001.

[22] M. Koutny. A compositional model of time petri nets. In
Proc. of the 21st Int. Conf. on Application and Theory of
Petri Nets (ICATPN 2000), number 1825 in LNCS, pages
303–322, Aarhus, Denmark, 2000. Springer-Verlag.

[23] P. Merlin.A study of the recoverability of computer system.
PhD thesis, Dep. Comput. Sci., Univ. California, Irvine,
1974.

[24] E.-R. Olderog. Nets, Terms and Formulas. Cambridge
University Press, 1991.

[25] O. Roux and A.-M. Dplanche. A time petri net extension
for real time task scheduling modeling. InEur. journal of
Automation(JESA), 2002.

[26] O. Roux and D. Lime. Time petri nets with inhibitor hy-
perarcs, formal semantics and state space computation. In
Proc. Int. Conf. on Applications and Theory of Petri Nets,
Bologna, Italy, 2004.

[27] T. Sadani, M. Boyer, P. De Saqui-Sannes, and J.-P. Cour-
tiat. Effective representation of RT-LOTOS terms by finite
time Petri nets. InFORTE 2006, Paris, France, number
4229 in Lecture Notes in Computer Science, pages 404–
419. Springer, 2006.

[28] T. Sadani, J.-P. Courtiat, and P. de Saqui-Sannes. From
rt-lotos to time petri nets. new foundations for a verifica-
tion platform. In3rd IEEE International Conference on
Software Engineering and Formal Methods (SEFM’2005),
pages 250–259. Computer Society Press, 2005.

A. Definition (First actions set)

Let CP be a Sw-Component associated with an RT-
LOTOS behavior P. The set of first actionsFA(CP) can
be recursively built as follows:

FA(Cstop) = ∅
FA(Cexit) = {texit}
FA(Ca{d}P) = {ta}
FA(Cdelay(d)P) = FA(Clatency(d)P) = FA(CP)
FA(CP�Q) = FA(CP)
FA(CP |||Q) = FA(CP [>Q = FA(CP []Q) =
FA(CP [g�Q) = FA(CP) ∪ FA(CQ)
FA(CP ;Q) = FA(CP)
FA(CµX.(P ;X)) = FA(CP) where CµX.(P ;X) is the
component which performs P’s actions ad infinitum.
FA(Chide a in P) = ha(FA(CP)) whereha(x) = x if
x 6= a andhaa = ia.

B. The proof
Notations: A paragraph starting with

<→ proves that each
time progression which applies in the RT-LOTOS be-
havior P[g�Q is acceptable in its associated component

CP [g�Q.
<← denotes the opposite proof.

a→ (respectively
a←) are used for the proof on action

occurrence.
It is worth to mention that during the execution of a
component the structure of the SwTPN remains the same
(only the markings and temporal intervals are different),
while the structure of an RT-LOTOS term may change
through its execution. As a result, the SwTPN encapsu-
lated in a component may not directly correspond to an
RT-LOTOS behavior translation but is strongly bisimilar
with a SwTPN which does correspond to an RT-LOTOS
expression translation (The same SwTPN and current
state without the unrechable structure).

<→ A time move in P[g�Q falls into two categories:

1. Time move into both processes P and Q (SOS rule
7). If a time move is possible in both processes, then
the first action ofQ (respectivelyCQ) is enabled but
has not occurred yet. By induction hypothesis a time
move is also possible inCP andCQ. ’SR’(the only

33

introduced place) is an input place ofCQ’s first ac-
tion. ’SR’ is then marked. Consequently,CP is not
suspended.CP can age, hence a time move in both
CP andCQ is also possible inCP [g�Q.

2. A time move only on the suspending behavior Q
(SOS rule 5). P is suspended at the occurrence of
the first action of Q. If a time move is possible in
process Q, by induction hypothesis it is also possible
in CQ. ’SR’ is the unique newly introduced place in
CP [g�Q. ’SR’ does not interfere with the evolution
of CQ after the occurrence of its first action. Hence
in CP [g�Q a time move is only possible inCQ.

<← similarly to
<→

a→ the occurrence of action ’a’ inCP [g�Q is either:

1. the occurrence of a first action of Q. (SOS rule 3) By
induction hypothesis, ’a’ is also possible inCQ. ’a’
is enabled inCQ. ’SR’ is an input place forCQ’s first
action and ’SR’ is marked. Hence ’a’ is also possible
in CP [g�Q.

2. ’a’ is not a first action of Q. Q is active and P is sus-
pended (SOS rules 4). By induction hypothesis ’a’
is also possible inCQ. ’SR’ is not marked after the
firing of CQ’s first action, but SR does not interfere
with the evolution ofCQ (it serves as input place only
for the first action of Q). Hence, ’a’ is also possible
in CP [g�Q.

3. ’a’ is an action of P. P is not suspended. By induction
hypothesis ’a’ is also possible inCP . ’SR’ is marked,
hence ’a’ is also possible inCP [�Q.

a← similarly to
a→

(H1–H4) are trivially satisfied inCP [g�Q.

34

Generation of tests for real-time systems with test purposes

Sébastien Salva
LIMOS

Campus des Cézeaux
Université de Clermont Ferrand

salva@iut.u-clermont1.fr

Patrice Laurençot
LIMOS

Campus des Cézeaux
Université Blaise Pascal

laurencot@isima.fr

Abstract

Usually, the notion of time introduces space explo-
sion problems during the generation of exhaustive tests,
so test-purpose-based approaches have been developed to
reduce the costs by testing (usually on the �y) the critical
parts of the speci�cation. In this paper, we introduce a
test-purpose-based method which tests any behaviour and
temporal properties of a real-time system. This method
improves the fault detection in comparison with other sim-
ilar approaches by using a state-characterization-based
technique, which enables the detection of state faults on
implementations. An example is given with the MAP-DSM
protocol modelled with two clocks.
key words:Timed automata, conformance testing, test pur-
pose

1. Introduction

Computer applications are being increasingly involved
in critical, distributed and real-time systems. Their mal-
functioning may have catastrophic consequences for the
systems themselves, or for the ones who are using them.
Testing techniques are used to check various aspects of
such systems. Different categories of test can be found in
literature: performance testing, robustness testing, inter-
operability testing and conformance testing which will be
considered here.

Conformance testing consists in checking if the imple-
mentation is consistent with the speci�cation by stimulat-
ing the implementation and observing its behaviour. Test
cases which consist of interaction sequences are applied
on the implementation via a test architecture [13, 23]. This
one describes the con�guration in which the implemen-
tation is experimented, which includes at least the imple-
mentation interfaces (called PCO, point of control and ob-
servation) and the tester which executes the test cases to
establish the test verdict:

• pass: no error has been detected.

• fail: there is at least an error on the implementation.

• inconclusive: pass and fail cannot be given (the test
cannot be performed).

Many testing methods have been proposed for gen-
erating automatically test cases from untimed systems
[30, 9, 24, 3] or timed ones [5, 13, 10, 22, 29]. Most
of the timed ones are exhaustive methods which gener-
ally transform speci�cations into larger automata (such as
region graphs [13, 23], grid automata [29, 12], or SEA
[19, 18]) to generate test cases on the complete speci-
�cation. This kind of method is interesting and usable
with small systems but can end in a space explosion prob-
lem (usually obtained from state explosion) with larger
ones. So, others techniques called test-purpose-based ap-
proaches, have been proposed to test the most critical
systems parts. These ones check local implementation
parts from test requirements given by engineers, which are
called test purposes. The conclusion of the test is given
here by checking the satisfaction of the test purpose in the
implementation.

Some test purpose based methods have been proposed
[7, 8, 20, 28, 18] to test timed systems. These ones
strongly reduce the test cost and can be generally used
in practice to test speci�cation properties on implementa-
tions. However, faults like extra(missing) states and trans-
fer faults cannot be detected with the previous techniques.
Such faults can modify the system internal state (this one
becomes unknown and faulty), so detecting them is im-
portant.

In this paper, we introduce a test-purpose-based
method which can test the conformance and the robust-
ness of implementations, by testing any temporal or be-
haviour properties belonging to the speci�cation (called
Accept properties), but also any other ones given by de-
signers (Refuse properties). The test case generation is
performed by a timed synchronous product which com-
bines the speci�cation with the test purposes and prevents
state explosion. With this product, we obtain a graph
which includes the speci�cation and the test purpose prop-
erties. Furthermore, to improve the fault detection, we use
a state-characterization-based approach to identify each
state visited in the implementation. So, missing and trans-
fer faults can be detected.

35

This article is structured as follow: Section 2 describes
the theoretical framework needed in this study. Section
3 provides an overview of testing methods, and a re-
lated works on timed testing with test purpose based ap-
proaches. Section 4 introduces the concept of Timed test
purposes. The testing method is described in Section 5.
We apply this one on a real system, which is a part of the
MAP-DSM protocol. Then, we give the fault coverage
of the method in Section 6. Finally, we give an overview
of an academic test tool, which implements this testing
method, in Section 7 and we conclude in Section 8.

2. De�nitions

2.1. The Timed Input Output Automaton model
TIOA (Timed Input Output Automata) are graphs de-

scribing timed systems. This model, extended from the
timed automaton one [1], expresses time with a set of
clocks which can take real values (dense time represen-
tation) and by time constraints, called clock zones, com-
posed of time intervals sampling the time domain. Actions
of the system are modelled by symbols labelled on transi-
tions: input symbols, beginning with �?� are given to the
system, and output ones, beginning with �!� are observed
from it. A TIOA transition, labelled by an input symbol
?a, can be �red if the system receives ?a while its time
constraint is satis�ed. In the same way, a TIOA transition,
labelled by an output symbol !a, is �red if !a is observed
from the system while the time constraint is satis�ed.

De�nition 1 (Clock zone) A clock zone Z over a clock
set C is a tuple < Z(x1), ...Z(xn) > of intervals such
that card(Z) = card(C) and Z(xi) = [ai bi] is a time
interval for the clock xi, with ai ∈ IR+, bi ∈ {IR+,∞}.
If Xi is the clock value of the clock xi, we say that a clock
valuation v = (X1, ..., Xn) satis�es Z, denoted v |= Z iff
Xi ∈ Z(xi), with 1 ≤ i ≤ n.
For two clock zones Z and Z ′, we denote some operators:

• Z ∩ Z ′ = {v | v |= Z and v |= Z ′}
• Z/Z ′ = {v | v |= Z}/{v′ | v′ |= Z ′}

De�nition 2 (Timed Input Output Automata (TIOA))
A TIOA A is a tuple < ΣA, SA, s0

A, CA, EA > where:

• ΣA is a �nite alphabet composed of input symbols
and of output symbols,

• SA is a �nite set of states, s0
A is the initial one,

• CA is a �nite set of clocks,

• EA is the �nite transition set. A tuple (s, s′, a, λ, Z)
models a transition from the state s to s′ labelled by
the symbol a. The set λ ∈ CA gathers the clocks
which are reset while �ring the transition, and Z =<
Z(1), ..., Z(n) >(n=card(CA)) is a clock zone.

A TIOA example, modelling a MAP-DSM part, is
given in Figure 1. Among the protocols used with GSM
(Global system for Mobile communication), nine proto-
cols are grouped into the MAP (Mobile application part).
Each one corresponds to a speci�c service component.
The Dialog State Machine (DSM) manages dialogs be-
tween MAP services and their instantiations (opening,
closing...). A DSM description can be found in [6]. The
speci�cation of Figure 1, describes the request of the MAP
service by an user(?I3). This one can invoke several MAP
requests (?I4) which aim to start some services (!O3). A
dialog can be accepted then established or it can be aban-
doned (!O5 or !O9).

If we consider the transition (Tmp2, IDLE, !O9,
{X Y }, < X[4 +∞[Y[4 +∞[>), the two clocks x and y
must have an greater value than 4 so that the system pro-
duces the symbol !O9. After this execution , x and y are
reset.

Dialog
pending

TMP1

TMP2

Dialog
accepted

Dialog
establish

TMP3

TMP4

IDLE

Wait for
User

Request

TMP6

TMP5
?I2

?I11 !O6

?I7

?I4!O3

!O3 ?I4

?I3

?I1

!O1

?I16
?I15

!O5

!O9

X[2 +inf[
Y[0 +inf[

X[2 +inf[
Y[0 +inf[

X[0 2]
Y[0 +inf[

X[0 2]
Y[0 +inf[

X[0 2]
Y[0 +inf[

X[0 1[
Y[0 2]
X.=0

X[0 +inf[
Y[0 2]

X[0 3]
Y[0 +inf[

X[0 2]
Y[0 +inf[

X[2 +inf[
Y[0 +inf[

X[2 +inf[
Y[0 +inf[

X[4 +inf[
Y[0 +inf[

X[4 +inf[
Y[4 +inf[

X[0 2]
Y[0 +inf[

X[0 2]
Y[0 +inf[

?I1 : map_u_abort_req
?I2 : tc_begin_ind
?I3 : map_open_req
?I4 : map_req
?I7 : map_open_rsp
?I11 : map_delimiter_rsp
?I13 : tc_continue_ind
?I14 : tc_end_ind
?I15 : tc_p_abort_ind
?I16 : tc_p_abort_ind

!O1 : tc_u_abort_req;terminated
!O3 : service_invoked
!O5 : tc_ind_req;terminated
!O6 : tc_continue_req
!O9 : map_p_abort;terminated

X.=0
Y.=0

X.=0
Y.=0

Y.=0

Figure 1. A TIOA

2.2. Fault model
The fault model is a set of potential faults (untimed

and timed ones) that can be detected on implementations
by the testing process. For the TIOA semantic, the fault
model can be found in [13, 12]. This one is composed of:

• Output faults: An implementation produces
an output fault, for a speci�cation transition
(s, s′, !a, λ, Z), if it does not respond with the ex-
pected output symbol !a.

• Transfer faults: An implementation produces a
transfer fault if from a state, it goes into a state dif-
ferent from the expected one by accepting an input
symbol or by giving an output one.

36

• Extra state faults: An implementation is said to
have an extra (missing) state if its number of states
must be reduced (increased) to be equal to the num-
ber of states of the speci�cation.

• Time constraint widening fault: Such a fault oc-
curs if the implementation does not respect the time
delay granted by a speci�cation clock constraint, that
is if the upper (or lower) bound of a clock constraint
is higher (smaller) in the implementation. This fault
may occur on input or output symbols: for an output
one, the implementation does not respond in the ex-
pected delay given by the speci�cation, for an input
symbol, the implementation accepts the input symbol
in delays wider than the one given by the speci�ca-
tion.

• Time constraint restriction fault: This fault occurs
only with input symbols. An implementation pro-
duces this fault if it rejects an expected input symbol
in delays satisfying the clock constraint given by the
speci�cation. In this case, the clock constraint of the
implementation is more restrictive than the speci�ca-
tion one. Since output symbol cannot be controlled
by the system environment, an implementation that
produces an output symbol in a more restrictive de-
lay than the one speci�ed is seen as a valid restriction
of the speci�cation.

3. Related Works

In the literature, testing methods can be grouped into
two categories:

• the exhaustive testing methods, which involve gen-
eration of test cases on the complete speci�cation,
execution of the test cases on the implementation and
analysis of the test results. To describe the set of cor-
rect implementations, a conformance relation is �rst
de�ned, then test cases are given or generated from
the speci�cation to check if the relation is satis�ed or
not. Some works about timed systems testing can be
found here [5, 13, 22, 29, 12].

• the non exhaustive testing methods [7, 8, 21, 20,
28, 11, 18, 2, 14], which aims to test local parts of
implementations. This concept aims to check if a
set of properties, called a test purpose, can be exe-
cuted on an implementation during the testing pro-
cess. Test purpose can be either manually given by
designers, or can be automatically generated [7, 17].
Then, test cases are generally generated from the test
purposes and from some speci�cation parts, reduc-
ing the speci�cation exploration in comparison with
exhaustive methods (reducing in the same time the
test costs). Finally, test cases are executed on the im-
plementation to observe its reactions and to give a
verdict [28].

In [8, 20], the authors use time automata to model
the speci�cation and the test purpose. Test cases are
generated by synchronizing the speci�cation with the
test purpose and by extracting the paths which con-
tain all the test purpose properties. During the syn-
chronization, a reachability analysis is performed to
keep only the reachable transitions. This method
needs for each transition a resolution of linear in-
equalities and also a DFS algorithm to search some
clocks constraints. The number of inequalities is pro-
portional with the number of clocks and the transi-
tions they constrained, consequently the resolution is
generally costly.
In [28], the speci�cation and the test purpose, mod-
elled with timed automata are translated into region
graphs to sample the time domain into polyhedrons.
The test cases are generated by synchronizing the
speci�cation region graph and the test purpose one.
Each region clock of the region graph is accessible
from the initial one, so a �nal test case can be com-
pletely executed on implementations. However, the
region graph generation is costly and can suffer from
state explosion.
In [18], the test tool TGV [15] has been extended
to test timed systems. This method can test non de-
terministic systems and takes into account the quies-
cence of states. Test purposes and speci�cation are
translated into non real time automata (SEA), then
the TGV method is adapted and used to generate test
cases.
In [2], the authors use speci�cations and test pur-
poses modelled by TIOA. Then, they search for a
feasible path which match the speci�cation and the
test purpose with a DFS algorithm.
In [14], test purposes are modelled by Message Se-
quence Charts (MSC). These ones are converted into
TIOA. Then, the speci�cation and test purposes are
converted into grid automata. Finally, test cases are
generated by using the synchronous product de�ned
in [8].

In this paper, we propose a new test purpose de�ni-
tion to generate test cases which can test the conformance
of timed system as well as their robustness by de�ning
Refuse properties, that is test purpose properties which do
not belong to the initial speci�cation. So these ones can
simulate the execution of different failures, like byzantine
or scheduling ones, in order to check if the system can still
respond correctly despite these errors. We do not trans-
late timed automata into larger models to apply existing
untimed test purpose methods on them [28, 18, 14]. We
de�ne a new timed synchronization product on timed au-
tomata which also takes into account Refuse properties.
We also propose to improve the fault detection by enabling
the detection of the missing state and transfer faults. We
adapt a state characterization based approach, de�ned in

37

[26] for region graphs, to identify each system state with
observable action sequences. With this state identi�ca-
tion, missing and transfer faults can be detected.

Before describing the test case generation, we present
our de�nition of timed test purposes.

4. Timed test purpose

Test purposes are graphs describing the requirements
that engineers wish to test on the system implementation.
These requirements can be speci�cation properties which
should be satis�ed in the implementation during tests. We
call them Accept properties. But, test purposes could also
be constructed with properties which do not belong to the
speci�cation, that we call Refuse properties. These ones
can be used to test the system robustness by checking if
the system responds correctly despite the execution of un-
speci�ed actions.

So, we de�ne that a Timed Test Purpose is a TIOA
whose the states are either labelled by �accept� or �refuse�
to model that transitions are composed of accept or refuse
properties. An accept transition of the test purpose must
exist in the speci�cation. Its clock zone may be however
more restrictive than the speci�cation one.

De�nition 3 (A Timed Test Purpose) Let S =< ΣS,
SS, s0

S, CS, ES > be a TIOA describing a speci�ca-
tion. A timed test purpose TP is a TIOA < ΣTP, STP,
s0

TP, CTP, ITP, ETP > where:

• CTP ⊆ CS,

• STP ⊆ SS × accept, refuse is a set of states such
that each state s′ ∈ STP is labelled either by:

� ACCEPT: if s′ is the initial state
of TP, or if ∀(s, s′, a, λ, Z) ∈
ETP, ∃(s1, s2, a, λ2, Z2) ∈ ES such as Z ⊆
Z2, s ∈ {(s1, accept), (s1, refuse)}, s′ =
(s2, accept)

� REFUSE: otherwise

De�nition 4 (Accept and Refuse transition) We call a
transition (s, s′, a, λ, Z) an accept transition iff s′ is la-
belled by ACCEPT. We call it a REFUSE transition other-
wise.

A timed test purpose example is given in Figure 2. This
one checks if after having a dialog accepted (?I7), a dialog
can be established (!O6) during a more restrictive clock
zone than the speci�cation one.

Test purposes for testing the system robustness
Robustness aims to check the system behaviour under

the in�uence of external errors (byzantine failure, bus er-
ror, scheduling problem, ...). Mutations are generally in-
jected into test cases to simulate these errors. Some well-
known mutations can be found in [16]:

Dialog
Pending
Accept

Dialog
Accepted
Accept

Dialog
Establish
Accept

?I7 !O6

X[0 +inf[
Y[0 2]
Y.=0

X[3 +inf[
Y[0 +inf]

Figure 2. A test purpose example for the
MAP-DSM protocol

1. Replacing an input action, to simulation that an un-
expected action is received by the system from its
external environment.

2. Changing the instant of an input action occurrence to
simulate that the good input action is received later
than expected

3. Exchanging two input actions to simulate an schedul-
ing problem with external components to the system

4. Adding an unexpected action to simulate that an ex-
ternal component has send an additional action to the
system.

5. Removing an action to simulate the lost of a informa-
tion

Refuse properties are used here to model mutations,
which are injected into test purposes and �nally into test
cases. Refuse properties can be added to test purposes by
hands for specifying a precise error, or can be generated
by some methods [16, 27]. The test purpose example of
Figure 3 contains a refuse property which check that dur-
ing the establishment of a connection between the MAP
server and a service provider (?I11 !O6), the dialog can-
not be aborted (?I16=tc p abort ind). The action ?I16 is
an unexpected action for the system. The test purpose also
checks that the system continue to establish the dialog de-
spite ordering the abort.

Dialog
Pending
Accept

Dialog
Accepted
Accept

TMP3
Accept

TMP3
Refuse

?I7 ?I11 ?I16

Dialog
Establish
Accept

!O6

X[0 +inf[
Y[0 2]
Y.=0

X[2 +inf[
Y[0 +inf[

X[2 +inf[
Y[0 +inf[

X[2 +inf[
Y[0 +inf[

Figure 3. A test purpose with refuse proper-
ties

38

5. Test case generation

5.1. Testing hypotheses
Some assumptions are required on the implementation

under test and on the speci�cation. The �Implementation
Reset� and �Determinism� hypotheses are required to ex-
ecute the test cases. Indeed, without reset function, the
tester cannot execute several test cases on the implemen-
tation, and if the implementation is nondeterministic, it
may be uncontrollable and thus not testable. The two last
hypotheses are required for using a state characterization
based approach. These ones ensure and allow to identify
each speci�cation state.

Implementation Reset After each test, implementations
can be reset to the initial state.

Determinism The speci�cation must be timed determin-
istic on the set of alphabet. 1. from any state, we can-
not have two outgoing transitions labelled with the
same symbol. 2. we cannot have an outgoing transi-
tion, labelled with an input symbol and an outgoing
transition labelled with an output one, whose the tim-
ing constraints are satis�ed simultaneously. These
properties ensure that a determined implementation
path can be covered during the tests.

Minimality The speci�cation must be minimal on the
state set.

Completely speci�ed system The speci�cation must be
completely speci�ed on the set of input symbols
(each input symbol is enabled from each state).

Remark 5 To complete a speci�cation on the set of
input symbols, we propose to add a trap state st
and to complete each state s with outgoing transitions
(s, st, ?I, λ,G) from s to st. These transitions model
the external actions refused by A and improve the observ-
ability and the controllability of the speci�cation. So, the
complete TIOA UPA =< ΣUPA

, SUPA
, s0

UPA
, CUPA

,
IUPA

, EUPA
>, derived from A can be obtained with

these rules:

• ΣUPA
= ΣA, SUPA

= SA ∪ {st},

• s0
UPA

= s0
A, CUPA

= CA,

• IUPA
= IA ∪ {Z ′ | ∀s′ ∈ SA(s, s′, ?I, λ, Z) /∈

EA, Z ′ =< [0 +∞[...[0 +∞[>}
∪{Z ′ | ∃s′inSA(s, s′, ?I, λ, Z) ∈ EA, Z ′ =< [0 +
∞[...[0 +∞[> /Z},

• EUPA
= EA ∪ {(s, st, ?I, λ′, Z ′) | ∀s′ ∈

SA(s, s′, ?I, λ, Z) /∈ EA, λ′ = ∅, Z ′ =< [0 +
∞[...[0 +∞[>}
∪{(s, st, ?I, λ′, Z ′) | ∃s′inSA(s, s′, ?I, λ, Z) ∈
EA, λ = ∅, Z ′ =< [0 +∞[...[0 +∞[> /Z}
∪{(st, st, ?I, λ, Z) |?I ∈ ΣA}

Test purposes are often composed of some speci�ca-
tion actions, but not of complete speci�cation action se-
quences [8, 28, 11, 18, 2, 14]. Test purposes may also
be inconsistent with the speci�cation, especially when we
use refuse properties. So, test purposes based methods
generally synchronise the test purpose with the speci�-
cation to obtain paths which can be completely executed
from the initial system path. Moreover, our testing method
needs a state characterization based step to detect missing
and transfer faults. So, these two steps are �rst presented
below:

5.2. Timed Synchronous Product
The timed synchronous product aims to combine a test

purpose and a speci�cation to obtain paths which can
be executed on the implementation. In comparison with
the timed synchronous product that we have de�ned in
[28] for region graph models, this one takes into account
Refuse properties and injects them into the �nal test cases.

Consider two transitions, s1
A,ZS−−−→ s2 of a speci�ca-

tion S and s′1
A,ZTP−−−−→ s′2 of a timed test purpose TP, la-

belled with the same symbol �A�. By synchronizing them,
we generate different clock zones, depending on ZS and
ZTP. The different kinds of synchronized clock zones are:

• PASS clock zone: The clock zone Zpass gathers the
values which satisfy the execution of the two tran-
sitions, that is the ones which belong to ZS ∩ ZTP.
If the transition is executed in this clock zone during
the test, the test purpose transition is satis�ed.

• INCONCLUSIVE clock zone: The clock zone
Zinconclusive represents the values which satisfy the
execution of the speci�cation transition, but not the
execution of the test purpose one. INCONCLUSIVE
clock zones ensure that test cases can be executed on
implementations, even though the test purpose can-
not be satis�ed. INCONCLUSIVE clock zones al-
low to give an inconclusive result, that means some
speci�cation properties have been tested instead of
the test purpose ones. Zinconclusive contains values
of ZS/Zpass.

• FAIL clock zone: The FAIL clock zones represent
the values which do not satisfy the execution of the
speci�cation transition. In this case, if the transition
is executed in a FAIL clock zone during the test, the
implementation is faulty.

Figure 4 shows an example of synchronized clock
zones.

Now, we give the de�nition of the timed synchronous
product between a speci�cation and a test purpose which
may contain refuse properties.

De�nition 6 (Timed synchronous product) Let S =<
ΣS, SS, s0

S, CS, IS, ES > and TP =< ΣTP, STP, s0
TP,

CTP, ITPETP > be two TIOA. The Timed Synchronous

39

Product between S and TP is a graph SP =<
ΣSP, SSP, s0

SP, CSP, ESP > de�ned by:

• ΣSP ⊆ ΣS ∪ ΣTP, SSP ⊆ SS ∪ STP, s0
SP ⊆ s0

S,
CSP ⊆ CS ∪ CTP,

• ESP is the set of transitions
si

a,PASS(Z),INCONCLUSIV E(Z′)−−−−−−−−−−−−−−−−−−−−−−−→ si+1, with
si ∈ SSP, si+1 ∈ SSP, Z a PASS clock zone and
Z ′ an INCONCLUSIVE one. This set is constructed
with the following algorithm.

Algorithm

Input: T (Test Purpose), S(Speci�cation)
Output: SP (Synchronous Product)
BEGIN:
For each speci�cation path PS of S, and For each test purpose
path TP containing in the same order the accept transition
symbols of TP

We scan each transition tp
A,ZT P−−−−→ tp′ of TP and each

transition s
B,ZS−−−→ s′ of PS

if the symbol A == B then
//the speci�cation and the test purpose transitions are
synchronized8>>>>>>>>><>>>>>>>>>:

if Label(tp′) == REFUSE then we add
sp

A−−−−−−−−→
PASS(ZT P)

sp′ to ESP

else we add
sp

A−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
PASS(ZS∩ZT P),INCONCLUSIV E(ZS/ZT P)

sp′

synchronizing the test purpose and the speci�cation
endif

if the symbol A 6= B
//the speci�cation and the test purpose transitions cannot
be synchronized8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:

if Label(tp′) == ACCEPT then we add
sp

B−−−−−−−→
PASS(ZS)

sp′ to ESP to reach a next
synchronization
else

we scan PS to �nd if a synchronization on the
symbol A with tp

A,ZT P−−−−→ tp′ is possible later
if it is possible, then we add sp

B−−−−−−−→
PASS(ZS)

sp′

to reach this synchronization.
else we add sp

A−−−−−−−−→
PASS(ZT P)

sp′

endif
endif

if some PTP transitions are not used then we add them to ESP

endif
END

We illustrate the timed synchronous product with this
simple example. Consider the path of Figure 5, derived
from the speci�cation of Figure 1. This one is synchro-
nized with the test purpose of Figure 2. The timed syn-
chronous product is expressed in Figure 6.

����
����
����
����

����
����
����
����

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

�������
�������
�������
�������

PASS clock zone

FAIL clock zone

INCONCLUSIVE clock zone

Specification clock zone

Test purpose clock zone

X

Y

Figure 4. An example of synchronized clock
zones with two clocks

IDLE
Dialog

Pending
Dialog

Accepted
TMP3

Dialog
accepted

?I2 ?I7 ?I11 !O6

X [0 1[
Y [0 2[
X:=0

X [0 +inf[
Y [0 2]
Y:=0

X [2 +inf[
Y [0 +inf[

X [2 +inf[
Y [0 +inf[

Figure 5. A speci�cation path

5.3. State characterization set of TIOA
We have de�ned the state characterization based ap-

proach for region graphs in [26]. We have shown that the
identi�cation of two states depends on output symbols,
which are observed during the system execution, and on
the moments of these observations, that is the clock zones,
for TIOA. So, to distinguish two TIOA states, we look for
a transition sequence which provides either different out-
put symbols, or the same ones with different clock zones
or both. A state s is characterized by a identi�cation set
Ws if this one is composed of transition sequences which
distinguish s from the other states. Finally, the state char-
acterization set W is the union of the subsets Wsi which
characterize each state si. This is formally described in
the following de�nition.

De�nition 7 (Timed State Characterization Set W)
Let IA = (ΣIA, SIA, s0

IA, IIA, EIA) be a TIOA satis-
fying the hypotheses of Section 5.1. Two states S and
S′ of IA are distinguished by a transition sequence
σ = (t1, t2, A1, λ, Z1)...(tn, tn+1, An, λn, Zn), denoted
S Dσ S′ iff

1. ∀(tk, tk+1, Ak, λk, Zk)(1 ≤ k ≤ n), with Ak an out-
put symbol, we have a path S

A1,λ1Z1−−−−−→ S2
Sk−1

Ak−1,λk−1,Zk−1−−−−−−−−−−−→ Sk ∈ (EIA)k and
(Sk, Sk+1, Ak, λk, Zk) ∈ EIA,

2. ∃(tk, tk+1, Ak, λk, Zk)(1 ≤ k ≤ n), with Ak an out-

IDLE
ACCEPT

Dialog
Pending
ACCEPT

Dialog
Accepted
ACCEPT

TMP3
ACCEPT

Dialog
accepted
ACCEPT

?I2 ?I7 !O6

PASS(X [0 1[
Y [0 2[)

X:=0

?I11

PASS(X [0 +inf[
Y [0 2[)

Y:=0

PASS(X [2 +inf[
Y [0 +inf[)

PASS(X]3 +inf[
Y [0 +inf[)

INCONCLUSIVE(
X[2 3[

Y[0 +inf[)

Figure 6. A synchronous product

40

put symbol, we have a path S′
A1,λ1,Z1−−−−−−→ S2

Sk−1
Ak−1,λk−1,Zk−1−−−−−−−−−−−→ Sk ∈ (EIA)k and

(Sk, Sk+1, Ak, λk, Zk) /∈ EIA.

We denote WS , the set of transition sequences allowing to
distinguish S ∈ SIA from the other states of SIA. WS =
{σi | ∀S′ 6= S ∈ SIA, S Dσi S′}.
Finally, a Timed Characterization Set of IA, denoted WIA

equals to {WS1 , ...WSn}, with {S1, ..., Sn} = SIA.

A general algorithm of state characterization set gener-
ation can be found in [26].

If we take back our synchronous product example
of Figure 6, the states can be distinguished with the
following state-characterization sets. By applying this set
to each pair of state, we always observe different output
symbols at different time values, so we can distinguish
them.
WTMP3 = {(TMP3, Dialog establish, {}, !O6,
< X[2 +∞]Y[0 +∞] >)}

WDialog accepted = {(Dialog accepted, TMP3, ?I11,
{}, < X[2 +∞]Y[0 +∞] >)(TMP3, Dialog establish,
!O6, {}, < X[2 +∞]Y[0 +∞] >)}

WDialog pending = {(Dialog pending,Dialog esta-
blish, ?I7, {}, < X[0 +∞[Y[0 2[〉)(Dialog accepted,
TMP3, ?I11, {}, X[2 +∞]Y[0 +∞] >)(TMP3,
Dialog establish, !O6, {}, < X[2 +∞]Y[0 +∞] >)}

WIDLE = {(IDLE, Dialog pending, ?I2, {},
< X[0 1[Y[0 2[>)(Dialog pending,Dialog establish,
?I7, {}, < X[0 +∞[Y[0 2[>)(Dialog accepted, TMP3,
?I11, {}, < X[2 +∞]Y[0 +∞] >)(TMP3,
Dialog establish, !O6,
{}, < X[2 +∞]Y[0 +∞] >)}

WDialog establish = {(Dialog establish, TMP2, ?I15,
{}, < X[4 +∞[Y[0 +∞[>)(TMP2, IDLE, !O9,
{X Y }, < X[4 +∞[Y[4 +∞[>)}

5.4. The testing method
The testing method is composed of four steps. Steps

1 and 2 synchronize the test purpose with the speci�ca-
tion to generate paths, including the test purpose, which
can be executed on the implementation. Step 3 applies
a state-characterization-based approach on the synchro-
nized paths. Finally, step 4 performs a reachability analy-
sis on the paths obtained from the previous step and mod-
ify the clock zones to ensure that the test cases can be
completely executed on the implementation.

These test case generation steps are detailed below:

Let S be a TIOA, satisfying the previous hypotheses,
and TP be a timed test purpose. The test case generation
steps are:

• STEP1: Speci�cation path search: We extract the

speci�cation paths which can be synchronized with
the test purpose. Instead of synchronizing all the
speci�cation with the test purpose, we extract only
the needed. So, the transition sequences of S, con-
taining in the same order all the Accept transition
symbols of the test purpose, are �rst extracted and
named TS1(S), ..., TSn(S). If this set is empty, the
process terminates and the following steps cannot be
performed. We use a DFS (Depth First Path Search)
algorithm to generate these paths. The path extrac-
tion is performed depth wise, so only one speci�ca-
tion local path is memorized at a time.

• STEP2: Timed synchronous product: Each transi-
tion sequence TSi(S) is synchronized with TP. This
operation generates a graph SP , including TP and
respecting the temporal and behaviour properties of
S.

• STEP3: State characterization set generation:
Each state Si of SP is identi�ed with WSi (cf
Section 5.3). Then, we combine, with Π, the
synchronous product and the state characterization
set: Π = SP ⊗ W = {p.(si, sj , a, λ, Z).σj |
∀(si, sj , a, λ, Z) ∈ ESP , p is a path of SP from
s0 to si, σj ∈ Wsj if sj is labelled by ACCEPT,
σj = ∅ otherwise}. It's the concatenation of a path
p (�nished by its state si) with the state characteriza-
tion set of si. If we combine the synchronous product
example of Figure 6 and the state-characterization set
of Section 5.3, we obtain the paths of Figure 7.

• STEP4: Search of feasible paths: Test cases are �-
nally all the feasible paths of Π [2]. The feasibility
problem, for a given path p = t1..tn, aims to de-
termine if it exists a possible execution to reach the
transition tn, and to generate the clock zones over p
for �ring tn. The approach, described in [2], adds a
global clock h and then performs a reachability anal-
ysis from the �rst and the last transitions of the initial
path. The obtained feasible path clock zones can be
modelled with the global clock h or with the clocks
used in the initial path. For example, the feasible
paths of the Π set, illustrated in Figure 7, are given in
Figure 8. These ones are the �nal test cases.

Test cases are then executed on the implementation
from the initial state. Each input symbol is given to the im-
plementation at a clock valuation of its PASS clock zone.
If the system is not faulty, output symbols should be ob-
served at clock valuations of PASS clock zones as well.
So, by applying a test case transition t = (l, l′, A, λ,
PASS(Z), INCONCLUSIV E(Z ′)) on the imple-
mentation I , we can observe some reactions, denoted
React(t) , and we can give a local verdict for the tran-
sition. React(t) =

• PASSaction iff A is an output symbol and A is re-
ceived from the tester in the PASS clock zone, that is
at a clock value v |= Z,

41

IDLE
ACCEPT

Dialog
Pending
ACCEPT

Dialog
Accepted
ACCEPT

TMP3
ACCEPT

Dialog
accepted
ACCEPT

?I2 ?I7 !O6

PASS(X [0 1[
Y [0 2[)

X:=0

?I11

PASS(X [0 +inf[
Y [0 2[)

Y:=0

PASS(X [2 +inf[
Y [0 +inf[)

PASS(X]3 +inf[
Y [0 +inf[)

INCONCLUSIVE(
X[2 3[

Y[0 +inf[)

Dialog
accepted
ACCEPT

!O6
PASS (X [2 +inf[Y [0 +inf[)

Dialog
accepted
ACCEPT

Dialog
accepted
ACCEPT

?I15!O9

PASS (X [4 +inf[
 Y [0 +inf[)

PASS (X [4 +inf[
 Y [4 +inf[)

Figure 7. The synchronous product 6 com-
bined with the state characterization sets

IDLE
ACCEPT

Dialog
Pending
ACCEPT

Dialog
Accepted
ACCEPT

TMP3
ACCEPT

Dialog
accepted
ACCEPT

?I2 ?I7 !O6

PASS(H [0 1[)

?I11

PASS(H [0 2[) PASS(H [2 +inf[)
PASS(H]3 +inf[)
INCONCLUSIVE(

H [2 3[)

Dialog
accepted
ACCEPT

!O6
PASS (H [2 +inf[)

Dialog
accepted
ACCEPT

Dialog
accepted
ACCEPT

?I15!O9

PASS (H [4 +inf[)PASS (H [4 +inf[)

Figure 8. The test cases

• INCONCLUSIV Eaction if A is an input symbol
or if A is an output symbol and A is received from
the tester in the INCONCLUSIVE clock zone, that is
at a clock value v |= Z ′,

• FAILaction otherwise.

Finally, by executing the test cases and observing the
implementation reactions, we can conclude on the success
or on the failure of the test:

De�nition 8 (Verdict assignment) Let I be a system un-
der test and T = (l1, l′1, A1, λ1, PASS(Z1),
INCONCLUSIV E(Z ′1))...(ln, l′n, An, λn,
PASS(Zn), INCONCLUSIV E(Z ′n)) be a test case.
The verdict assignment V (I, T), obtained by applying T
on I, is given by:

• Pass iff ∀t = (li, l′i, Ai, λi, PASS(Zi),
INCONCLUSIV E(Z ′i)) ∈ T , with Ai an output
symbol, React(t) = PASSaction,

• Inconclusive iff ∃t = (li, l′i, Ai, λi, PASS(Zi),
INCONCLUSIV E(Z ′i)) ∈ T , with Ai an output
symbol, React(t) = INCONCLUSIV Eaction

and iff ∀t′ = (lj , l′j , Aj , λj , PASS(Zj),
INCONCLUSIV E(Z ′j)) ∈ T , with Aj an output
symbol, React(t) 6= FAILaction,

• Fail otherwise

Method complexity: If N is the number of state and
K the number of transitions of the speci�cation, the test
case generation complexity of our method is proportional
to C2 ∗ N + N ∗ K + N + K. For the �rst step, we
use a DFS algorithm whose the complexity is proportional
to N + K. The timed synchronous product complexity
depends on the length of the paths to combine. In the
worst case, this length equals to N and there is at most K
speci�cation paths. So, the complexity of the synchronous
product is proportional to N ∗K. The step 3 complexity is
proportional to N2K [25]. In step 4, the search of feasible
paths is proportional to C ∗C ∗N [2], with C the number
of clocks.

6. Fault coverage of the proposed method

In this Section, we introduce the fault coverage of our
testing method. As a test purpose doesn't test the whole
implementation of a system, the fault coverage is analyzed
on a implementation part, called Icovered. Furthermore,
to generate test cases, we use some speci�cation paths,
needed for the timed synchronous product. Let Scovered

be the set of these paths. Icovered corresponds to im-
plementation part tested by the test cases obtained from
Scovered.

• Output fault detection: Output faults can be easily
detected by �ring all of the speci�cation transitions.
According to our de�nition of the timed synchronous
product, each path of Scovered exists completely in
at least one test case. Moreover, we suppose that
the system is deterministic. So, each transition of
Icovered is tested during the testing process.

• Missing state fault detection: Extra(missing) state
faults are detected by checking if an extra or missing
state exists in the implementation. As our method
identi�es each state, it can detect missing states on
Icovered. Each state si of Scovered is identi�ed in the
implementation and tested by test cases of the form
s0

p−→ si.Wsi , with p a path from the initial state s0

to si and Wsi the subset allowing to identify si. Con-
sequently, if a state is missing in Icovered at least one
test case cannot be completely executed.

• Transfer fault detection: Transfer faults can be easily
detected by identifying the states of the implemen-
tation. So, any state-identi�cation based technique,
and particularly our method, detects transfer faults
on Icovered. Each transition t = (Si, Sj , a, λ, G) of
Scovered is tested by a test case of the form S0

p−→
Si

a,λ,PASS(Z)−−−−−−−−−→ Sj .WSj , with p a path from the ini-
tial state S0 to Si and WSj

the subset allowing to
characterize Sj . Consequently, the arrival state of
the transition t in the implementation is tested and
identi�ed. So, transfer faults are detected.

42

• Time constraint widening fault detection: Time con-
straint widening faults are detected if at least an out-
put symbol is not received by the tester in the time
delay given by the speci�cation. According to our
de�nition of the timed synchronous product, each
transition of Scovered is visited during the testing pro-
cess by at least one test case. Consequently, a test
case transition (s, s′, a, λ, PASS(Z),
INCONCLUSIV E(Z ′)) labelled by an output
symbol, is tested by the tester which waits its receipt
during the PASS clock zone Z. If no output symbol is
received, a time constraint widening fault is detected
on I .
For input ones, the method checks them only at clock
valuations which belong to time delays given by the
speci�cation. So, time constraint widening faults can
be detected with output symbols and not with input
ones on Icovered.

• Time constraint restriction fault detection: In prac-
tice, it is unfeasible to detect all of the time constraint
restriction faults. Consider a test case transition
(s, s′, ?a, PASS(Z), INCONCLUSIV E(Z ′)),
to detect the faults, the tester should send to the
implementation the input symbol �?a� at all of the
bounds of Z which are for each clock xi the time
values ai and bi such that Z(xi) = [ai, bi]. Since
the clocks are uncontrollable, these bounds are not
necessary reached by the clocks.

R

Vinit

Vfinal

x

y

Figure 9. Reaching all the clock region
bounds: a dif�cult issue

Consider the clock zone of the Figure 9. vinit repre-
sents the �rst clock valuation reached by the clocks
in Z during an execution. vinit is not a bound of Z.
So, if the implementation has a time constraint re-
striction fault between the bound of Z and vinit, the
fault cannot be detected.
Consequently, we can detect such a fault if this one
occurs during the execution. In this case, consider a
test case p.(si, sj , ?a, λ, PASS(Z),
INCONCLUSIV E(Z ′)).p′.Wsk

. Let si be the
implementation state reached by p and sk the one
reached by p.(si, sj , a, λ, PASS(Z),
INCONCLUSIV E(Z ′)).p′. If the implementa-
tion produces this fault, si rejects the input sym-

bol �a� in delays given by Z. Therefore, the im-
plementation stays in its current state si. Here, ei-
ther the implementation rejects p′.WSk

too, or ac-
cepts it. If p′.WSk

is rejected, the implementation
enters in a deadlock. Output symbols of p′.WSk

are not observed so the time constraint restriction
fault is detected. If p′.WSk

is accepted by the im-
plementation, according to the hypotheses (Section
5.1), S is minimal and deterministic therefore there
exists an unique path from si to sk, covered with
(si, sj , a, λ, PASS(Z), INCONCLUSIV E(Z ′))
.p′ from si. Thus, a state sl different from sk is
reached with p′ from si. Since the state reached by
p′ is identi�ed with Wsk

, if this one is different from
sk an error is produced. So, in both cases, time con-
straint restriction faults are detected.

7. Prototype tool functionality

Test Purpose
based Method

Characterization
State Set
Generation

Interval Automata
Test Cases

in TTCN format
Test Purposes

Figure 10. The test tool TTCG

We have implemented the previous methodology in an
academic prototype tool, called TTCG (Timed Test Cases
Generation). The description of its architecture is illus-
trated in Figure 10. The prototype tool takes speci�cations
and test purpose modelled with TIOA. It is composed of
two parts: the �rst one produces the timed synchronous
product between the test purposes and some speci�cations
paths. The second one produces the W set generation.
The paths, obtained from the synchronous product and the
state characterization set, are then concatenated to �nally
produce the test cases. These ones are given in TTCN or
in Poscript format.

This tool has been written with the language C, ex-
cepted the second part which has been written in Open-
MP to parallelize the W set generation. Clock zones mod-
elling and operators on clock zone have been implemented
with the Polylib library [31]. This one has a graphical in-
terface which allows the user to load TIOA and test pur-
poses. The amount of memory used depends on the spec-
i�cation. With the MAP-DSM speci�cation (Figure 1),
this one does not exceed 10 Mb.

8. Conclusion

In this paper, we have proposed a test purpose based
approach which can test both the conformance and the ro-
bustness of implementations, by using test purposes com-
posed of Accept and Refuse properties. This method uses
a synchronous product between the speci�cation and the
test purpose to generate on the �y test cases and a state
characterization based approach to improve the fault cov-
erage by enabling the detection of transfer faults and miss-

43

ing state faults. The complexity is polynomial so we be-
lieve that this one can be used in practice.

Our approach could be extended for testing others as-
pects of timed systems like interoperability. The quies-
cence of critical states [4] could be tested with speci�c
test purposes too, by checking if these states do not pro-
duce an output response without giving an input symbol.
Moreover, this property could help to distinguish pair of
states by considering the notion of quiescence as a special
sort of output observation. As a consequence, the length
of the state characterization set and so the test costs could
be reduced.

References

[1] R. Alur and D. Dill. A theory of timed automata. TCS,
126:183�235, 1994.

[2] I. Berrada, R. Castanet, and P. Felix. A formal approach
for real-time test generation. In WRTES, satellite work-
shop of FME symposium, pages 5�16, 2003.

[3] C. Besse, A. Cavalli, M. Kim, and F. Zaidi. Two methods
for interoperability tests generation. an application to the
tcp/ip protocol. 2004.

[4] L. B. Briones and E. Brinksma. A test generation frame-
work for quiescent real-time systems. In FATES04 (For-
mal Approached to Testing of Software),Kepler University
Linz, Austria, pages 71�85, 2004.

[5] R. Cardel-Oliver and T. Glover. A practical and com-
plete algorithm for testing real-time systems. In Proc.
of the 5th. Formal Techniques in Real-Time and Fault-
Tolerant Systems, volume 1486 of LNCS, pages 251�261.
SpringerVerlag, 1998.

[6] N. CARRERE. Dsm speci�cation in lotos and test cases
generation. INT (French Telecommunication National In-
stitute), 2001.

[7] R. Castanet, C. Chevrier, O. Kone, and B. L. Saec. An
Adaptive Test Sequence Generation Method for the User
Needs. In IWPTS'95, Evry, France, 1995.

[8] R. Castanet, P. Laurençot, and O. Kone. On the Fly
Test Generation for Real Time Protocols. In International
Conference on Computer Communications and Networks,
Louisiane U.S.A, 1998.

[9] T. Chow. Testing software design modeled by �nite-state
machines. IEEE Trans. Softw. Eng., SE-4(3):178�187,
1978.

[10] D. Clarke and I. Lee. Automatic Generation of Tests for
Timing Constraints from Requirement. In International
Workshop on Object-Oriented Real-Time Dependable Sys-
tems, California. IEEE Computer Society Press, 1997.

[11] A. En-Nouaary and R. Dssouli. A guided method for
testing timed input output automata. In 15th IFIP In-
ternational Conference, TestCom 2003, Sophia Antipolis,
France, pages 211�225, May 2003.

[12] A. En-Nouaary, R. Dssouli, and F. Khendek. Timed wp-
method: Testing real-time systems. IEEE TRANSAC-
TIONS ON SOFTWARE ENGINEERING, Nov. 2002.

[13] A. En-Nouaary, R. Dssouli, F. Khendek, and A. Elqortobi.
Timed test cases generation based on state characterization
technique. In 19th IEEE Real Time Systems Symposium
(RTSS'98) Madrid, Spain, 1998.

[14] A. En-Nouaary and G. Liu. Timed test cases genera-
tion based on msc-2000 test purposes. In Workshop on
Integrated-reliability with Telecommunications and UML
Languages (WITUL'04), part of the 15th IEEE Interna-
tional Symposium on Software Reliability Engineering (IS-
SRE), Rennes, France, Nov. 2004.

[15] J. C. Fernandez, C. Jard, T. Jron, and C. Viho. Using
on-the-�y veri�cation techniques for the generation of test
suites. In CAV'96. LNCS 1102 Springer Verlag, 1996.

[16] H. Fouchal, A. Rollet, and A. Tarhini. Robustness of
composed timed systems. In 31st Annual Conference on
Current Trends in Theory and Practice of Informatics,
Liptovsky Jan, Slovak Republic, Europe, volume 3381 of
LNCS, pages 155�164, Jan. 2005.

[17] O. Henniger, M. Lu, and H. Ural. Automatic generation of
test purposes for testing distributed systems. In FATES03
(Formal Approaches for Testing Software), Canada, pages
185�198, Oct. 2003.

[18] A. Khoumsi, T. Jeron, and H. Marchand. Test cases gener-
ation for nondeterministic real-time systems. In FATES03
(Formal Approaches for Testing Software), Canada, Oct.
2003.

[19] A. Khoumsi and L. Ouedraogo. A new method for trans-
forming timed automata. In Brasilian Symposium on For-
mal Methods (SBMF), Recife, Brazil, Nov. 2004.

[20] O. Kone. A local approach to the testing of real time sys-
tems. The computer journal, 44:435�447, 2001.

[21] O. Kone and R. castanet. Test generation for interwork-
ing sytems. Computer communications, Elsevier Science,
23:642�652, 1999.

[22] B. Nielsen and A. Skou. Automated Test Generation from
Timed Automata. In TACAS01, vol. 2031 of LNCS, Gen-
ova, Italy, pages 343�357, 2001.

[23] E. Petitjean and H. Fouchal. From Timed Automata to
Testable Untimeed Automata. In 24th IFAC/IFIP Inter-
national Workshop on Real-Time Programming, Schloss
Dagstuhl, Germany, 1999.

[24] A. Petrenko, N. Yevtushenko, and G. v. Bochmann.
Testing Deterministic Implementations from Non-
deterministic FSM Speci�cations. In Proceedings of the
8th International Workshop on Test of Communicating
Systems IWTCS'96 (Darmstadt, Germany), Amsterdam,
september 1996. North-Holland.

[25] S. Salva and P. Laurenot. Gnration de tests temporiss ori-
ente caractrisation d'tats. In Colloque Francophone de
l'ingénierie des Protocoles, CFIP, Oct. 2003.

[26] S. Salva and P. Laurenot. A testing tool using the state
characterization approach for timed systems. In WRTES,
satellite workshop of FME symposium, 2003.

[27] S. Salva and P. Laurenot. Gnration automatique dobjectifs
de test pour systmes temporiss. In Colloque Francophone
de l'ingénierie des Protocoles, CFIP, Bordeaux, 2005.

[28] S. Salva, E. Petitjean, and H. Fouchal. A simple approach
to testing timed systems. In FATES01 (Formal Approaches
for Testing Software), a satellite workshop of CONCUR,
Aalborg, Denmark, Aug. 2001.

[29] J. Springintveld, F. Vaandrager, and P. R. D'Argenio. Test-
ing Timed Automata. TCS, 254(254):225�257, 2001.

[30] J. Tretmans. Conformance testing with labelled transi-
tion systems: Implementation relations and test genera-
tion. Computer Networks and ISDN Systems, 29:49�79,
1996.

[31] D. K. Wilde. A library for doing polyhedral operations.
Technical report, IRISA. http://icps.u-strasbg.fr/PolyLib/.

44

 RTNS’07 – Session 2

 Architectures and

worst-case execution time
estimation

45

46

Predictable Performance on Multithreaded Architectures for Streaming
Protocol Processing

Matthias Ivers, Bhavani Janarthanan, Rolf Ernst1

{ivers,bhavani,ernst}@ida.ing.tu-bs.de

Abstract

Multithreaded architectures use processors with multi-
ple hardware-supported threads which enable the efficient
suspension of a running thread while it is waiting for a
long-latency operation to finish. Multithreading is con-
ceived as the panacea to fill the ever-growing gap between
memory and processor speed.

In the domain of hard real-time systems, multithreaded
architectures are hardly recognized as viable, as the pos-
sible gains of multithreading cannot be guaranteed eas-
ily, while the negative effect on worst-case execution time
cannot be bounded easily.

We developed a hard real-time system based on high-
speed (1.4GHz) microprocessors which use multithread-
ing to allow high utilization despite long memory access
times. In this paper, we describe a method how to benefit
from multithreading while achieving good predictability.

1 Architecture

Architectures used in network processing share spe-
cific features to support traditional routing applications.
Commonly found are algorithmic hardware acceleration
units for checksum calculations, cryptography, longest
prefix matching. Furthermore scratch-pad memories and
intelligent memory controllers with direct memory ac-
cess (DMA), atomic read-modify-write (RMW) and even
linked list management support are used to improve sys-
tem performance.

For our application domain the acceleration units de-
signed to speed-up TCP/IP or Ethernet processing are of
no interest. The features used by the design and critical for
our methodology are the multithreaded high-speed RISC
cores with their integrated control-stores and their virtual
abundance of general purpose and memory transfer regis-
ters.

The architecture used for the presented work is
based on Intel’s network processors, the IXP-family.
The Intel series of IXP network processors is based on
so-calledµEs (MicroEngines) which are programmable
RISC cores with integrated instruction memory and 6kB

1work is in part supported by a grant from Intel and the Lower Saxony
Ministery of Economy

memory for data storage arranged as 32bit-registers or
32bit-wide register-like RAMs. The processor supports
up to 8 hardware threads scheduled in a cooperative
(non-preemptive) round-robin fashion (cooperative mul-
tithreading). These hardware threads share the common
instruction and data storage of theµE.

The number ofµE available on an IXP processor
varies from 2µEs on an IXP-2325 to 16µEs found on an
IXP-2855. Our design (see Figure 1) under consideration
here is based on 4µEs, some coprocessors for hardware
acceleration of macro functions and a specialized memory
controller interfacing the system to 250 MHz SRAM.

1.1 Real-time Predictability of the Processor
An important factor for the selection of theµE as the

processor of an architecture is its lean design and lack of
heuristic features to speed-up the processing. TheµEv2
does not feature branch predictors, out-of-order execution
units or even caches. The design uses a clean five stage
pipeline with virtually all relevant instructions taking a
single cycle per pipeline stage. Only a small set of in-
structions can result in pipeline stalls.

All these facts account for the good analyzability of
the “core” execution time on these processors. The only
latency which cannot be precisely bounded statically, as
it varies too much, is the execution time of instructions
which involve the use of buses. The processor supports
hardware-multithreading to achieve high utilizations even
when the running software has to tolerate long latencies
when transferring data to/from external units, , in particu-
lar external memory. The typical programming approach
using theµE is to switch to a different thread while one
thread is waiting for a memory transaction. Due to the
large memory transaction latency, it is efficient to switch
threads several times during one transaction thereby inter-
leaving the transactions without overloading the buses.

2 Application

Traditionally network processors support applications
running on Ethernet, TCP/IP or higher layer protocols.
Our objective is to implement the low-level control
plane of high-speed TDM telecommunication protocols
which were never before implemented on a purely
programmable platform. In our case we adress the ubiq-

47

Control Plane

Data Plane

128b@77.76MHz

Parity Banks

Pointer Banks
Line IF

Shared
Mem

Line IF

Mem Controler
External32b@250MHz

32b@500MHz

32b@500MHz

Buffer
n us

Time Slot
Xchange

Coprocessors

Pointer Banks

Pointer Buffer

Parity Banks

Shared
Mem

128b@77.76MHz

OH Ext
OH Ins

mE mE mE mE

SRAM

Figure 1. Architecture based on 4 µEv2

uitous standards SDH and SONET targeting line-speeds
between 2.5Gbps and 10Gbps.

SDH and its counterpart SONET are the multiplexing
standards formulated by ITU-T for optical telecommuni-
cation transport networks. They support the flexible and
transparent transport of a mixture of protocols of different
line rates in their virtual containers (VC) and provide so-
phisticated features of OAM through performance moni-
toring and protection mechanisms. The standards for SDH
are specified in ITU-T G.707, network node interface for
the synchronous digital hierarchy [4].

Figure 2 depicts the basic Synchronous Transport
Module (STM-1) format for SDH. The transmission time
of a frame is 125µs corresponding to a rate of 8000
frames per second. The frame consists of overhead fields
and a virtual container capacity accounting for a total
of 2430 bytes resulting in the basic line rate of 155.52
Mbps. Higher level signals are integer multiples of the
base rate formed by byte interleaving and multiplexing.
A hierarchy up to 40 Gbps, STM-256/OC-768, has been
defined. An STM-1 frame is arranged in 9 rows, each row
consisting of 270 bytes (columns). The VC transported
in an STM-1 has its own frame structure with nine rows
and 261 columns. There are three layers of overhead
bytes in an STM frame. Regenerator section, multiplex
section and path as shown in Figure 2. The layers have a
hierarchical relationship with each layer building on the
services provided by all the lower layers. The overhead
bytes provide information for synchronization, error mon-
itoring, performance measures, tracing, status signaling,
fault detections, automatic protection functions, network
administration and management.

Apart from the overhead bytes, the pointer bytes are
defined to indicate the phase alignment of the virtual con-
tainers within the STM frame. It is used to locate the start
of a virtual container embedded in an STM-frame and to
adjust for dynamic frequency and phase variations of the
payload. The section, line and pointer overheads consti-

tute the first 9 rows and 9 columns of the STM-1 frame
and the higher order path overhead constitute the first col-
umn of the VC.

2.1 Characterization
SDH/SONET is a low-level networking protocol and

designed to be efficiently implemented in hardware using
a set of mostly independent finite state machines.

The protocol is designed in such a way that most con-
trol overhead can be processed completely in parallel with
very little interdependencybetween different control func-
tions. This fact is key to the success of the presented anal-
ysis method.

The finite state machines can be implemented in soft-
ware and are quite small in code size and execution time.
The average number of instructions per control function
is very low: the largest control function executes at most
514 instruction on its longest path (average is below 100
instructions/control function). As a comparison note that
the shortest deadline is in the order of 100,000 processor
cycles.

The slack (difference between deadline and required
execution time) of the control functions seem to be quite
high at a first look. But we have to process many control
functions at once (see below) andall taskshave to meet
their deadline. The standards define these deadlines to be
hard with an extremely low fault probability. This is nec-
essary to reach the high persistency required for the opti-
cal switching devices. This is completely different from
IP protocols where packet loss and retransmission are ac-
cepted.

So, the main factor in the processing of SDH/SONET
is the sustainable throughput that must be reached. As
higher line rates are achieved by byte-interleaving multi-
ple frames, the overhead increases dramatically with in-
creasing line speed. A 10Gbps signal has 41,472,000
overhead bytes per second. For that reason we want to
maximize the reached throughput of the system while

48

Regenerator Overhead PayloadMultiplex Overhead Pointers Path Overhead

!1
25

us

270 bytes

9 bytes 261 bytes

Figure 2. STM-1 Frame Structure

guaranteeing all deadlines.

3 Analysis

It is our objective to develop a performance analysis
for high-speed multithreaded architectures. To do that, we
start with an analysis that is aware of multithreading and
does recognize multithreading in a beneficial - still con-
servative - way.

In a next step we’ll introducea program transforma-
tion. First we’ll reschedule the memory operations with
two effects: lowering the number of threads necessary to
hide the latency and increasing the guaranteeable gain of
multithreading.

We’re going to extend that approach naturally by loop
unrolling. Increasing the analytical gain of multithreading
and, again, lowering the number of needed threads to hide
the latency.

3.1 Known WCET Analysis for Multithreaded Pro-
cessors

We implemented an execution time analysis for the
µEv2-code based on previous work [1]. For the read-
ers convenience, we’re sketching the essential parts of the
analysis here.

It starts with parsing the object files in order to gen-
erate a control flow graph (CFG) of the application (see
Figure 3) [2] with basic blocks as nodes.

For a pair of basic blocks(a, b) each path froma to
b represents a possible execution of the program. There
are graph algorithms which efficiently enumerate all paths
connecting two nodes. As the paths through the graph
are possible traces through the real program, one can say
that these graph algorithms enumerate all traces of the pro-
gram.

3.1.1 Defining Execution Time

The execution time for normal basic blocks is easily de-
rived for architectures under consideration. The used
RISC processors does not have caches, branch predictors

label1#:
immed[y, 10]

alu[−−, x, −, 10]
beq[label1#]

nop
...

label2#:

...

immed[y, 42]

sram[x, BASE, 0, 1], ctx_swap[sig1]to other
threads

br[label2#]from other
threads

Figure 4. Fragmentation & Threading

or very deep pipelines. They are simple and lean in de-
sign, as the primary goal was to have a large number of
equal processors on a single chip.

For that reason the execution time of a basic block
without memory instructions can be estimated by sum-
ming up all individual instructions execution time and
adding a constant architecture-specific overhead for each
basic block. For theµEv2 the overhead can be completely
hidden most of the time.

For nodes which access the memory the execution time
has to be analyzed separately. There are methods to inte-
grate the analysis of memory accesses and worst-case ex-
ecution time [3]. This framework also supports the analy-
sis of parallel memory accesses and considers the effect of
pipelined memories, or chip interconnects. The presented
method is orthogonal to the analysis of memory accesses.
For that reason and to present results comparable to [1],
we use the estimated upper bound of [1] and assume a
memory access latency (including bus transfer) of 30 cy-
cles (for 233 MHzµE) and 120 cycles (for 1400 MHz
µE).

49

alu[−−, x, −, 10]
beq[label1#] ; go to label1 if x==10

label1#:
immed[y, 10]

immed[y, 42] ; y=42

br[label2#] ; go to label2
sram[x, BASE, 0, 1], ctx_swap[sig1] ; read X from memory

nop
...
... ; do something

label2#:

br[label2#]
sram[x, BASE, 0, 1], ctx_swap[sig1]
immed[y, 42] label1#:

immed[y, 10]

alu[−−, x, −, 10]
beq[label1#]

nop
...

label2#:

...

Figure 3. Assembly Code and Control Flow Graph

3.1.2 Obtaining the WCET

We transformed our program into a control flow graph and
obtained execution times for the individual basic blocks.
To calculate the WCET of our code, we have to designate
a basic block where execution commences and a (possibly
different) basic block where execution stops.

Once start- and end-node are designated standard graph
algorithms are used to efficiently find a path connecting
start and end node with maximal accumulated execution
time [2].

The used algorithm allows to add further restrictions on
the possible paths through the graph which makes it pos-
sible to model most semantic restrictions one can find in
programs. We will make use of restrictions in the next sec-
tion to eliminate impossible traces when analyzing multi-
threading.

3.1.3 Interleaved Extension

Non-preemptive multithreading has to be considered dur-
ing the evaluation of the WCET. A multithreaded proces-
sor interleaves small traces of different threads in such
a way that previously unavoidable utilization gaps in the
processing of one thread are filled with execution of a dif-
ferent thread which is ready to run. This effect is benefi-
cial as it uses previously stalling processing units. It can
be disadvantageous to the individual WCET, as the con-
currently running threads can block the processor while
the thread under consideration is already ready to execute.

To enable the analysis of multithreaded architectures,
basic blocks containing memory accesses with context
switch opportunities are identified and and split, so that
memory accesses with context switch opportunities con-
stitute an individual basic block. A basic block with a
context switch opportunity is also known as a yield node.

The CFG is fragmented by disconnecting each yield node
from its direct successor, as the scheduler of the processor
will possibly execute other threads between a yield node
and its direct successor. The result of this splitting and
fragmentation can be seen in Figure 4.

Now each thread of the processor receives its own copy
of the fragmented CFG and the yield node is connected
with the successor nodes of the next thread’s CFG. It is not
only connected to the copies of its own successor node,
but with all successor nodes of the following thread. The
connection to all successor nodes is clearly depicted in
Figure 5.

The CFGs of the different threads are connected so
that paths through the graph resemble the possible traces
through all threads that the hardware scheduler can gener-
ate. But the new interleaved CFG of all threads has lost
some of the original semantics of the program. In a multi-
threaded processor each suspended thread will resume ex-
ecution at instruction following the last executed instruc-
tion before the suspension. In the multithreaded CFG ev-
ery yield node is connected toall successor nodes of the
next thread. The CFG does not enforce that a suspended
thread is resumed at the correct position. For that reason
an additional constraint is added to our CFG. For every
pair of nodes(a, b) wherea is a yield node andb is the
direct successor, we require that they are executed equally
often (i.e. constraint:xa = xb wherexn is the execution
count of noden).

In [1] a strict round-robin scheduler is assumed. For
that reason the CFG of Thread n points to nodes in Thread
n+1 (modulo number of Threads). We present the com-
plete CFG for a two-threaded setup in Figure 5. Yield
nodes in Thread 0 transfer control to Thread 1 and yield
nodes in Thread 1 transfer control to Thread 0, just like a
non-preemptive round-robin schedule would do.

50

label1#:
immed[y, 10]

alu[−−, x, −, 10]
beq[label1#]

immed[y, 42]

sram[x, BASE, 0, 1], ctx_swap[sig1]
label1#:
immed[y, 10]

alu[−−, x, −, 10]
beq[label1#]

immed[y, 42]

nop
...

label2#:

...

br[label2#]

nop
...

label2#:

...

br[label2#]

sram[x, BASE, 0, 1], ctx_swap[sig1]

Thread 2Thread 1

xa

x
b

Figure 5. Example for two Threads

3.1.4 Multithreading Gain

The benefits of a multithreaded architecture are based on
the fact that external transactions (e.g. memory accesses)
no longer stall the processor, but are in parallel to another
thread. Until now the CFG does not model this paral-
lelism.

To model this parallelism we add negative weights (ex-
ecution costs) to the newly added values. The negative
weight equals the guaranteed parallelism of the threads.
In Figure 6 the first (shaded) node models a memory ac-
cess taking 30 cycles. The succeeding node of the next
thread has an execution of 10 cycles. The 10 cycles are
guaranteed to overlap with the 30 cycles of the memory
access, for that reason we substract 10 cycles when taking
the edge connecting the yield node with the next thread.
The second memory access takes 30 cycles and is fol-
lowed by an execution of 20 cycles. For this case, we
can assume that 20 cycles are hidden.

The final version of the algorithm does not only con-
sider the directly following execution node. As can be
read in [1] the weight (execution cost) of the shortest (non-
preemptible) path to the next preemption point is used.

3.1.5 Experiments

In Table 1 we present the analysis results using the method
described by Crowley/Baer on our code. We present the
results forµEv2 running at its natural speed of 1400 MHz
and also an assumedµEv2 running at 233 MHz - which
is the frequency that is assumed in [1].

Each column of the table shows the result for a differ-
ent control function defined in the SDH standard. It is not
necessary to discuss the details of these functions to eval-
uate the results. The first seven columns show results for
the individual functions while the last column shows the
results for the processing of all control functions at once.

For the different number of threads we assume to pro-

cess multiple requests at once. So the results for two-
threaded executions have twice the throughput, as these
WCET for two parallel tasks are given. The results for
eight threads assume that eight times the single-threaded
payload is processed.

It is noteworthy that the analysis results for single-
threaded execution are almost 100% precise. We found
the estimates to be just slightly (5-22 cycles) higher than
the measured worst-case execution time. This indicates
that our model of theµEv2 is very good.

When looking at multithreaded execution, we can see
that for the speed of 233 MHz the results do improve sig-
nificantly, while the analysis for the 1400 MHz machine
cannot be improved that much. Simulation runs show that
the real performance scales much better than the predicted
performance. For the 8-thread analysis our guaranteed
WCET is 3 times higher than the simulated WCET. From
this experiment we draw the conclusion that the methods
must be adapted for higherµEspeeds.

Another interesting fact which can also be observed
in [1] is that the method does not support more than two
threads. The eight-threaded results are 4 times higher than
the 2 threaded results.

3.2 Increasing the Multithreading Gain for Modern
Architectures

As seen in the experiments, the method does improve
the guaranteed performance when compared to a non-
multithreading-aware solution. But the improvement is
limited. The limitation stems from pessimism in the mod-
eling of concurrency. Figure 6 shows an example (taken
from [1]) of the pessimism. Two threads execute on a core
and both access the memory. The analysis assumes that
two memory accesses do not occur in parallel and that the
memory access latency can only be hidden by the directly
following block of code. This leads to a pessimism of 10
cycles as shown in Figure 6. A good measure for the effec-

51

B3 C2 F2/F3 G1 H4 J1 N1 ALL

ME Speed: 233 MHz
1 Thread 295 49% 356 67% 142 68% 266 56% 371 53% 502 47% 941 54% 2735 57%

2 Threads 478 62% 590 81% 269 72% 492 61% 601 67% 844 56% 1646 62% 4649 66%
ME Speed: 1400 MHz

1 Thread 745 19% 716 33% 412 24% 626 24% 821 24% 1312 18% 2111 24% 6245 23%
2 Threads 1414 21% 1396 34% 777 25% 1210 25% 1535 26% 2571 18% 3905 26% 11965 25%
8 Threads 5650 21% 5653 34% 3106 25% 4856 24% 6033 26% 10281 18% 15626 26%45295 25%

Table 1. Analysis of Original Code – Results show WCET in µE cycles and the associated µE-
utilization

B3 C2 F2/F3 G1 H4 J1 N1 ALL

ME Speed: 1400 MHz
1 Thread 646 25% 650 37% 420 23% 586 25% 603 27% 912 26% 1234 41% 4986 32%
2 Threads 1120 26% 1105 43% 795 25% 1101 27% 1197 32% 1550 30% 2295 44% 9523 33%

Table 2. Analysis of Restructured Code – Results show WCET in µE cycles and the associated
µE-utilization

tiveness of a multithreaded system is the system’s utiliza-
tion. In the given example the actual utilization is 60%: a
total of 50 cycles response time split into 30 cycles execu-
tion time and 20 cycles idle time. The estimated utilization
is 50%: a total of 60 cycles response time split into 30 cy-
cles execution, 10 cycles idle time and 20 cycles stalling
due to parallel memory accesses.

The fact that the analysis cannot handle parallel mem-
ory accesses from different threads is the reason why the
analysis does not exhibit any extra multithreading-gain for
more than two threads. The same reason accounts for the
fact that the results of the 8-threaded setup are exactly four
times higher than in the 2-threaded setup.

The pessimism of the analysis can be aggravated by
control flow succeeding a context switch operation. If the
thread executing in parallel to the memory request has
variable control flow the shortest path is assumed to be
taken when calculating the hidden latency (minimize hid-
den latency to be conservative) while the longest path can
be used to calculate the worst-case-execution time. This
does clearly lead to overestimations.

Given these observations we’ll restructure the pro-
gram’s control flow in order to improve analyzability. To
maximize the guaranteed hidden latency, we will restruc-
ture the code to show longer sequences of uninterrupted
execution. We do this by concentrating prefetching and
write-back actions at specific nodes in the control flow
graph.

3.2.1 Rescheduling accesses

For arbitrary programs we want to reschedule memory op-
erations in order to optimize the analytically guaranteed
utilization.

To reschedule the memory accesses, for simplicity we
introduce two new nodes at the beginning and at the end
of the function to be optimized. The first node is used to

read all possibly needed data from background memory
into private high-speed memory (internal scratch-pad or
registers), while the last node is used to write all possibly
updated values back to memory.

Figure 9 shows an example of a control flow graph
both before (top) and after (bottom) rescheduling accesses
to background memory. Memory accesses are shown as
shaded nodes.

In the original code, accesses to variables stored in
background memory are replaced by accesses to registers
or private memory. The entry node contains a series of
load operations to prefetch all needed variables into regis-
ters, while the exit node contains a series of store opera-
tions to write all used variables back to memory. We can
safely assume that this transformation does not change the
semantics of the code as all affected memory locations are
used exclusively by the transformed function. Using that
approach we implement a data cache in software.

The question of the code size to be optimized is still
open. The optimal size depends on the available high-
speed memory on theµEs and the exact nature of the code
to be optimized.

As a granularity for the rescheduling of memory opera-
tions we chose not to exceed a single iteration of our main
control loop. In Figure 8 one can see the structured CFG
of our control application. The main loop is clearly visi-
ble and some distinct sub blocks that are part of the main
loop. The blocks labeled “Process J1”, “Process B3” etc.
implement the control part of finite state machines. One
can also see the basic blocks that contain a memory ac-
cess, they are drawn shaded.

3.2.2 Rescheduling of conditional accesses

When concentrating the access to memory in a single or
two central points in the program, it is usually not avoid-
able to transfer data which will not be needed during the

52

Thread 1

Thread 2

Thread 1

Thread 2
��������������
��������������
��������������

��������������
��������������
��������������

Task ExecutionMemory Operations ��
��
��
��

Stalling

Actual

Estimate

30 10Memory Operation Task Execution

20

10
30

30

−20

−10

Thread 2Thread 1

10 cycles

Figure 6. Modeling concurrency with yield edges

Thread 2Thread 1

O
ptim

ized

Thread 2Thread 1

N
orm

al

Figure 7. Interleaved CFG before and after
Rescheduling of Memory Operations – (For
illustrative reasons, the interleaving is only
done for the first nodes in the unoptimized
CFGs)

calculation. This fact seriously limits the scalability of
this approach: e.g. a program which accesses large arrays
with an unknown array index is likely not to be accessible
using this approach as the range of possibly used memory
locations is to big to prefetch.

If, however, the range is of small size prefetching mem-
ory can be a viable option even if unnecessary memory
transfers are initiated. Developing a method to automati-
cally decide when to apply this strategy is an open ques-
tion - for our target application we found the introduced
overhead to be reasonably small as can be seen in the anal-
ysis results.

3.2.3 Experiments

In Table 2 we show the results for the optimized code
running on a 1400 MHzµEv2. Comparing these results
with the results of the original code, we can see consider-
able improvement for the single-threaded case. This im-
provement stems from the fact that several memory ac-
cesses were concentrated into a single node and are –
where applicable – transformed into a single burst-access
(which results into back-to-back transfers of the requested
data). This method leads to a better system performance
and even more important a more precise estimation of the
memory access times. The better estimation of the mem-
ory access times is already achieved by rescheduling the
accesses - we do not need to transform the accesses in a
burst access to get a much better estimation of the memory
accesses. The main factor is that in a series of memory ac-
cesses that are executed back-to-back we can be sure that
not all of them will experience the worst-case-state of the
system [3].

The multithreading gain – which can be easily seen
when comparing the utilizations – is still limited, but big-
ger than in the original approach. Refer to Table 1 to see
that for theµEv2 running at 1400 MHz most results ex-
perienced virtually no improvement by the multithreading
analysis.

Here, again, the guaranteed utilization is of key interest

53

and can be seen to be much better than before.

3.3 Bigger Workload Units

Identify type of data

Read new data Interface

Process J1 Process N1Process B1

Read new data

Cleanup

Figure 8. Block Diagram of Control Flow

To achieve more benefit with the presented method,
we’ll increase the granularity even more by extending it
over multiple iterations of the main loop. Introducing a
very small buffering stage which allows to read multiple
input data from the line interface at once, we can guaran-
tee to have one token of input data for each implemented
control function. As we have eight different control func-
tions within the main loop, we increase the number of read
inputs to eight. Additionally we do no longer jump to a
single function to process the incoming data, instead we
serially process all control functions in a defined order and
integrate the fetch/write-back nodes of all eight iterations
into a single shared one. We can easily do this as the used
µEs offer plenty of scratch-pad/register storage1.

3.3.1 Experiments

Table 3 gives the results for the processing of eight input
stimuli at once. As one can see, the guaranteed utiliza-
tion bumps up considerably when using a multithreading-
aware analysis for this system. The reason is simple: the
latency of the memory access and the latency of the exe-
cution on the processor have the same magnitude. Thus a
lot of the memory latency is guaranteed to be hidden by a
second thread which already has its data ready in internal
µE registers.

To show the improvement of this method over previ-
ously suggested analysis, the reader should compare the

1If the storage would not suffice to store all necessary data, we can
easily decrease the granularity of optimized code-fragments

ALL
ME Speed: 1400 MHz
1 Thread 2231 66%
2 Threads 3487 84%

Table 3. Results of Batch Approach

results for the 1400 MHzµE running the “ALL” bench-
mark in Table 1, Table 2 and Table 3. The same code was
previously guaranteed to execute in 11,956 cycles (25%
utilization) and now is guaranteed to execute in 9523 (33%
utilization) or even 3487 cycles (84% utilization) if the
main loop can be unrolled.

4 Future Work

The results presented in Table 2 are too pessimistic for
our system. We’d like to implement an improved analy-
sis for memory access times into this work to show that
the optimized code already provides a considerable multi-
threading gain compared to the original code.

The original code has a distribution of memory ac-
cesses that limit the analytical multithreading gain in a
durable way, as the left-over blocks of code are too small
to hide considerable memory latency.

In this paper we presented a work where we manually
optimized our code to improve the analysis. The opti-
mizing transformation itself is easily automated and in-
tegrated into an optimizing compiler for multithreaded ar-
chitectures. Key questions are, however, how we can de-
tect a situation where we can apply our optimization.

5 Conclusions

We presented a method to optimize the guaranteed pro-
cessor utilization in a multithreaded architecture.

With state machines typically found in control applica-
tions we identified an important class of programs which
is accessible to this approach.

The guaranteed processor utilization (and thus perfor-
mance) for the implemented application was increased by
a factor of three.

References

[1] Patrick Crowley, Jean-Loup Baer, “Worst-Case Exe-
cution Time Estimation for Hardware-assisted Mul-
tithreaded Processors”, Proc. HPCA-9 WS on Net-
work Processors, 2003

[2] Yau-Tsun Steven Li, Sharad Malik, Andrew Wolfe,
“Cache modeling for real-time software: Beyond di-
rect mapped instruction caches”, Proc. IEEE Real
Time Systems Symposium, 1996

[3] Simon Schliecker, Matthias Ivers, Jan Staschulat and
Rolf Ernst, “A Framework for the Busy Time Cal-
culation of Multiple Correlated Events”, In 6th Intl.

54

Read new data Interface

Identify type of data

Get data from memory

Process N1

Write Back

Read new data Interface

Identify type of data

Get data from memory

Process N1

Write Back

Process J1

Process B1

Thread 1

Process J1

Process B1

Thread 2

Figure 9. Batch Processing on two threads - memory access are in shaded nodes only

Workshop on WCET Analysis, Dresden, Germany,
July 2006

[4] ITU-T Recommendation, G.707: Network Node In-
terface for the synchronous digital hierarchy (SDH),
Dec. 2003.

55

56

A Context Cache Replacement Algorithm for Pfair Scheduling

Kenji Funaoka, Shinpei Kato, and Nobuyuki Yamasaki
Graduate School of Science and Technology

Keio University, Yokohama, Japan
{funaoka,shinpei,yamasaki}@ny.ics.keio.ac.jp

Abstract

Pfair scheduling is the only known optimal way for
scheduling recurrent real-time tasks on multiprocessors.
However, it causes significant overheads compared with
the traditional approaches due to frequent task preemp-
tions and migrations. Our approach makes the effective
use of the context cache which is the exclusive on-chip
memories of the hardware contexts to reduce overheads.
In this paper, we propose a context cache replacement al-
gorithm called Farthest Weight[1/2], which is more effec-
tive than traditional approaches. Simulation results show
that the context cache is effective to reduce these over-
heads, and the proposed algorithm reduces overheads half
as much as the case which is done by software.

1. Introduction

Processor performance has improved remarkably with
the advancement of technologies. However, ascending
heat and electricity consumption caused by these im-
provements become problematic. Accordingly, Simulta-
neous Multithreading [18] (SMT) and Chip Multiprocess-
ing [15] (CMP) have been watched with keen interest be-
cause of their thread level parallelism. Furthermore, it is
important for embedded systems to concern not only per-
formance but also electricity consumption. These proces-
sors are attractive for embedded systems. Most embedded
systems have the tasks which have their time constraints
such as the robot control or image processing.

Real-Time scheduling. There are two approaches to
schedule tasks when systems have multiple-contexts. In
this paper, we call execution units contexts likewise pro-
cessors, threads of SMT, or cores of CMP. In partitioning,
all the jobs generated by a task are always scheduled on
the same context. In global scheduling, on the other hand,
tasks are inserted to the global queue, and the context to
be scheduled is decided on time.

In partitioning, uniprocessor scheduling can be applied
to per-processor scheduling. Liu and Layland [12] showed
that Earliest Deadline First (EDF) is optimal on a unipro-
cessor. However, the assignment of tasks to processors
is a bin-packing problem which is NP-hard in the strong

sense. Lopez et al. [13] showed that no partitioned ap-
proach can guarantee schedulability with total utilization
(or weight) over (M + 1)/2 on M processors.

In global scheduling, Dhall and Liu [9] show that tradi-
tional uniprocessor algorithms do not work well because
of the Dhall’s effect. Srinvasan and Baruah [17] pro-
posed EDF-US[M/(2M − 1)] to avoid the Dhall’s effect.
Baker [6] showed that EDF-US[x] guarantees worst-case
schedulable utilization of (M +1)/2. Andersson et al. [5]
showed that no static priority multiprocessor scheduling
algorithm can guarantee the utilization higher than M/2.

Proportionate-fair (Pfair) scheduling proposed by
Baruah et al. [7] optimally solves the problem of schedul-
ing periodic tasks on multiprocessor systems. PF [7], PD
[8], and PD2 [3] are the optimal pfair scheduling algo-
rithms. EPDF [4] is optimal on one or two processors.
However, Pfair scheduling causes overheads due to fre-
quent task preemptions and migrations when this scheme
is applied to the process scheduling. Srinvansan et al. [16]
showed that PD2 is competitive with EDF-FF (First Fit
i.e. a partitioning heuristic) even if the overheads are con-
sidered. Moreover, they presented that Pfair scheduling
provides many additional benefits.

The problem. Proofs of theoretical optimality of real-
time scheduling algorithms are mostly constructed on
some assumptions. One of these assumptions in some
cases is that there are no overheads. However, the over-
heads need to be considered on practical systems. The
overheads are absorbed the worst case execution time of
tasks to guarantee schedulability. If the overheads of the
system are significantly large, its performance is awfully
degraded. One of the origin of performance degradation
comes from the resource competitiveness. We propose an
effective use of context cache [19] to reduce the overhead
of context switching.

Contributions. The remainder of this paper is organized
as follows. In Section 2, we give an overview of the re-
lated work. The background on Pfair scheduling is pro-
vided in Section 3. In Section 4, the context cache and
its mechanism are described. In Section 5, we propose a
context cache replacement algorithm to reduce overheads.
In Section 6, we present the experimental results. Finally,
we present conclusions and future work in Section 7.

57

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

T11

T12

T13

T14

T15

T16

Figure 1. Windows of a task T which has wt(T) = 8/11.

2. Related Work

Anderson and Srinivasan [3] presented ERfair schedul-
ing which is the work conserving version of Pfair schedul-
ing. ERfair scheduling differs from Pfair scheduling in the
sense that tasks can be executed early. In some cases, it
is possible to execute tasks without task preemptions or
migrations if a tasks can be executed early. However, if
the system utilization is high, the tasks can be hardly exe-
cuted early. Consequently, per task preemption or migra-
tion overheads have to be reduced.

Moir and Ramamurthy [14] showed the existence of
Pfair schedule for any feasible task sets without migra-
tion. Although it intends to schedule the tasks which have
resource restrictions, it can be possible to reduce the con-
text overheads because to fix the tasks on one processor
prevents the cache misses and TLB misses and so on.

Anderson and Calandrino [2] proposed a spread-
cognizant scheduling method to decrease the spreads in
Pfair scheduling and global EDF. The overheads caused
by the cache misses can be reduced by this method.

Many algorithms of memory and disk cache replace-
ment are performed [1, 10, 11]. These cache replacement
algorithms are on the assumption that cache accesses have
locality. Least Recently Used (LRU) and Least Frequently
Used (LFU) are the typical cache replacement algorithms.

To our best knowledge, no context cache replacement
algorithms are presented. The notion of context cache is
different from typical cache. Consequently, new replace-
ment algorithms for context cache are required. The de-
tails of context cache is shown in Section 4.

3. Pfair Scheduling

To show the overview of Pfair schedule, we give a real-
time system model. A real-time system is modeled as
the taskset τ which is a set of periodic tasks to be exe-
cuted on M contexts. A task T (∈ τ) is characterized by
two parameters, its worst case execution time T.e and its
period T.p. A task T requires T.e times of contexts for
execution at every T.p interval. The ratio T.e/T.p, de-
noted wt(T), is called the weight (or utilization) of task
T , where 0 < wt(T) ≤ 1. A task T is called light if
wt(T) < 1/2. The worst case execution time T.e of light
task T is smaller than a not execution time T.p − T.e.
Otherwise, a task T is called heavy.

∑
∀T∈τ wt(T) is the

weight of the taskset τ .

In Pfair scheduling, context time is allocated in discrete
quanta. The time interval [t, t + 1) is called a slot t. The
time t means the start time of the slot t. Tasks can be ex-
ecuted on every contexts in one slot, however, simultane-
ous executions of a task on different contexts in one slot
are not permitted. The sequence of allocation over slots
defines a schedule S.

S : τ × N → {0, 1} (1)

where τ is a task set and N is the set of nonnegative in-
tegers. S(T, t) = 1 iff a task T is scheduled in slot t.∑

∀T∈τ S(T, t) ≤ M holds for all t. A notion of lag
which is the difference between the ideal allocation and
actual allocation is defined as the following.

lag(T, t) = wt(T) · t −
t−1∑
u=0

S(T, u) (2)

A schedule is defined to be Pfair iff

(∀T, t :: −1 < lag(T, t) < 1). (3)

Informally, the allocation error must be less than one. To
satisfy Equation 3, tasks are divided into subtasks with
WCET = 1, denoted Ti, where i ≥ 1. Each subtask has
its pseudo-release time and pseudo-deadline defined as the
following.

r(Ti) =

⌊
i − 1

wt(T)

⌋
d(Ti) =

⌈
i

wt(T)

⌉
(4)

A subtask Ti has to be scheduled between r(Ti) and d(Ti)
called window of Ti. Windows of a task T which has
wt(T) = 8/11 are shown in Figure 1.

The optimal algorithms, PF, PD, and PD2, give higher
priority to subtasks with earlier deadlines. However, ties
are broken with different manners. In these algorithms,
PD2 is most efficient. A valid schedule S exists for a task
system τ on M processors iff∑

∀T∈τ

wt(T) ≤ M. (5)

3.1. Scheduling Overheads
In Pfair scheduling, schedulers need to schedule all

contexts at each slot. Consequently, overheads of Pfair
scheduling are higher than traditional algorithms when

58

L2

Core 1

L1

Core M

L1

Figure 2. An example of CMP architecture

PC

regs

status

PC

regs

status

PC

regs

status

Context Cache

32entries

Eight Active Threads

exclusive bus

Figure 3. The context cache on RMT Proces-
sor

Pfair scheduling is applied to process scheduling. Srini-
vasan et al. [16] showed the formulas of these overheads.
Furthermore, all the slots among contexts are assumed to
be synchronized, in Pfair scheduling. When the overheads
are large, the optimality of Pfair scheduling is dismissed.

There are two operations to schedule processes. First,
a scheduler must decide which task to be scheduled. Sec-
ond, a scheduler must swap hardware contexts. These
overheads reduce the time of task executions.In this sec-
tion, we focus on the overheads of context switches and
migrations. These overheads are divided into two origins.
First, one of these overheads is context switching itself.
To swap hardware context, many memory access instruc-
tions which have long latencies are required. Second, task
preemptions and migrations cause collisions of hardware
resources, like memory cache, TLB, and so on. Figure
2 shows an example of CMP architecture. When task mi-
grations occur, independent resources among contexts (L1
cache in Figure 2) are completely lost. When task preemp-
tions occur, shared resources among contexts (L2 cache in
Figure 2) are also competitive.

4. Context Cache

The context cache [19] is an exclusive on-chip mem-
ory for saving hardware contexts. It can save and restore
hardware contexts by software. On Responsive Multi-
threaded (RMT) Processor [19], a context switch takes
only 4 clocks by the context cache while it takes 590
clocks by software. In our best knowledge, RMT Pro-
cessor is the only processor in which context cache is im-
plemented. The context cache is not architecture oriented.
Therefore, it can be available on many systems.

RMT Processor is the prioritized 8-way SMT proces-
sor, which has 8 active threads and 32 cache threads. The
context cache of RMT Processor is shown in Figure 3. The
registers of active threads are connected to context cache
by exclusive bus. The state transition chart of threads of

Cached Thread

Active Thread Active Thread

RUN STOP

bkupth

runth

restrth

stopth

bkupthswap(rt)

swapslf(rt) swap(rt)

bkupslf

swap(rs)

swapslf

stopslf

delth delth
mkth

cpthtoa

cpthtom

Figure 4. The state transition chart of
threads of RMT Processor

RMT Processor is shown in Figure 4. The state is changed
by software instructions. In this paper, we call executable
thread as active thread.

An example of context switch with the context cache
is shown in Figure 5. At line 19 in this figure, if there is
no empty entry of context cache, the evicted entries must
be selected. Since a hardware context has a lot of infor-
mation to be saved, the area size of context cache per 1
entry becomes larger than memory cache. It is difficult to
implement many entries to processors. Consequently, the
decision which entry should be evicted is important.

There is no need to leave the entry of the task which
is executed in context cache. Therefore, it is efficient for
context cache to swap active threads and cached threads.
This characteristic is different from memory cache and
disk cache. It is impossible to discuss the context cache
as the same rank with the memory cache and disk cache.

To compare the traditional context switch, the number
of context switch by software (i.e. by the load and store
instructions) denoted n(soft switch), is defined

n(soft switch) =
n(soft load) + n(soft save)

2
, (6)

where n(soft load) is the number of restoring hardware
context by the load instructions and n(soft save) is the
number of saving hardware context by the store instruc-
tions.

5. A Context Cache Replacement Algorithm

If all tasks are put in context cache, we can be always
given the benefit of the context cache. Otherwise, the task
assignment to context cache is important. An important
thing to remember is that the complexity of the context
cache replacement algorithms must be lower than context
switch itself.

59

Algorithm: ContextSwitch
1: Let A = {A1, . . . , AM} be the active threads
2: Let C = {C1, . . .} be the cached threads
3: Let Pi be the prev context on Ai

4: Let Ni be the next context on Ai

5:
6: for all i such that 1 ≤ i ≤ M do
7: if Pi 6= Ni then
8: if Ni ∈ C then
9: swap Pi and Ni

10: else if vacant entries of C exist then
11: if Pi exists then
12: copy Pi to context cache
13: end if
14: if Ni exists then
15: restore Ni from memory
16: end if
17: else
18: if Pi exists then
19: if Pi goes to C then
20: swap Pi and evicted entry
21: end if
22: save current context to memory
23: end if
24: if Ni exists then
25: restore Ni from memory
26: end if
27: end if
28: end if
29: end for

Figure 5. A concept example of context
switches on RMT Processor

5.1. Farthest Weight[1/2]
We propose Farthest Weight[1/2] (FW) context cache

replacement algorithm. FW evicts the tasks, in the context
cache, which have larger F (T) in the following.

F (T) = |wt(T) − 1/2| (7)

The most difference between FW and the traditional
replacement algorithms, such as LRU and LFU, is that FW
takes notice of the task parameter while LRU and LFU
takes notice of the cache entry parameters.

The behavior of FW, LRU, and LFU with scheduling
PD2 are shown in Figure 6. The number of contexts,
context cache entries, and tasks are 1, 2, and 4, respec-
tively. The weights of the tasks are 1/3, 1/4, 1/8, and
1/10. The timing of the context switch by software are
shown in the lower part of the cached threads as Save(S)
and Load(L). Since, in LFU, ties are broken arbitrary if
some entries have the same frequency, the worst case is
shown in this figure. FW can assign the high priority to
the tasks which is frequently executed. In this example,
the number of software context switches of FW, LRU, and
LFU are 4.5, 5.5, and 6.5, respectively. The reason why
LFU can not effectively deal with this problem is that the
parameter compared by LFU comes from the value related

0 1 2 3 4 5 6 7 8 9 10 11 12

wt(T)=1/3 wt(T)=1/4 wt(T)=1/8

FW

wt(T)=1/10

LRU

LFU

L L L
S S

L L
S
L

L L L
S S

L L
S
L

L L L
S S

L L
S
L

L
S

L
S S

L

Figure 6. A comparison among FW, LRU,
and LFU

to the cache entries (not the tasks) because the cache en-
tries are changed by the frequent context swithing. If the
frequency considered by LFU gives to the tasks, we can
not dual with aperiodic tasks effectively.

5.2. The Effectiveness of FW
It is difficult to calculate the number of context

switches on-line. Therefore, a situation which makes
the number of context switches large needs to be sup-
posed. The worst case number of context switches in Pfair
scheduling (WCNCSP) is defined as follows.

Definition 1 (WCNCSP) The worst case number of con-
text switches in Pfair scheduling (WCNCSP) is the largest
number of context switches under the all schedule se-
quences in the time interval [0, lcm(T.p)) with supposing
that no context switch occurs when the subtasks of one
task are assigned to consecutive slots.

In Pfair scheduling, the scheduling decisions are made
by priorities of subtasks. A task T which has higher prior-
ity blocks the other tasks which has lower priority than T .
We refer this type of blocking as “schedule restriction”.

Lemma 1 C(T) ≤ C ′(T), where C(T) is the WCNCSP
of the task T when the task T suffers schedule restrictions
by the other tasks, and C ′(T) is the WCNCSP of the task
T when the task T does not suffer them.
Proof S ⊆ S ′, where the possible schedule set under
schedule restrictions is S, and the possible schedule set
under norestriction assumptions is S ′. ¥

Lemma 1 shows that we need not to consider the other
tasks when we estimate the WCNCSP.

Theorem 1 In Pfair scheduling, the WCNCSP of the task
T is maximized when wt(T) = 1/2, where wt(T) is the

60

active slots

context cache

main memory

Figure 7. Strict replacement method

weight of the task T .
Proof Let n be a non-negative integer. Let the task T not
suffer schedule restriction from the other tasks.

When the task T is light, T.e ≤ (T.p − T.e). There-
fore, there exists a schedule S which does not schedule
subtasks in consecutive slots. The WCNCSP is 2T.e in
time interval (n · T.p, (n + 1)T.p]. The WCNCSP per 1
slot is 2T.e/T.p = 2wt(T).

When the task T is heavy, T.e > (T.p − T.e). There-
fore, there exists a schedule S which does not make
consecutive empty slots by the task. The WCNCSP is
2(T.p − T.e) in time interval (n · T.p, (n + 1)T.p]. The
WCNCSP per 1 slot is 2(T.p−T.e)/T.p = 2(1−wt(T)).
Consequently, the WCNCSP of the task T is maximized
when wt(T) = 1/2. ¥

FW evicts the tasks, in the context cache, which is not
preempted frequently.

5.3. Replacement Methods
There are two replacement methods to be considered

as shown in Figure 7 and 8. The number in the active slots
and the context cache is the weight of the task in the entry.

In the first method, the context currently executed is
always housed to the cache as shown in Figure 7. This
method is called strict. In Figure 7, when the task which
has the weight 1/10 in the active slots finishes the execu-
tion of its subtask, it is saved to the context cache. The
task which has the weight 1/4 (i.e. the largest F (T) in the
context cache) is evicted to the main memory.

In the second method, on the other hand, there exist the
possibilities that the context currently executed is housed
to memory as shown in Figure 8. This method is called
lazy. In Figure 8, when the task which has the weight 1/10
in the active slots finishes the execution of its subtask, it is
saved to the main memory because there is no task which
has larger F (T) in the context cache than the task. On the
other hand, when the task which has the weight 1/3 fin-
ishes the execution of its subtask, it is saved to the context
cache. The task which has the weight 1/4 is evicted to the
main memory because |1/3 − 1/2| < |1/4 − 1/2|.

In the strict method, F (T) of tasks in the context cache
are compared to decide which entry is evicted. On the
other hand, in lazy method, F (T) of tasks in the context

active slots

context cache

main memory

active slots

context cache

main memory

Figure 8. Lazy replacement method

cache and the context currently executed are compared.
The difference between FW and the traditional algorithms
such as LRU or LFU is the place of the parameter which
decides the evicted entry. While LRU and LFU compare
the parameters of the cache entries, FW compares the pa-
rameters of the tasks. The lazy method needs the param-
eters of tasks because the tasks in the active slots have no
value about the cache entries.

In the traditional cache system, strict method is widely
used because of its simplicity and efficiency. This is sim-
ple and efficient when the cache access has locality. How-
ever, in Pfair scheduling, the executions of tasks are dis-
persed. Consequently, the possibility that the entry of
the task which is now finished the execution is low. The
strict method make the context house to the context cache.
Therefore, in Pfair scheduling, lazy method is effective.

The behavior of strict method and lazy method, shown
in Figure 9. The number of the active threads, the con-
text cache entries, and the tasks are 1, 1, and 3, respec-
tively. The weights of the tasks are 1/3, 1/4, and 1/8, re-
spectively. The scheduling and context cache replacement
algorithms are PD2 and FW, respectively. The timing of
the context switch by software are shown in the lower part
of the cached threads as Save(S) and Load(L). In this ex-
ample, the number of software context switch of Strict and
Lazy are 7.5 and 5.5, respectively.

6. Experimental Results

In this section, we show the effectiveness of the con-
text cache and the proposed algorithm FW. FW and the
traditional cache replacement algorithms such as LRU and
LFU are compared.

61

0 1 2 3 4 5 6 7 8 9 10 11 12

wt(T)=1/3 wt(T)=1/4 wt(T)=1/8

Strict

Lazy

S
L L

S
L

S
L

S
L

S
LL

S
L

S

S
L L

S
L

S
LL

S
L

S

Figure 9. A comparison between Strict and
Lazy

Table 1. Simulation workloads
distribution M N cache entries slot length

NO-1 normal 8 32 1ms
NO-01 normal 8 32 0.1ms
BI1-1 bimodal 8 32 1ms

BI1-01 bimodal 8 32 0.1ms

6.1. Experimental Setup
The metrics of experiments are the cache miss ratio and

the overhead ratio defined as follows.

miss ratio =
n(soft switch)

n(switch)
, (8)

where n(soft switch) and n(switch) are the number of
context switch by software (i.e. by the load and store in-
structions), and all the context switches (i.e. with cache
and without cache), respectively.

overhead ratio =
T (switch)

L(slot)
, (9)

where T (switch) and L(slot) are the duration of a context
switch and a slot length, respectively. The overhead ratio
changes large by the slot length.

The supposed environment is as follows. To our best
knowledge, the processor which is implemented the con-
text cache is only RMT Processor. The simulation param-
eters are decided by supposing RMT Processor. The fre-
quency of the processor is assumed 100MHz. There are
8 contexts and 32 context cache entries. The number of
clocks needed to switch a context is 590 by software and
4 by hardware. The time needed to switch context does
not include the operations of task queue.

The simulation uses the workloads shown in Table 1.
The simulation is conducted through each workload given
tasks which have different weights. The results are shown
only when the number of tasks is larger than the number
of the context cache entries. The algorithms compared are
LRU, LFU, FW, and FW-Lazy. The results which do not
use the context cache is shown as Software. The results
which are assumed that the number of context cache en-
tries are infinity is shown as Hardware.

Figure 10. The number of tasks

Figure 11. The number of context switches
per 1 slot

The tasksets are generated as follows. The arrival times
of all tasks are time 0. The period of tasks are selected in
integer [1,100]. The weights of tasks are normal distri-
bution or bimodal distribution. The weight of the taskset
exceeds the target weight, then the task is discarded and
a new task is generated. When the generation fails 100
times, the last task is generated. When the hyperperiod
of the tasksets overflow 24bit, the tasksets are rejected
because of time constraints. If the number of tasks are
smaller than the number of context cache entries, a new
taskset is generated. By these operations, 100 tasksets are
generated for each workload.

The tasksets whose weight have normal distribution are
generated. The weight of tasks is selected 0 < wt(T) ≤
min(1, V), where V is the target weight. The tasksets
whose weight have bimodal distribution is generated as
follows. The trial whose success ratio is 0.1 is done 100
times, and the number of success is divided 100.

The tasks are executed until the hyperperiod of the
tasksets. The hyperperiod of the tasksets is lcm(∀T.p).
The scheduling algorithm is PD2. When a task is executed
consecutive slots, the task is assigned to the same context.
The average of results are calculated for all 100 tasksets.

6.2. Experimental Environments
Since the number of tasks, context switches per 1 slot,

and cache miss ratio are the same between NO-10 and

62

Figure 12. The cache miss ratio on workload
NO

Figure 13. The cache miss ratio on workload
BI1

NO-01, BI1-10 and BI1-01, each result is shown as NO
and BI1.

The number of tasks and context switches per 1slot is
shown in Figure 10 and 11. The number of tasks is larger
and larger while the weight of taskset is large in workload
BI1. The other way, in workload NO, the number of tasks
hardly changes. The number of context switches per 1 slot
is larger and larger while the weight of taskset is large.
However, the increase in BI1 is larger than in NO. When
the weight of taskset is 8, context switches occur in almost
all slots.

6.3. Cache Miss Ratio
The cache miss ratio on workload NO is shown in Fig-

ure 12. The miss ratio decreases while the weight of
taskset increases. Since the empty slot increases, the con-
secutive execution increases. The difference among con-
text cache replacement algorithms are none.

The cache miss ratio on workload BI1 is shown in Fig-
ure 13. The cache miss ratio increases while the weight
of taskset increases. When the weight of taskset is 8, the
cache miss ratio of LRU is almost 0.98. In BI1, the execu-
tions of tasks are dispersed. The cache miss ratio of FW
and FW-Lazy is about 0.51 and 0.50, respectively.

Figure 14. The overhead ratio on work-load
NO-10

Figure 15. The overhead ratio on work-load
NO-01

6.4. Overhead Ratio
The overhead ratio of NO-10 and NO-01 are shown

in Figure 14 and 15, respectively. Most tasks are put in
context cache since the number of tasks are smaller than
that of BI1. The decrease of overhead ratio comes from
the fact that the empty slot is smaller and smaller while
the weight of taskset is large.

The overhead ratio of BI1-10 and BI1-01 are shown
in Figure 16 and 17, respectively. The number of context
switches per 1 slot is larger than that of NO. Consequently,
the overhead under BI1 is larger than that of NO. The re-
sults of LRU are closely related to Software. FW can de-
crease the overhead ratio larger than the other algorithms.

The implementations FW and FW-Lazy is almost
same. Therefore, FW-Lazy is the most efficient algorithm
compared with LRU, LFU, and FW.

7. Concluding Remarks

In this paper, we propose an effective use of the con-
text cache to reduce the overheads of Pfair scheduling on
multi-context environments. Additionally, we propose a
new context cache replacement algorithm called Farthest
Weight[1/2] (FW). FW evicts the task which is not fre-

63

Figure 16. The overhead ratio on work-load
BI1-10

Figure 17. The overhead ratio on work-load
BI1-01

quentry preempted. Experimental results shows that FW
is effective against to the traditional cache replacement al-
gorithms such as LRU and LFU.

We have some future work. First, we want to com-
bine our approaches with the other works such as spread-
cognizant scheduling. Our algorithm is only based on the
task utilization. Second, the scheduling algorithm is con-
sidered to decide a replacement entry. For example, in
PD2, scheduling decisions are constructed by some fac-
tors such as pseudo-deadline, b-bit, and group deadline.
Finally, we implement our algorithm to practical systems.

Acknowledgement

This research is supported by CREST, JST.

References

[1] J. Alghazo, A. Akaaboune, and N. Botros. SF-LRU Cache
Replacement Algorithms. In Proc of the Records of the
2004 International Workshop on Memory Technology, De-
sign and Testing, pages 19–24, Aug. 2004.

[2] J. H. Anderson and J. M. Calandrino. Parallel Real-Time
Task Scheduling on Multicore Platforms. In Proc. of the

27th IEEE Real-Time Systems Symposium, pages 89–100,
Dec. 2006.

[3] J. H. Anderson and A. Srinivasan. Early-Release Fair
Scheduling. In Proc. of the 12th Euromicro Conference
on Real-Time Systems, pages 35–43, June 2000.

[4] J. H. Anderson and A. Srinvasan. Mixed Pfair/ERfair
Scheduling of Asynchronous Periodic Tasks. Journal of
Computer and System Sciences, 68(1):157–204, 1996.

[5] B. Andersson, S. Baruah, and J. Jonsson. Static-priority
Scheduling on Multiprocessors. In Proc. of the 22nd
IEEE Real-Time Systems Symposium, pages 193–202,
Dec. 2001.

[6] T. P. Baker. An Analysis of EDF Schedulability on a
Multiprocessor. IEEE Transactions on Parallel and Dis-
tributed Systems, 16(8):760–768, Aug. 2005.

[7] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A.
Varvel. Proportionate Progress: A Notion of Fairness in
Resource Allocation. Algorithmica, pages 600–625, 1996.

[8] S. K. Baruah, J. E. Gehrke, and C. G. Plaxton. Fast
Scheduling of Periodic Tasks on Multiple Resources. In
Proc. of the 9th International Parallel Processing Sympo-
sium, pages 25–28, Apr. 1995.

[9] S. K. Dhall and C. L. Liu. On a real-time scheduling prob-
lem. Operations Research, pages 127–140, 1978.

[10] S. Jiang and X. Zhang. Making LRU Friendly to Weak
Locality Workloads: A Novel Replacement Algorithm to
Improve Buffer Cache Performance. IEEE Transactions
on Computers, 54(8):939–952, Aug. 2005.

[11] D. Lee, J. Choi, J. Kim, S. H. Noh, S. L. Min, Y. Cho, and
C. S. Kim. LRFU: A Spectrum of Policies that Subsumes
the Least Recently Used and Least Frequently Used Poli-
cies. IEEE Transactions on Computers, 50(122):1352–
1361, Dec. 2001.

[12] C. L. Liu and J. W. Layland. Scheduling Algorithms
for Multiprogramming in a Hard-Real-Time Environment.
Journal of the ACM, pages 46–61, Jan. 1973.

[13] J. M. Lopez, M. Garcia, J. L. Diaz, and D. F. Garcia.
Worst-Case Utilization Bound for EDF Scheduling on
Real-Time Multiprocessor Systems. In Proc. of the 12th
Euromicro Conference on Real-Time Systems, pages 25–
33, 2000.

[14] M. Moir and S. Ramamurthy. Pfair Scheduling of Fixed
and Migrating Periodic Tasks on Multiple Resources. In
Proc. of the 20th IEEE Real-Time Systems Symposium,
pages 294–303, Dec. 1999.

[15] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and
K. Chang. The Case for a Single Multiprocessor. In Proc.
of the 7th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems,
pages 2–11, Oct. 1996.

[16] A. Srinivasan, P. Holman, J. H. Anderson, and S. Baruah.
The Case for Fair Multiprocessor Scheduling. In Proc.
of the International Parallel and Distributed Processing
Symposium, page 10, Apr. 2003.

[17] A. Srinvasan and S. Baruah. Deadline-based Scheduling
of Periodic Task Systems on Multiprocessors. Information
Processing Letters, 84:93–98, May 2002.

[18] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simulta-
neous Multithreading: Maximizing On-Chip Parallelism.
In Proc. of the 22nd Annual International Symposium on
Computer Architecture, pages 392–403, June 1995.

[19] N. Yamasaki. Responsive Multithreaded Processor for
Distributed Real-Time Systems. Journal of Robotics and
Mechatronics, 17(2):130–141, Apr. 2005.

64

Exact Cache Characterization by Experimental Parameter Extraction

Tobias John, Robert Baumgartl

Chemnitz University of Technology

Department of Computer Science

{tobias.john, robert.baumgartl}@cs.tu-chemnitz.de

Abstract

Accurate estimation of worst case execution times
(WCET) is an increasingly complex issue in real-time sys-
tems research. Unfortunately, many important details of
latest processor architectures, e. g. processor caches and
branch predictors, are very scarcely documented or com-
pletely obscured. It is up to the research community to de-
duce some of these parameters by performing experiments
and interpreting available documentation accordingly.

This paper describes some new and unique techniques
on how to obtain parameters of the underlying (processor-)
cache architecture by a set of micro-benchmarks. By using
performance monitoring registers instead of relying on tim-
ing information influenced by the analyzed hardware and
employing a real-time executive as operating system envi-
ronment we are able to obtain very precise measurement re-
sults. We describe methods to identify write miss and write
hit policies. Further, for the first time, we describe methods
to deduce cache replacement strategies. During our exper-
iments, we observed different behavior in initial placement
of cache data. Hence, we developed appropriate methods
to characterize that aspect.

We apply the micro-benchmarks to a set of processors,
discuss the obtained results and conclude underlying poli-
cies and strategies.

1. Introduction

Accurate estimation of worst case execution times
(WCET) is an increasingly complex issue in real-time sys-
tems research. Architectural innovations in modern CPUs
do almost always optimize the average case behavior. Tech-
nologies as branch prediction, complex caching hierarchies
and super-scalar execution render WCET estimation a much
more difficult task than it used to be.

Although embedded system CPUs differ in several as-

pects from CPUs commonly found in off-the-shelf PC sys-
tems, a trend of integrating more and more x86-based pro-
cessors into embedded systems can be observed. PC CPUs
of today are embedded CPUs of tomorrow. Therefore, an
exact characterization of the execution timing of current
processors is a must.

There exist a variety of models and methods to calculate
WCET. However, those models incorporate architecture-
specific parameters that pose a problem if unknown. Unfor-
tunately, many important architectural details which influ-
ence timing are badly or not documented by the processor
vendors.

It is up to the research community to deduce some
of these parameters by performing experiments and inter-
preting available documentation accordingly. As has been
pointed out before, this process is error-prone and can even
lead to contradicting information on certain processor types
[14].

This paper describes some new and unique techniques
on how to obtain parameters of the underlying (processor-)
cache architecture by a set of micro-benchmarks. By using
special performance monitoring registers instead of generic
cycle counters we are able to obtain very precise measure-
ment results. Of course, the analyzed processor architec-
ture must provide these monitoring registers which some-
what narrows the applicability of our approach to current
CPU types. For the first time, we describe methods to de-
duce cache replacement strategies. During our experiments,
we observed different behavior in initial placement of cache
data. Hence, we developed appropriate methods to charac-
terize that aspect.

The remainder of this document is structured as follows:
In section 2 we describe relevant cache parameters and re-
fer to related work, when necessary. The following sec-
tion describes our experimental setup in some detail and
discusses its advantages over existing solutions. Then, we
describe experiments to distinguish between write-allocate
and write-no-allocate as well as between write-through and

65

write-back policies. Further, we describe several experi-
ments to deduce the used cache replacement strategy and
the initial filling behavior. In section 4 we apply the de-
scribed methodology to a range of Intel processors, discuss
the obtained results and conclude underlying policies and
strategies. Section 5 summarizes our work and gives an out-
look on future research.

2. Cache Parameter Basics

Although quite some work has been done for WCET es-
timation in the large and cache modeling, comparatively
few publications exist in the field of experimental processor
cache characterization. Therefore, we give a brief overview
on relevant caching parameters and list related work, where
adequate.

2.1. Structural Cache Parameters

Structural cache parameters as cache sizeS = 2s, line
lengthL = 2l and associativityW = 2w can be estimated
experimentally. Several publications describe correspond-
ing methods and algorithms [12, 14]. Besides, information
on S, A,L can be gathered through evaluating the bits re-
turned by thecpuid instruction as it is done by tools like
cpuid [13]. Hence, estimation of these parameters is not
topic of this paper. We simple assume them to be known
and to be powers of two.

2.2. Caching Policies

Depending on a hit or miss, four different policies can be
distinguished for write accesses.

Writing a datum which is already in the cache can be
performed in two ways. On the one hand, the write could
be performed on both the datum in the cache and its copy in
main memory (“Write-Through”). The alternative approach
is to perform the write operation only on the cache. The
main memory copy is not updated until the corresponding
cache line is replaced (“Write-Back”).

Similarly, writing a datum which is not in the cache can
also be performed in two ways. Firstly, the datum could be
written to main memory only (“Write-No-Allocate”). Alter-
natively, the datum could be written to both main memory
and cache to accelerate subsequent read accesses (“Write-
Allocate”). Table 1 summarizes the policies.

Experimental methods to estimate these policies have
been published in [3] but are limited to the first level cache
only. Additionally, they are based on timing measurements
which are potentially imprecise as we argue in section 3.1.

Line in Cache? Caching Policy

yes (Hit)
Write-Through

Write-Back

no (Miss)
Write-Allocate

Write-No-Allocate

Table 1: Caching Policies

2.3. Replacement Strategies

When the cache is warm and a miss happens, a cache
line must be replaced. Several replacement strategies do
exist, which are listed in table 2. A thorough description
and evaluation of these strategies can be found in [9].

RND Random

RR/FIFO Round-Robin

LRU Least Recently Used

pLRUt Pseudo Least Recently Used (Tree-based)

pLRUm Pseudo Least Recently Used (MRU-based)

Table 2: Cache Replacement Strategies

Our paper focuses on LRU and its derivatives, however
the presented algorithms are easy to adapt and thus allow
the identification of other strategies, too.

To our knowledge, techniques to discover the replace-
ment strategies by experiments have not been described be-
fore.

2.4. Initial Fill Policy

After an invalidation the ways of a cache must be filled
in a certain order. That order might or might not be based
on the replacement policy. For precise cache modeling it is
important to understand how this initial placement is per-
formed.

During some experiments we discovered different initial
fill patterns for a pLRUt cache. One approach obviously
used the tree bits to store the data in a tree-based order
(the data is stored the same way it is read). That means
the replacement mechanism is applied for initially filling
the cache. We refer to that behavior as “tree-based fill”.
The other approach simply populated the cache in sequen-
tial order. In that case the tree bits are ignored. We call this
approach “sequential fill”.

Figures 1 and 2 illustrate both approaches. They show
a set of a 4-way cache before and after a line ’b’ has been
referenced. The cache contains a line ’a’ and is otherwise

66

empty. The three squares denoted either ’l ’ or ’ r ’ symbol-
ize the tree bits which determine the path through the tree
(symbolized by arrows) pointing to the pLRU cache line of
this set. If tree-based filling is used, the tree bits are evalu-
ated, the corresponding line (the 3rd in figure 1) is written
and the appropriate tree bits are updated (complemented:l
↔ r). Figure 2 illustrates sequentially filling empty cache
lines. The tree bits are neither evaluated not modified, there-
fore no arrows are drawn. Here the line ’b’ is stored in the
first free entry next to ’a’.

r l

r

a

r r

l

a b

read(b)

Figure 1: Tree-based Fill

r

r

a

l

r

a b

read(b)

Figure 2: Sequential Fill
Of course, more and different initial fill policies may exist.

We describe a methodology to identify the caching hit
and miss policies as well as the replacement strategy. Fur-
ther, we describe, how the initial cache fill can be analyzed.
All methodologies are based on a two-level, set-associative
cache architecture as it is commonly used in today’s PC and
server processors.

3. Analysis Concepts

3.1. Experimental Setup

Invariably, previously published methodologies for
cache parameter extraction rely on measuring execu-
tion times of small code fragments (often called micro-
benchmarks) to differentiate between cache hits and misses
and stress the good portability of that approach. On the
other hand one can argue that using execution timing in-
formation for cache parameter extraction without know-
ing cache internals beforehand is somewhat risky. Influ-
ences of the at least partially unknown cache architecture
as well as the underlying operating system may spoil the
results. Therefore, we propose a different approach: use
hardware counters to monitor only the events (e. g. cache
hits or misses) which are caused by the hardware to be an-
alyzed. In this way, we do not need to interpret execution
times which are potentially influenced by a number of exter-
nal factors. Of course, our approach is limited to processors
which provide those monitoring capabilities. This includes
Intel processors starting from the Pentium model ([8]) and
AMD processors starting with the Athlon ([1]). Although
the events that can be counted differ between architectures,
the functionality and configuration is quite similar: one or

more so-called Model Specific Registers (MSR) have to be
set up to describe the desired event and one of the avail-
able performance monitoring counters has to be selected
and configured to count the events in the specified way.

The following events must be monitored:

* L1 cache misses

* L2 cache misses

* L2 cache accesses

Using performance monitoring registers has the addi-
tional advantage of implicitly serializing execution flow.
This prevents inaccuracies introduced by instruction re-
ordering. Obtaining execution timing by accessing the
time stamp counter (TSC) register requires additional ef-
forts concerning serialization and is therefore more complex
and error-prone.

As operating system environment we used the RTAI real-
time executive [2] for the following reasons: The micro-
benchmarks are executed as highest-prioritized RTAI tasks.
Therefore, timing influences by user-space programs as
well as the Linux kernel itself are eliminated. In this system
configuration even interrupt processing can be postponed.
Further, because RTAI applications execute in kernel mode,
no virtual-to-physical address conversion is necessary, ac-
cessing physical memory is straightforward, and timing in-
fluences of the translation lookaside buffer (TLB) are also
eliminated. Accessing hardware, especially manipulation
of performance measurement registers is not restricted in
kernel mode. To force caches to load a certain data set, it
is necessary to access physical main memory at arbitrary
locations, which is straightforward in kernel mode.

Existing profiling tools for kernel space are usually based
on overflowing counters. The obtained results are too im-
precise, hence we implemented routines for manipulating
performance monitoring registers by hand. This poses no
major problem, because overall implementation complexity
is low. Of course, by using RTAI we need to implement all
micro-benchmarks as Linux kernel modules which requires
a certain amount of system knowledge. We felt that this can
be justified.

Collecting and analyzing the obtained measurement data
is not time-critical and can therefore be done in user mode
by means of standard tools.

The resulting experimental setup ensures very precise re-
sults and a reasonable flexibility.

3.2. Notational Conventions

Instead of presenting C source code, we try to illustrate
our algorithms a bit more formally. Hopefully, this eases

67

Identifier Description

Wi Associativity (Wi = 2wi)

Si Cache Size (Si = 2si)

L Line Length (L = 2l)

ai Address Width

Ai, Bi, . . . Data that fills one Cache Way

Ω0,Ω1, . . . Data that completely fills L1

Table 3: Used Identifiers and Symbols

A1 B1 C1 D1

L

Ω0 = [A1, . . . , D1]

W1 = 4

2a1 entries/sets

first level cache

Figure 3: Cache Variables

porting and adapting the methods to newly evolving archi-
tectures. Table 3 summarizes the used identifiers. The index
i refers to the level of the cache.

Ωj represents an arbitrary data set which completely fills
L1. Some of the benchmarks need more than one such data
set, therefore we index them byj. The addresses actually
referenced are arbitrarily chosen, but it must be guaranteed
that for anyΩj ,Ωk no single data element is shared be-
tween both sets.

It is common, although not necessary, that the line length
is identical for both cache levels. This document only cov-
ers the case wherel1 = l2 = l. A set-associative cache has
2si−wi−l entries and thus an address widthai = si−wi− l.
Figure 3 illustrates some of the relevant parameters.

3.3. Analyzing Caching Policies

3.3.1. Cache Miss Policy

The write miss policy is easy to obtain. The idea is to write
data to the cache and read that data afterwards. If the data
is still in the cache, write-allocate is used. Accordingly, the
following steps must be performed:

1. Invalidate caches (at least L1), so that no data is cached
by issuing an appropriate machine instruction.

wbinvd

2. Write to as many addresses as fit into L1.

write(Ω0)

3. Readfrom these addresses and count the L1 misses
nmiss.

resetcounter(L1 MISS)
read(Ω0)
nmiss := read counter(L1 MISS)

If nmiss is (approximately) as high as the number of ad-
dresses inΩ0 , write-no-allocate is used. On the other hand,
if nmiss is exactly or near zero, the data has been stored in
L1 and a write-allocate policy has been identified.

3.3.2. Cache Hit Policy

The test for hit policies works with filled caches. If write-
through is used, any write operation of a date residing in
L1 is performed in both L1 and L2, whereas for write-back
only the contents of L1 is modified (the cache line is marked
dirty). The algorithmic idea of the micro-benchmark can be
described as follows. First, a full clean cache contents is
replaced and the number of needed L2 accesses is recorded.
Second, the cache is filled again, then the cache contents is
modified and afterwards again completely replaced. The
needed L2 accesses for that second replacement is again
recorded. If both values are approximately equal, write-
through is identified. Otherwise, if the replacement of a
cache which has been written to requires twice the number
of L2 accesses needed for replacing a clean cache we can
conclude that a write-back policy is used.

Hence, the structure of the benchmark is as follows:

1. Fill L1 twice by accessingΩ0 first andΩ1 afterwards,
replacingΩ0 by Ω1 in L1.

read(Ω0)
read(Ω1)

2. ReadΩ0.
(It must be loaded from L2 and replaces the modified
data setΩ1). Count the L2 accessesnunmod.

resetcounter(L2 ACCESS)
read(Ω0)
nunmod := read counter(L2 ACCESS)

68

Because the data has not been modified, it can be re-
placed regardless of the applied policy and L2 accesses
should be nearly zero.

3. Repeat step 1 (fill L1 twice).
As a result, addressesΩ1 are cached in L1.

read(Ω0)
read(Ω1)

4. Write to the addressesΩ1 in L1 (if L1 uses write-back
then L2 is not updated).

write(Ω1)

5. Repeat step 3 (read addressesΩ0) and count L2 ac-
cessesnmod. Because the data has not modified this
time,nmod depends on the cache hit strategy.

resetcounter(L2 ACCESS)
read(Ω0)
nmod := read counter(L2 ACCESS)

If nmod � nunmod it can be concluded that write-back is
used. Ifnmod≈ nunmodwrite-through has been identified.

3.4. Replacement Strategy

Identifying replacement strategies is somewhat more
complex than the tests described so far. The algorithmic
idea is to load the cache with a predefined content, caus-
ing replacement by accessing uncached data and analyzing
which data has been replaced.

Then we load the cache again with the predefined content
but with a different access history, cause again replacement
and analyze, which data has been replaced this time. This
process is repeated until sufficient knowledge on replace-
ment has been accumulated and the replacement strategy
can safely be identified.

The idea is similar to the black box approach in system
theory: feed the system to be analyzed with a known in-
put, record the output and draw conclusions on the transfer
function of the system that transforms inputxi into output
xo. What we do is to provide several characteristic inputs
by varying the number and order of ways that are reloaded,
identify which ways should be replaced according to the ap-
plied strategy and compare those with the actually replaced
ones.

This methodology poses the two challenges: Firstly, al-
though replacement is performed line per line, measuring
single replacement events is nearly impossible. Therefore,

to obtain reliable results, whole cache ways must be re-
placed. This can be achieved by carefully crafting the re-
placing accesses. Secondly, choosing characteristic input
data is not straightforward.

Again, for reasons of simplicity the algorithm is ex-
plained by means of an exemplary 4-way L1 cache. The
detailed structure looks as follows:

1. Invalidate caches.

wbinvd

2. Fill L1 by readingway by way.

read(A1)
...

read(D1)

 =̂ read(Ω0)

3. Reload (read) some of the ways already present in L1
to make them the most recently accessed ones. We
manipulate L1 history without altering its content.

read({A1, . . . , D1})
...

4. Load (read) a “new” way E1 which replaces one of
{A1, . . . , D1} according to the replacement policy and
the current access history set up in step three.

read(E1)

5. ReadΩ0 way by way and record L1 misses for each
way to find out which one has been replaced.

resetcounter(L1 MISS)
read(A1)
nA1 := read counter(L1 MISS)

...
resetcounter(L1 MISS)
read(D1)
nD1 := read counter(L1 MISS)

Exactly one of{nA1 , . . . nD1} has a significantly larger
value than the other three counters. The associated way has
been replaced under the given cache configuration.

For the manipulation of the access history in step three
we arbitrarily select the ways A1, B1, C1 and access them
in different configurations which are depicted in column
“reload” of table 4. The selection is thoroughly arbitrary,

69

different combinations (e. g. B1A1) are also possible, of
course. Therefore, the complete cache access history for
a single benchmark run consists of A1, B1, C1, D1 (column
“load” in table 4) followed by one of the “reload” configu-
rations. In the following discussion we omit the indices of
the cache ways because we concentrate solely on level one.

The four rightmost columns of table 4 list the expected
way to be replaced in step four of the algorithm under the
replacement strategies pLRUt with tree-based fill, pLRUt
with sequential fill, pLRUm and strict LRU (from left to
right, respectively). Bold rows indicate different results de-
pending on the replacement strategy.

Obviously, not every input row is a characteristic input.
For instance, omitting the reload step completely does not
allow to identify any replacement strategy, because way A
is replaced invariably. Reloading with A, B is equally indif-
ferent.

Clearly, it is possible to identify each of the four replace-
ment strategies. For instance, the first run could reload ABC
(row eight) and therefore allows to differentiate between
tree-based pLRUt and LRU on one hand and sequential fill
pLRUt and pLRUm on the other hand. Depending on the
result of that initial benchmark run in the second run either
C is reloaded (row five) to distinguish between sequential
fill pLRUt and pLRUm, or A is reloaded (row two) to dis-
tinguish between sequential fill pLRUt and pLRUm. For
our example cache configuration, two benchmark iterations
are needed to identify the used replacement strategy.

Table 4: Cache Ways expected to
be replaced by different Replace-
ment Strategies

pLRUt

Load Reload tr
ee

-b
.fl

.

se
q.

fl.

pL
R

U
m

LR
U

A B C D - A A A A

A B C D A B C B B

A B C D B A C A A

A B C D A B C C C C

A B C D C B A A A

A B C D A C B B B B

A B C D B C D A A A

A B C D A B C D A A D

This technique also allows to identify newly-evolving re-
placement schemes which differ from well-known behavior.

To apply this micro-benchmark to the 2nd level cache
too, the following condition has to be met:

a2 ≥ a1 + w1

Every way of L2 has to be at least as large as the whole
L1 cache. Applied to the exemplary 4-way cache used in
the preceding discussion that means: If ways have been
loaded in the order A2, . . . , D2 then L1 contains only D2 (if
a2 = a1 + w1) but none of A2, B2, C2. Therefore, reload-
ing a way already present in L2 way really accesses L2 (and
accordingly updates its history) and is not influenced by L1
data. Figure 4 illustrates that fact. If the L2 ways have been
loaded in the order A2, B2, C2, D2 and afterwards way C2
shall be reloaded, it is guaranteed that none of the addresses
C0.0 - C31.127 still reside in L1, because they have been
overwritten when loading D2.

Yet there is still another simple method to test the re-
placement strategy: First the cache is filled with addresses
Ω0. Afterwards exactly one “new” way is read and it is
checked which way it replaces. Then the cache is filled
again withΩ0 but this time two “new” ways are loaded
and it is noted which two ways are replaced by them. This
method is repeated until as many “new” ways are loaded as
fit into the cache, that means until the wholeΩ0 has been
replaced.
With that incremental replacing of one toWi = 2wi ways
of a cache it can be observed which ways the pseudo LRU
algorithm selects for replacement and this information can
again be used to identify the replacement algorithm.

The structure of this benchmark is as follows (again, we
use the 4-way-associative cache as demonstration example):

1. Invalidate caches.

wbinvd

2. Fill L1 by reading way by way.

read(A1)
...

read(D1)

 =̂ read(Ω0)

3. Load (read)one ”new” way which replacesone of
{A1, . . . , D1}.

read(E1)

4. ReadΩ0 way by way and record L1 misses for each
way to find out which one has been replaced.

resetcounter(L1 MISS)

read(A1)

nA1 := read counter(L1 MISS)
...

resetcounter(L1 MISS)

read(D1)

nD1 := read counter(L1 MISS)

70

A0.0 B0.0 C0.0 D0.0

.

.

.
.
.
.

.

.

.
.
.
.

D28.0

A31.127 B31.127 C31.127 D31.127

L2

D28.0 D29.0 D30.0 D31.0

.

.

.
.
.
.

.

.

.
.
.
.

D28.127 D29.127 D30.127 D31.127

L1

Figure 4: Sizing Relations L1 – L2, based on PII

Exactly one of{nA1 , . . . nD1} has a significantly larger
value than the other three counters. The associated
wayX1 has been replaced.

5. Repeat step 2.

read(Ω0)

6. Load (read)two ”new” ways which replacetwo of
{A1, . . . , D1}.

read(E1)
read(F1)

7. Repeat step 4.
Two ways must experience significant misses. They
have been replaced:X1,X2

...

10. Repeat step 4.
Three ways must experience significant misses. They
have been replaced:X1, X2,X3
...

13. Repeat step 4.
All ways were replaced:X1, X2, X3,X4

Xk = {A1, B1, C1, D1}, k = {1, 2, 3, 4}

As explained before (cf. figure 4) this test can be applied
to L2 too. Only address ranges have to be adapted:
A2, . . . , D2/A2, . . . , H2

1 have to be read to fill L2 and
E2, . . . , H2/I2, . . . , P2

1 are those “new” ways to replace
present ways in the cache.

14-way/8-way L2

4. Experimental Results

The algorithms described in the previous section were
implemented as RTAI tasks and have been tested on several
machines equipped with Intel Pentium II, III and 4 (with-
out Hyperthreading) processors running a ADEOS-patched
Linux kernel version 2.6.8.1 with RTAI 3.1. The software
is freely available on request.

4.1. L1 Caching Policies

4.1.1. Cache Miss Policy

Results on the Pentium II/III

512 lines can be stored in L1 and we encountered an
average of̄nmiss = 16 misses when reading L1. This miss
ratio of3.1 % indicates that a write-allocate policy is used.

Results on the Pentium 4

128 lines can be stored in L1 and we measured an av-
erage of̄nmiss = 22 misses when exhaustively reading L1.
Whereas the absolute number of misses can be compared to
the preceding result the miss ratio of17.2 % is not as small
as on the Pentium II/III. We believe that the smaller number
of lines is the reason for that increase. Because it is still
negligible, we can conclude that write-allocation is used.

4.1.2. Cache Hit Policy

Results on the Pentium II/III

The performance monitoring of the Pentium II and III
processors provides two different events potentially usable
as metric for L2ACCESS: the cycles the L2 data bus is
busy and the number of L2 address strobes. We chose the
latter one and implemented micro-benchmarks described in

71

section 3.3.2 for that event type. Table 5 presents the ob-
tained results.

L2 addr strobes

nmod 2 057

nunmod 1 063

Table 5: Results on Cache Hit Policy -
Pentium II

Table 5 shows clearly that the modified data in the L1
cache has to be written back to L2 first, before it can be
replaced: twice as many L2 address strobes are necessary.
We can conclude that the first level cache of the Intel P6
family utilizes a write-back policy.

This fact is in accordance with Intel’s article [4] which
describes differences between the Netburst architecture and
“Earlier Pentium Family Processors” (Pentium Pro, II, III).
Accordingly, [11] is wrong in assigning a write-through
policy to the Pentium III.

Results on the Pentium 4

Unfortunately, the performance monitoring of the Pen-
tium 4 does not allow to count the same events as on earlier
processors. Therefore, we decided to take the front side bus
(FSB) read and write operations as as indicator for L2 cache
accesses. Table 6 presents the measurement results.

FSB reads FSB writes

nmod 128 0

nunmod 129 0

Table 6: Results on Cache Hit Policy –
Pentium 4

Obviously, there is almost no difference whether the con-
tent of L1 has been modified or not and the conclusion must
be that the Netburst architecture uses a L1 cache with a
write-through policy. This is in accordance with informa-
tion in [4], [5] and [6].

4.2. Cache Replacement Strategies

Results on the Pentium II/III

Firstly, we applied several characteristic inputs to the re-
placement benchmark described in section 3.4. The cache
is 4-way-associative, therefore we could employ the input
data without modification.

Table 7 shows the replaced cache way for every input
data pattern. Comparing the results with table 4 we can con-

Reloaded Way(s) Replaced Way

– A

A B

B A

A, B C

C B

A, C B

B, C D

A, B, C D

Table 7: Results on L1 Replacement
Strategy – Pentium II

clude that the Pentium II/III uses a tree-based pLRU strat-
egy with initial tree-based filling.

Secondly, we implemented a similar test for Pentium
II/III L2 cache, whose results are presented in table 8.

Reloaded Way(s) Replaced way

– A

A C

B C

A, B C

C A

A, C B

B, C A

A, B, C A

Table 8: Results on L2 Replacement
Strategy – Pentium II

Obviously, in contrast to L1, the second level cache of
the Pentium II and III uses a pLRUt strategy with sequential
initial fill.

The Intel Pentium II Processor Developer’s Manual [7]
only states that pseudo-LRU is used for both caches, but
not which type and initial behavior. Moreover, Sears [10]
is wrong with the conclusion that the processor uses a LRU
strategy.

Results on the Pentium 4

Identifying the replaced cache line in the L1 cache
proved to be more difficult. Figure 5 illustrates the mea-
sured L1 misses for the individual reload configurations.

It is nearly impossible to identify a single replaced cache
way for certain reload configurations (e. g. AB or AC). We
believe, this behavior again results from the comparatively
low number of only 32 cache sets.

72

A CB D A CB D A CB D A CB D A CB D A CB D A CB D A CB D

5

10

15

20

25

30

0

L
1

M
is

se
s

Reloaded Ways

−− A B AB C AC BC ABC

Figure 5: L1 Cache Misses for Replacement Strategy Benchmark – Pentium 4

Nevertheless, lacking a better one, we applied our de-
scribed methodology and obtained the results depicted in ta-
ble 4. None of the four replacement strategies fully matches
the observed behavior, the closest one is pLRUt with tree-
based filling which deviates only in two cases.

Taking the above mentioned inaccuracies into account,
it seems nevertheless reasonable to infer pLRUt with tree-
based filling for Pentium 4 L1 cache.

Reloaded Way(s) Replaced Way Tree-based Fill

– A A

A B B

B A A

A, B C C

C A B

A, C B B

B, C A D

A, B, C D D

Table 9: Results on L1 Replacement
Strategy – Pentium 4

L2 cache is 8-way associative on the Pentium 4, there-
fore the micro-benchmarks have to be adapted accordingly.
The cache utilizes 1024 sets, therefore the event miscounts
do not play any role. However there are two mysterious
results we are not able to explain yet:

* The reloading of two ways A, B and the following
reading of a new way I seems to evictboth ways C
and D. It is important to note that not half the way C
and D are purged from L2 to obtainonefree way, but
bothways C, D are freed!

* The reloading of A, B, C and the following reading of
a new way I leads to an almost equal distribution of L2
misses between all eight present ways A, . . . , H.

In all other input data configurations, the (single) replaced
way can be identified easily by its high number of L2
misses.

The highlighted rows in Table 10 indicate differences in
the ways that should be replaced (3rd column) and those
that actually are replaced (2nd column). With a reasonable
degree of certainty we conclude that the L2 cache of the
Pentium 4 uses a pLRUt policy with a tree-based filling,
too. Yet we must admit that we still do not understand fully
Pentium 4 level 2 cache replacement behavior. This is sub-
ject of further research.

Reloaded Way(s) Replaced Way Tree-based Fill

– A A

A B B

B A A

A, B C, D C

C B B

A, C B B

B, C D D

A, B, C ? D

Table 10: Result on L2 Replacement
Strategy – Pentium 4

73

5. Conclusions and Future Work

We described methods to analyze the first and second
level processor caches. In contrast to existing solutions
we do not use timing information to differentiate between
cache hits and cache misses. Instead we propose to directly
count relevant events using performance monitoring regis-
ters. Our methodology eliminates timing influences of the
operating system and concurring applications.

We described micro-benchmarks to experimentally dis-
cover cache miss and cache hit policies. Furthermore our
methodology allows to determine the replacement strategy
in detail. We are able to obtain information about the initial
cache filling.

We successfully applied our methodology to a range of
Intel processors. We were able to verify some information
on caching behavior and falsified some other statements.
We discovered new details on Intel’s cache behavior.

Currently we implement micro-benchmarks for a much
wider range of microprocessors especially for architec-
tures different from IA-32. We hope to precisely analyze
embedded processor’s caching soon. Crafting the micro-
benchmarks manually is tedious work, therefore another re-
search focus is on (semi-)automatically generating bench-
mark code.

We feel that statements on branch predictors are equally
as fuzzy and contradicting as we experienced for cache be-
havior. Using our proved methodology first tests on that
matter have been carried out already.

The next step is to include cache performance param-
eters into our experimental setup. That way we are able
to quantify and compare cache performance of different ar-
chitectures. Finally, we hope to contribute towards precise
cache models for WCET estimation of complex processors.

References

[1] Advanced Micro Devices.AMD Athlon Processor x86 Code
Optimization Guide, 2002.

[2] P. Cloutier, P. Mantegazza, S. Papacharalambous, I. Soanes,
S. Hughes, and K. Yaghmour. DIAPM-RTAI Position Pa-
per. In Proceedings of the 21st IEEE Real-Time Systems
Symposium and Real-Time Linux Workshop, Orlando, FL,
Nov. 2000.

[3] L. Enyou and C. Thomborson. Data Cache Parameter Mea-
surements. InProceedings of the IEEE International Con-
ference on Computer Design, pages 376–383, Oct. 1998.

[4] B. Hayes. Differences in Optimizing for the Pentium Pro-
cessor vs. the Pentium III Processor. Whitepaper 44010.

[5] G. Hinton et al. The Microarchitecture of the Pentium 4
Processor.Intel Technology Journal, 2001. Q1.

[6] Intel. IA-32 Intel Architecture Optimization Reference Man-
ual.

[7] Intel. Pentium II Processor Developer’s Manual, 1997.
243502-001/24333503.

[8] Intel. IA-32 Intel Architecture Software Developer’s Man-
ual, volume 3. Intel Corporation, 2004.

[9] M. Milenkovic. Performance Evaluation of Cache Replace-
ment Policies. Technical report, University of Alabama in
Huntsville, 2004.

[10] C. B. Sears. The Elements of Cache Programming Style.
Technical report, Google Inc., 2000. Proceedings of the 4th
Annual Linux Showcase & Conference Atlanta.

[11] F. Sebek. Cache Memories and Real-Time Systems. Tech-
nical report, M̈alardalen Unirversity, 2001. p. 24–25.

[12] C. Thomborson and Y. Yu. Measuring Data Cache and TLB
Parameters Under Linux. InProceedings of the 2000 Sympo-
sium on Performance Evaluation of Computer and Telecom-
munication Systems, pages 383–390. Society for Computer
Simulation International, July 2000.

[13] A. Todd. http://www.etallen.com/cpuid.html , last refer-
enced 05-17-06.

[14] K. Yotov, K. Pingali, and P. Stodghill. Automatic measure-
ment of memory hierarchy parameters.SIGMETRICS Per-
form. Eval. Rev., 33(1):181–192, 2005.

74

Towards Predictable, High-Performance Memory Hierarchies in Fixed-Priority
Preemptive Multitasking Real-Time Systems

E. Tamura
Grupo de Automática y Robótica

Pontificia Universidad Javeriana – Cali
Calle 18 118–250, Cali, Colombia

eutamo@doctor.upv.es

J. V. Busquets-Mataix and A. Martí Campoy
Departamento de Informática de

Sistemas y Computadores
Universidad Politécnica de Valencia

Camino de Vera s/n., 46022 Valencia, España
{vbusque, amarti}@disca.upv.es

Abstract

Cache memories are crucial to obtain high performance
on contemporary computing systems. However, sometimes
they have been avoided in real-time systems due to their lack
of determinism. Unfortunately, most of the published tech-
niques to attain predictability when using cache memories
are complex to apply, precluding their use on real applica-
tions. This paper proposes a memory hierarchy such that,
when combined with a careful pre-existing selection of the
instruction cache contents, it brings an easy way to obtain
predictable yet high-performance results. The purpose is to
make possible the use of instruction caches in realistic real-
time systems, with the ease of use in mind. The hierarchy is
founded on a conventional instruction cache based scheme
plus a simple memory assist, whose operation offers a very
predictable behaviour and good performance thanks to the
addition of a dedicated locking state memory.

1 Introduction

Contemporary computing systems include cache memo-
ries in their memory hierarchy to increase average system
performance. In fact, cache memories are crucial to ob-
tain high performance when using modern microprocessors.
While trying to minimise the average execution times, the
contents of the cache memories vary according to the exe-
cution path. General-purpose systems benefit directly from
this architectural improvement; however, minimising aver-
age execution times is not so important in real-time sys-
tems, where the worst-case response time is what matters
the most. Thus, due to their lack of determinism, sometimes
cache memories have been avoided in fixed-priority pre-
emptive multitasking real-time systems: when they are in-
corporated in such a system, in order to determine the mem-

ory hierarchy access times as well as the delays involved in
cache contents replacement it is necessary to know what its
contents are.

Using cache memories in fixed-priority preemptive mul-
titasking real-time systems presents two problems. The
first problem is to calculate theWorst-Case Execution Time
(WCET), due to intra-task or intrinsic interference.Intrin-
sic interference occurs when a task removes its own instruc-
tions from the instruction cache (I-cache) due to conflict and
capacity misses. When the removed instructions are refer-
enced again, cache misses increase the execution time of
the task. This way, the delay caused by the I-cache inter-
ference must be included in the WCET calculation. The
second problem is to calculate theWorst-Case Response
Time (WCRT) due to inter-task or extrinsic interference.Ex-
trinsic interference occurs in preemptive multitask systems
when a task displaces instructions of any other lower pri-
ority tasks from the I-cache. When the preempted task re-
sumes execution, a burst of cache misses increases its exe-
cution time. Hence, this effect, called cache-refill penalty
or Cache-Related Preemption Delay (CRPD) must be con-
sidered in the schedulability analysis.

This work proposes

• a memory hierarchy that provides high performance
coalesced with high predictability. The solution is to
be centred on instruction fetching since it represents
the highest number of memory accesses [15];

• the required schedulability analysis for such hierarchy;
and

• some evaluation results and its analysis.

Results show that

• the proposed memory hierarchy is predictable and sim-
ple to analyse;

75

• its performance exceeds that of the dynamic use of
locking cache as given in [10]; and

• in many cases, its performance is about the same than
that obtained when using a conventional instruction
cache.

The remainder of the paper is organised as follows. Sec-
tion 2 introduces the problem and summarises some of the
solutions found in the literature. Section 3 describes the
proposed memory hierarchy, its requirements, a functional
description of its operation and the schedulability analysis.
Section 4 assesses the proposed memory hierarchy by com-
paring it with the dynamic use of locking cache as given
in [10]. First predictability and prediction accuracy are ex-
amined by comparing estimated and simulated worst-case
response times. Performance is evaluated by measuring the
worst-case processor utilisation. Some concluding remarks
are given in Section 5.

2 Rationale

In order to guarantee that every task in the task set meets
its deadline, real-time system designers may opt for three
different approaches:

• Use the memory hierarchy in a conventional manner.

• Use the memory hierarchy in a real-time systems suit-
able manner.

• Use a real-time systems aware memory hierarchy.

Each approach will be briefly summarised according to
three different perspectives: architectural viewpoint, imple-
mentation viewpoint and, run-time support viewpoint.

2.1 The memory hierarchy is used in a conven-
tional manner.

When using cache memories in a conventional way, the
memory hierarchy is the same used in any conventional sys-
tem with cache memories; therefore, regarding implementa-
tion and run-time support, there is no need to implement any
additional hardware or software modules. Instead, the real-
time system designer does his/her best to determine whether
each memory reference causes a cache hit or a cache miss.
This is done by using static analysis techniques. Some of
the techniques used for WCET calculation are data-flow
analysis [13, 22], abstract interpretation [1], integer linear
programming techniques [6], or symbolic execution [7]; to
tackle the WCRT estimation data-flow analysis is also used.
Unfortunately, the complexity of static analysis techniques
may preclude their use in practical applications.

2.2 The memory hierarchy is used in a real-time
systems suitable manner.

An alternative to fully exploit the inherent performance
advantage of cache memories while achieving predictabil-
ity is to work with unconventional memory hierarchies.
In this case, instead of conventional cache memories, the
real-time designers favour the use of either locking caches
[10, 18, 25, 2, 17] or scratchpad memories [26, 27]. On the
one hand, locking caches are caches with the ability to lock
cache lines to prevent its replacement; blocks are loaded
into the locking cache and then they are locked. They are
accessed through the same address space as the main mem-
ory. On the other hand, scratchpad memories are an alter-
native to I- or D-caches (data caches). They are small and
extremely fast SRAM memories (since they are usually lo-
cated on-chip); they are mapped into the processor’s address
space and are addressed via an independent address space
that must be managed explicitly by software.

Regarding implementation, in both cases, during the de-
sign phase it is necessary to choose for every task in the task
set which instruction blocks will be either loaded and then
locked into the locking cache or copied into the scratch-
pad memory. The number of selected blocks per task must
not exceed the capacity of either the locking cache or the
scratchpad memory (selecting which information is copied
into a scratchpad is very close to deciding which informa-
tion has to be locked into a locking cache). Once the blocks
are chosen, it is possible to know how much time it would
take to fetch every instruction in the whole task set; there-
fore, the access time to the corresponding memory hierar-
chy is thus predictable. At compile time, the assignment of
memory blocks to either the locking cache or the scratchpad
has to be handled by hand or automatically using a compiler
and/or a linker. However, since scratchpad memories are
mapped in the processor’s memory space, explicit modifi-
cations in the code of tasks may be required to make control
flow and address corrections.

To improve the execution performance of more than one
task (as is desirable in a fixed-priority preemptive multitask-
ing real-time system), the contents of either the scratchpad
or the locking cache memory should be changed at run-time
(dynamic use). Thus, in both cases, the subset of blocks se-
lected for every task should be loaded during system execu-
tion by a software routine, which is executed each time the
real-time system designer judges convenient. Transfers to
and from scratchpad memories are under software control
while for locking caches this is transparent. While a task
is not preempted, it is necessary to ensure that the contents
of either the scratchpad or the locking cache will remain
unchanged. This way, extrinsic interference is eliminated
while intrinsic interference can be bounded. In [10] using
locking instruction caches is proposed to cope with both ex-

76

trinsic and intrinsic interferences; in [25], the use of lock-
ing D-caches is proposed to enhance predictability by in-
serting locking/unlocking instructions: the cache is locked
whenever it is not possible to statically determine whether
the memory references a datum inside the cache or not. In
several cases, the dynamic use of locking I-caches effects
the same or better performance than using a conventional I-
cache [10]. In [27] by using scratchpads performance gains
comparable to that of caches are also obtained. However,
since the amount of scratchpad memory available is often
small compared to the total amount of cache memory avail-
able, intuitively, it is reasonable to think that for task sets
with big tasks the scratchpad memory approach may obtain
lower performance than the cache memory approach.

No matter

1. which mechanism is used to trigger the execution of
a small software routine to either load blocks into the
locking cache (at the scheduler level, as proposed orig-
inally in [10] or via debug registers by raising excep-
tions when the program counter reaches specified val-
ues [2]) or copy blocks to the scratchpad memory; and,

2. the location of the software routine (e.g., in main mem-
ory or even in a scratchpad memory),

the execution of the aforementioned software routine de-
mands valuable processor cycles. Since this execution time
must be added to the task’s WCRT, the overhead introduced
when using either locking caches or scratchpad memories
in a fixed priority multitasking real-time system may have
severe consequences on performance.

2.3 The memory hierarchy is real-time systems
aware.

A third option is to design more predictable memory hi-
erarchies. A memory hierarchy for fixed-priority preemp-
tive multitasking real-time systems must implement mech-
anisms which in some way address the effects of

• intrinsic interference: it must prevent that the contents
of the cache are overwritten by the same task;

• preemption: by allowing the preempting task to over-
write the contents of the cache; and

• extrinsic interference: it must allow that the contents
of the cache are restored when the preempted task re-
sumes execution.

To deal with extrinsic interference, some of the ap-
proaches use cache partitioning techniques, which allocate
portions of the cache to tasks via hardware (I-cache [5], D-
cache [14]), software (by locating code and data so they
will not map and compete for the same areas in the cache)

[28, 12] or a combination of hardware and software [19, 3].
Notice that the technique proposed in [5] introduces unpre-
dictability for blocks that go to the shared pool.

To improve predictability, [4] proposes to extend the
cache hardware and to introduce new instructions to con-
trol cache replacement (kill or keep cache blocks).

In [24], a custom-made cache controller assigns parti-
tions of set associative caches to tasks so that extrinsic inter-
ference is eliminated; cache partitions are assigned to tasks
according to their priorities by using a prioritised cache:
each partition is assigned dynamically at run time; higher
priority tasks can use partitions that were previously al-
located to lower priority tasks. A partition allocated to a
higher priority task cannot be used for a lower priority task
unless the former notifies the cache controller to release the
partitions it owns (which is done when the task is com-
pletely over). Therefore, it might be possible that the high-
est priority tasks consumes the whole cache memory and
jeopardises the lowest priority tasks response times.

The work presented in this paper is a refinement of
previous work [23] and proposes the use of an I-cache
and additional hardware information to influence the I-
cache replacement decision. This “cache replacement pol-
icy” provides a mechanism to increase predictability (time-
determinism) without degrading performance, making it
suitable for use in fixed-priority preemptive multitasking
real-time systems. In this approach, the subset of selected
blocks for each task and the instants in which I-cache flush-
ing takes place are fixed: Every time a task begins or re-
sumes its execution, the I-cache is flushed and then it is
gradually reloaded with selected blocks as the instructions
belonging to the task to be dispatched are being fetched.
The selected blocks are inhibited from being replaced un-
til a new context switch takes place. This way, the access
time to the memory hierarchy is predictable and on the other
hand, each task may use all the available I-cache space in
order to improve its execution time.

In contrast to other approaches, the proposed memory
hierarchy does not need any software to load the selected
blocks into the I-cache at run time and hence it does not
introduce penalties in the task’s WCRT.

3 Memory hierarchy architecture

Efficient operation of the memory hierarchy requires an
efficacious, automatic, on-demand storage control method
that frees the software from explicit management of mem-
ory addressing space. Furthermore, the resulting architec-
ture should not introduce any additional delays and be as
open as possible by using generic components.

77

I−CACHE
TAG RAM

I−CACHE
CONTROLLER

I−CACHE
DATA RAM

aLSW

aLSF

PE
LOCKING

STATE
MEMORY

I−BUFFER

IM

ADDRESS BUS

I−DATA BUS

MWAIT

LSF

SET

WAY

TAG

MATCH

WE WE

V

WE
OE

WE

V

WE

M

WE

V

OE

VALID

STATUS

I−CACHE

I−BUFFER

TAG RAM

I−BUFFER
STATUS

Figure 1. Proposed memory hierarchy

3.1 Description

Figure 1 sketches an architecture that pursues these
goals. As can be seen, the figure does not embody any
locking I-cache; it resembles a system for a conventional
I-cache. There are however three noteworthy differences:

• There is an extra, dedicated, very fast SRAM mem-
ory, theLocking State Memory (LSM), located to the
right of the Processing Element (PE). Its role is to
store the status of every instruction block (theLock-
ing State, LS) in the Instruction Memory (IM), thus
providing a mechanism to discriminate which blocks
must be loaded into the I-cache and hence a way to al-
low for automatic, on-demand loading of the selected
instruction blocks. In other words, instead of locking
selected blocks into an instruction locking cache, the
same effect can be attained by avoiding loading into
the I-cache unselected blocks.

• There is also anInstruction Buffer (I-buffer), with size
equal to one cache line, located below the I-cache con-
troller. Having an I-buffer is not essential, rather it is
more of a performance assist: its purpose is to take
advantage of the sequential locality for those blocks
that should not be loaded into the I-cache. Since the
I-buffer catches and holds previously used instructions
for reuse, it might also contribute with temporal lo-
cality by providing look behind support (via the boxes
drawn with dashed lines in the bottom part of the fig-
ure).

• There is also a subtle difference in the control bits of
the I-cache with respect to a locking cache: since lock-
ing state information is stored into the LSM, locking
status bits are not required.

3.2 Performance requirements

The main goal of the memory hierarchy is to provide
deterministic yet high-performance response times.

In order to achieve determinism, each time a taskτi is
dispatched for execution, its corresponding subset of previ-
ously selected blocks,SBi, is loaded into the I-cache as the
PE fetches them. Once loaded, the selected blocks must re-
main in the I-cache and must not be overwritten as long as
taskτi is either not preempted by other, higher priority tasks
or it finishes. This policy, which is applied to every task in
the task set, eliminates intrinsic interference since the task
is not allowed to remove any block previously loaded into
I-cache, thus contributing to temporal determinism. Fur-
thermore, extrinsic interference is bounded and can be esti-
mated in advance.

Both temporal locality, the tendency to access instruc-
tions that have been used recently, and spatial locality, the
tendency to involve a number of instructions that are clus-
tered, are essential to performance. Hence, by keeping
the SBi blocks loaded in the I-cache, temporal locality is
mainly captured by the I-cache yet spatial locality is also
supported. Besides that, the I-buffer captures spatial local-
ity for those blocks not inSBi, albeit as it was said before,
it might also provide some temporal locality.

With respect to timing issues, the goal is to cause min-
imum overhead during I-cache (re)load: since the LSM is
not in the critical path, IM latency remains the same. LSM
access time however must be in the order of a cache hit time
to operate in parallel with the I-cache and its controller. This
way, the I-cache inner workings are not affected and hence,
its timings remain about the same.

3.3 Storage requirements

Storage requirements for the LS are also very important:
space consumption should be low. Regarding cost, the most
useful measure is to determine how much memory needs to
be added to the system.

The minimum amount of memory required to keep track
of each selected block is one bit. Hence, there will be as
many bits as the number of blocks in the IM. Each of those
bits will store a flag, theLocking State Flag (LSF), which
is used to signal whether the corresponding block should
be loaded into I-cache or not. For LS packing purposes,
however, it is better to group the information into wider,
off-the-shelf, fast SRAM memories. Henceforth assume an
8-bit wide LSM; then, the information for eight blocks (a
parcel) will be stored in oneLocking State Word (LSW) as
shown in Figure 2.

Let L be the I-cache line size in bytes and letbI be the
number of bytes per instruction; then each memory block
hasL/bI instructions. Given an IM of depthdIM = mL,
wherem is the number of instruction blocks, the required
LSM has a depth,dLSM , equal tom/8. Then, the number
of instructions,I, that corresponds to each LSW is given by
I = 8L/bI.

78

LSF0LSF1LSF2LSF3LSF4LSF5LSF6LSF7

LSFr

LSF0LSF1LSF2LSF3LSF4LSF7 LSF6 LSF5

LSF0LSF1LSF2LSF3LSF4LSF5LSF6LSF7

LSF0LSF1LSF2LSF3LSF4LSF5LSF6LSF7

LSW0

LSW1

LSWm/8−1

aLSFr

aLSWr

Figure 2. Locking state memory

Let w be the IM width in bits,a be the width of the ad-
dress bus in bits,K be the degree of associativity andN

the number of sets, thenSIM , the space required for IM;
SCM , the space required for I-cache memory; andSLSM ,
the space required for LSM, are given (in bits) by:

SIM = wmL (1)

SCM = wLKN +

(
a − log2

L

N

)
× KN + KN(2)

SLSM = m (3)

In the expression forSCM , the first term is related to
the I-cache data memory, the second one reflects the space
needed for its tag memory and the last one accounts for its
status bits (just the valid bits are considered). Notice that
lock bits are not necessary since they are grouped into the
LSM.

Therefore, the space efficiency,ηs, which measures the
fraction of memory dedicated to store LS, can be defined as
the ratio of the LSM space,SLSM , to the total amount of
memory space:

ηs =
SLSM

SIM + SCM + SLSM

(4)

3.4 Functional operation

During system design, given a task set,TS, an off-line
algorithm selects a subset,SBTS, from the task set instruc-
tion memory blocks (SBTS =

⋃
SBi, ∀ τi ∈ TS).

The LS associated to TS,LSTS , which reflects the status
of every instruction block in TS, must then be loaded into
the LSM and it will remain fixed during system execution.

When the system starts operating, the PE must reset the
I-cache controller and invalidate all the entries in the I-cache
as well as in the I-buffer.

Now, every time that an instruction,Ir , at addressar is
referenced by the dispatched task,τi, the LSM needs to be
accessed to check the LSW at addressaLSWr

. This is the
address of the LSW that corresponds tomr, the memory

block that embodiesIr. Hereafter, assume a 32-bit wide
instruction size and a byte-addressable IM. Then,aLSWr

is
obtained by stripping off thelog2 8bI least significant bits
of ar.

Finally, it is necessary to extractLSFr, the correspond-
ing LSF withinLSWr to drive theLSF signal and thus de-
termine whether it is necessary to loadmr in the I-cache.
The LSF is indexed by using the3 bits next to thelog2 bI

least significant bits ofar to drive an 8-way multiplexer.
At the same time, the tag formr is compared in the I-

cache directory thus updating theMATCHsignal and its cor-
responding line status is checked via itsVALID bit. Simul-
taneously, the data portion of the I-cache is also accessed.
Based upon theLSF, MATCHand VALID signals, the I-
cache controller may have three possible outcomes:

• TheLSF signal is1, indicating thatmr must be loaded
and locked in the I-cache so the I-buffer is disabled;
in other words,mr ∈ SBi. If the reference causes a
miss (because either there is no tag match or the entry
is not valid),mr is loaded from IM into the I-cache,
the corresponding tag is updated and its valid bit is set.
Afterwards, the I-cache controller, via theMWAITline,
signals the PE that the instruction is available so that it
can restart fetching.

• The LSF signal is 1, but the reference results in a
hit (because the instruction was previously referenced
during the current execution). Then, the PE can fetch
the instruction from the I-cache without incurring in
any further delays.

• TheLSF signal is0, indicating thatmr should not be
loaded in the I-cache; in other words,mr /∈ SBi. In
this case, the I-cache is disabled and it is necessary to
access the IM in order to loadmr in the I-buffer.

Each time a context switch occurs, the scheduler exe-
cutes an instruction that causes that the entire I-cache con-
tents are purged (its valid bits are reset) and therefore, ev-
ery line is invalidated; the I-cache controller should alsobe
reset to avoid that it finishes incomplete operations taking
place when the context switch happened. Not purging the
I-cache might bring better performance but in any case, it
is quite difficult to estimate which blocks will remain in the
I-cache after several preemptions; furthermore, it is harder
to know if those blocks will be used at all once the pre-
empted task resumes execution. Thus, since one of the pri-
mary goals is to keep the schedulability analysis simple, it
is better to purge the cache on each context switch. Notice
however that this may introduce an overestimation in the
schedulability analysis.

Using an LSM in the proposed way imposes a constraint:
since in a conventional I-cache there is no hardware impedi-
ment to replace its lines, the block selection algorithm must

79

guarantee that for any set in the I-cache there will be no
conflict misses. Otherwise, selected blocks, which are al-
ready loaded, may be overwritten. This might cause some
performance improvements, but at the same time, its pre-
dictability will deteriorate and hence, the analyses will turn
more complex.

Aside from this restriction, it is important to note that
the focal feature of the memory hierarchy is the inclusion of
the LSM. With the LSM, the proposed memory hierarchy is
able to provide aVirtual Locking I-cache. Its key advantage
is that it uses a conventional I-cache like a locking I-cache.
This approach then, takes advantage of the I-cache intrinsic
features while at the same time avoids the overhead required
to load instructions into the locking I-cache and the explicit
manipulation of its locking mechanism.

3.5 Schedulability analysis

The schedulability analysis is done in two steps: in the
first step, the WCET of each individual task is calculated
assuming that it is the only task in the system but accounting
for the intrinsic interference. Subsequently, the effect of the
extrinsic interference is considered in the second phase, the
calculation of the WCRT.

Task’s WCET is estimated by using aCache Aware
Control Flow Graph, CACFG, an extendedControl Flow
Graph, CFG [21]. In a CACFG, each memory block is
mapped to a cache block and assigned a block number and
eachbasic block (i.e., each sequence of instructions with a
single entry/single exit point) inside the memory block is
mapped to a different vertex. Thus, CACFG models not
only the flow control of the task through vertices (as it hap-
pens in CFG) but also takes into account the presence of the
I-cache by modelling how the task is affected from the point
of view of the cache structure.

The WCET of tasks may then be easily estimated consid-
ering the execution time of each vertex: Let a taskτi, with
selected verticesVi ∈ SVi ⊆ SBi. The execution time of a
vertex depends on the number of instructions inside it,kVi

,
and the cache state when the instructions inside the vertex
are executed. Since

• in the worst case,SBi, the subset of selected blocks,
and henceSVi, the subset of its corresponding vertices,
will always be loaded on-the-fly by the proposed mem-
ory hierarchy each timeτi executes; and,

• each block, once loaded, will remain in the I-cache as
long as taskτi is not preempted (or it finishes),

it is possible to affirm that, in this particular case, the cache
state forτi is essentially the same during each of its activa-
tions. Thus, the execution times forτi’s vertices are con-
stant across each execution.

Its WCET can then be estimated assuming that all of the
vertices inSVi are already loaded in the I-cache and then
adjust this WCET by accounting for the time required to
loadSBi. Hence, if the subset of selected blocks is already
loaded in the I-cache and the execution time of any instruc-
tion (not including the fetch time) is given bytI , the WCET
for a vertex is given by:

kVi
× (tI + thit), ∀Vi ∈ SVi (5)

kVi
× (tI + thit) + tmiss, ∀Vi /∈ SVi (6)

and Ci, the WCET for any task can be estimated by ap-
plying the approach given in [21]. Notice however that
Equation 6 introduces an overestimation in the schedula-
bility analysis whenever there is a control transfer from one
vertex to any other vertex that belongs to the same memory
block.

Nevertheless, the previous assumption makes necessary
to adjust the execution time of those instructions contained
in every selected block,Bi. Then, for each selected block
Bi not loaded into I-cache, taskτi will incur in an overhead
given bytmiss (a compulsory miss).

When estimating the WCET for every taskτi, the worst
case scenario regarding the blocks inSBi implies loading
all of its blocks. Thus, this preemption penalty can be ac-
counted for by adding the termkSBi

× tmiss to the previ-
ously calculated WCET:

C′
i = Ci + LSBi

(7)

LSBi
= kSBi

× tmiss (8)

wherekSBi
is the number of selected blocks for taskτi.

Notice that when using a scratchpad memory or a locking
cache in a dynamic way (i.e., by modifying its contents
at run time, it is necessary to add an extra term toLSBi

:
∆SWrSBi

, that takes into account the time required to exe-
cute the software routine in charge of replacing the corre-
sponding memory.)

WCRT is then obtained by using Equation 9, where the
I-cache refill penalty due to extrinsic interference is incor-
porated in parameterγi

j
.

wn+1
i

= C′
i +

∑
∀ τj ∈hp(τi)

⌈
wn

i

Tj

⌉
×

(
C′

j + γi

j

)
(9)

Computingγi

j
is not easy because tasks may suffer two

kinds of interference: direct interference or indirect inter-
ference.Direct interference means that a task increases its
response time because it is forced to reload its own instruc-
tions, previously removed by its preempting tasks.Indirect
interference means that a task increases its response time
because executing any other higher priority tasks increases
its response time, due to its own direct and indirect extrinsic
interference.

80

It is hard to know which kind of extrinsic interference a
task will suffer during its execution; then, to consider both
possibilities, it is safe to use the maximum I-cache refill
penalty:

γi

j
=

[
max(kSBj

) + 1
]
× tmiss, ∀ j ∈ hp(i) (10)

Using the maximum I-cache refill penalty gives a safe, up-
per bound while keeping the complexity low. This may
be somewhat pessimistic: it may happen that not all of the
loaded blocks are going to be used before the next preemp-
tion. Nevertheless, getting a more precise value in advance
will involve complex analyses, since it depends on the num-
ber of blocks effectively loaded and the exact preemption
instants.

Equation 9 is a recursive equation that is solved itera-
tively; the resulting WCRT,Ri, is then compared toτi’s
deadline to decide schedulability.

4 Assessing the proposed memory hierarchy

The proposed architecture, when operating in Virtual
Locking I-cache mode, is able to guarantee determinism per
se (since it is possible to analyse its impact on the WCRT
of every task), but system performance strongly depends on
the blocks selected to be loaded in the I-cache. Thus, this
selection must be carefully accomplished. In fixed-priority
preemptive multitasking systems, tasks response times de-
pend on the execution time of higher priority tasks. In ad-
dition, indirect interference causes that the response time
of tasks depends on the time needed to reload the I-cache
contents. Therefore, I-cache contents must be selected con-
sidering not the isolated tasks, but all of the tasks in the task
set.

Then, the goal is to optimise some temporal metric by
selecting a subset of instruction blocks,SBTS from the set
of instruction blocks,BTS . Choosing the cache contents in
a way that maximises the probability of finding the instruc-
tions in cache is a combinatorial problem. In general, the
techniques employed to solve combinatorial problems are
characterised by looking for a solution from among many
potential solutions. Petrank and Rawitz [16] showed that
unlessP = NP there is no efficient optimised algorithm
for data placement or code rearrangement that minimises
the number of cache misses. Furthermore, it is not even pos-
sible to get close. Therefore, they conclude that the problem
pertains to the class of extremely inapproximable optimi-
sation problems and that, consequently, on one hand, it is
necessary to use heuristics to tackle the problem, and on the
other hand, it is not possible to estimate the potential bene-
fits of an algorithm to reduce cache misses. So, the virtues
of a given algorithm must be evaluated by comparing algo-
rithms.

Hence, rather than trying to find only the best (optimal)
solution, a good non-optimal (trade-off) solution is sought.
Therefore, to solve the problem at hand, it may be a good
idea to apply some form of directed search. For this kind
of problem, one of the most appealing techniques is using
genetic algorithms since they are generally seen as optimi-
sation methods for non-linear functions.

In fact, in [8] a Genetic Algorithm, GA, has been pro-
posed to solve an equivalent problem. The results presented
there show that the use of a genetic algorithm to solve the
problem represents a good choice since it provides for each
task in the task set, not just the subset of blocks to be loaded,
an estimation of the WCET and, the corresponding WCRT
considering the estimated WCET, but also because that se-
lection offers good performance. Moreover, results in [9]
show that using the genetic algorithm proposed in [8] brings
slightly better results than using the pragmatic algorithms
given in [18].

In this work, for evaluation purposes, the following
cache characteristics are assumed: A direct-mapped I-cache
with varying size, a cache line size of 16 bytes (4 32-bit
wide instructions); I-buffer is also 16 bytes wide. Fetching
an instruction from I-cache or I-buffer takes 1 cycle while
fetching an instruction from IM takes 10 cycles. A fixed-
priority preemptive scheduler is used in every case. Task
priority is assigned according to a Rate Monotonic Policy.
Also, notice that in this work, it is assumed that the dead-
line, D, is equal to the task period,T .

Evaluation results concerning the proposed memory hi-
erarchy must show whether the proposed memory architec-
ture is predictable and if there is any performance loss when
using the proposed memory hierarchy (LSM) in front of
using a locking I-cache in a dynamic manner (dLC). There-
fore, two kinds of results were evaluated to assess the merits
of the proposed memory hierarchy. The first set of results is
obtained by using a GA to select blocks and estimate pro-
cessor utilisation when using those selected blocks with the
proposed memory hierarchy (ULSMe). The second set of
results is obtained by using the same selected blocks and a
modified version of SPIM (the freely available, widely used
MIPS simulator) which embodies a cache simulator, to ex-
ecute one hyperperiod of the task set and thus obtain the
simulated processor utilisation (ULSMs).

It is not easy to compare the performance of a real-time
system running on different architectures. If the same task
set is schedulable in every case, there are many character-
istics and metrics useful to compare performance. Further-
more, it is highly desirable to use standard benchmark(s) to
evaluate the predictability and performance of the proposed
memory hierarchy since it makes possible the comparison
with other approaches.

Traditional computing benchmarks are inadequate for
characterising real-time systems since they are not de-

81

Table 1. Main characteristics of task sets and
cache sizes

Feature Minimum Maximum
Number of tasks 3 8
Task Size 1.6 KB 27.6 KB
Task Set Size 12.5 KB 57.6 KB
Instr. executed per task (approx.) 50,000 8,000,000
Instr. executed per tasks (approx.) 200,000 10,000,000
Cache Size 1 KB 32 KB

signed to exhibit behaviour characteristic of such systems,
such as periodic, transient and transient periodic activa-
tion/deactivation. On the other hand, there are several pro-
posals for embedded/real-time systems benchmarking. Un-
fortunately, however, the lack of consensus about using a
standard benchmark (to the authors’ best knowledge) pre-
cludes the use of such proposals given that, in general, they
are not easily portable. Moreover, it is necessary to notice
that the proposed benchmarks are not targeted to measure
cache memory effects in real-time systems since they do
not cause preemptions[20].

The 26 tasks sets used in this work come from [10]. The
code for each task is synthetic; it does nothing useful but it
has a mix of instructions such that it is easy to automatically
generate different programs, which is adequate for the pur-
pose: each task may have streamlined code, single loops,
up to three nested loops, if-then-else constructs.

Table 1 summarises some characteristics of the task sets
and cache sizes employed for evaluation purposes.

4.1 Predictability analysis

To verify how predictable the proposed memory hierar-
chy is, the GA estimated response time of every task in the
task set,RLSMe, was compared with the corresponding re-
sponse time obtained through the simulationRLSMs.

However, instead of using the individual response times
for each task,τi, in every task set, Processor Utilisation, a
measure that involves the whole TS will be used to illustrate
the results in a more compact way:

U =

tasks∑
i=1

C′′
i

Ti

(11)

whereC′′
i

, the computation time ofτi includes all cache ef-
fects (intrinsic and extrinsic interference); i.e., it includes
the time required forτi to reload the cache after preemp-
tions:

C′′
i = Ri −

∑
∀ τj ∈hp(τi)

⌈
Ri

Tj

⌉
× C′

j (12)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

C
um

ul
at

iv
e

F
re

qu
en

cy

Overestimation in Predictability

40
%

30
%

20
%

10
%

 9
%

 8
%

 7
%

 6
%

 5
%

 4
%

 3
%

 2
%

 1
%

 0
%

6.8%

25.3%

dLC
LSM

Figure 3. Cumulative frequency curves for the
overestimation in predictability

whereRi is the WCRT forτi. SinceRi includes not just
the CRPD but also the execution time of those tasks with a
higher priority thanτi, it is necessary to deduct the execu-
tion time for those tasks.

Then, given the proposed memory hierarchy, the utili-
sation estimated by the GA (ULSMe), and the utilisation
obtained through the simulation (ULSMs), the overestima-
tion in predictability,Ω, is given byΩ = ULSMe/ULSMs.
Figure 3 presents the cumulative frequencies for the over-
estimation when using the proposed memory hierarchy and
the dynamic use of locking cache. Cumulative frequencies
represent the number of responses in the data set falling into
that class or a lower class [11].

The results verify that the proposed memory hierarchy is
predictable:

• For every task in the whole set of tasks (676), the es-
timated response time is always larger than the simu-
lated one (RLSMe > RLSMs).

• In the same vein, for every task set, the estimated util-
isation is always larger than the one obtained through
the simulation (ULSMe > ULSMs);

• Furthermore, as can be seen in Figure 3, the proposed
memory hierarchy (LSM) provides better predictabil-
ity than that obtained with the dynamic use of locking
cache (dLC). It can be observed that when using the
proposed memory hierarchy, the overestimation in util-
isation is greater than or equal to 5% in less than 7%
of the cases. On the other hand, when employing the
locking cache in a dynamic way, the overestimation in
utilisation is greater than or equal to 5% in around 25%
of the cases.

82

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

C
um

ul
at

iv
e

F
re

qu
en

cy

Utilisation Ratio

(0
.0

-0
.1

)

[0
.1

-0
.2

)

[0
.2

-0
.3

)

[0
.3

-0
.4

)

[0
.4

-0
.5

)

[0
.5

-0
.6

)

[0
.6

-0
.7

)

[0
.7

-0
.8

)

[0
.8

-0
.9

)

[0
.9

-1
.0

)

[1
.0

-1
.1

)

[1
.1

-1
.2

)

[1
.2

-1
.3

)

[1
.3

-1
.4

)

[1
.4

-1
.5

)

[1
.5

-∞
)

33.33%

∆sLC
∆dLC
∆LSM

Figure 4. Cumulative frequency curves for the
utilisation ratios

4.2 Performance evaluation

Although the effects of using the proposed memory hi-
erarchy can be safely incorporated into the schedulability
analysis, the performance advantages obtained from using
the proposed memory hierarchy should be analysed.

Since a higher cache hit ratio does not necessarily guar-
antees that every task in the task set will satisfy its deadline,
the approach used in this work to measure the quality of the
solution is to use Processor Utilisation. The lower the pro-
cessor utilisation, the better, since this means that the task
set demands less CPU time and thus other tasks might be in-
cluded in the task set while the system remains schedulable
(i.e., all tasks executing on time).

Estimated Processor Utilisations for the system with an
LSM (ULSMe), the system with an LC used in a static man-
ner (UsLCe), and the system with an LC used in a dynamic
manner (UdLCe), were calculated by using the same GA for
block selection and the appropriate I-cache refill penalty.

Afterwards, the different utilisations were normalised
against the utilisation obtained when simulating the system
with a conventional cache,UCs, to obtain the Utilisation
Ratios (∆UX = UXe/UCs, whereX is one ofLSM , dLC ,
sLC).

Figure 4 shows that:

• In less than 34% of the cases,∆ULSM > 1; i.e.,
ULSMe > UCs, and hence, the proposed memory hi-
erarchy brings about the same or better processor util-
isation than that obtained when using a conventional
cache in around 66% of the cases;

• In every range,∆ULSM < ∆UdLC < ∆UsLC and
hence, the proposed memory hierarchy brings better
processor utilisation than using a locking cache in a

dynamic manner; moreover, in the zone with losses
(range[0, 1.0)), the proposed memory hierarchy pro-
vides lower losses and in the zone with gains (range
(1.0,∞)), the proposed memory hierarchy provides
higher gains.

Furthermore, a statistical analysis of three null hypothe-
sis tests (t-test, sign test, and signed rank test) was done to
corroborate that∆ULSM − ∆UdLC < 0 (i.e., that the pro-
posed memory hierarchy provides a better Processor Utili-
sation than the dynamic use of locking cache). The first one
establishes whether the mean is zero or not; the remaining
two tests allow to determine whether the median is zero or
not. The sign test is based on counting the number of val-
ues above and below the hypothesized median, while the
signed rank test is based on comparing the average ranks of
values above and below the hypothesized median. All of
the three tests revealed that∆ULSM < ∆UdLC at the 95%
confidence level.

5 Concluding remarks

By virtue of including the LSM, any I-cache is trans-
formed into a virtual locking I-cache, independently of its
size, associativity and block size, the three main organisa-
tion parameters in a cache memory. In addition, parameters
like I-cache replacement policy are irrelevant, provided that
the algorithm used to select I-cache contents guarantees that
there will be no conflict misses.

Results show that the proposed memory hierarchy is pre-
dictable and simple to analyse. Moreover, when compared
to dynamic use of locking cache, it offers (i) a lower over-
estimation in predictability; and (ii) a higher performance.
Finally, when compared to a conventional cache, in many
cases the proposed memory hierarchy performs better or
very close to it.

On the other hand, the proposed memory hierarchy does
not needs explicit management of the memory hierarchy
at run-time, while both scratchpad memories and lock-
ing cache memories, do. Moreover, the use of scratchpad
memories requires explicit modifications in the application
code’s control flow.

In short, the memory assist is versatile in its operational
aspects, yet it uses generic components; it does not cause
any extra overheads to the system; its impact on system
programming is negligible; and, it may be embedded in
System-on-a-Programmable-Chip designs targeted to cur-
rent FPGAs, while contributing in a significant way to de-
terminism and performance improvements with respect to
dynamic use of a locking I-cache.

All of these advantages are obtained at a fraction of
the cost of the original system, thus paving the way to
widespread use in realistic real-time systems.

83

References

[1] Alt M., Ferdinand C., Martin F., and Wilhelm R. Cache
behavior prediction by abstract interpretation.Lecture Notes
in Computer Science (LNCS), 1145, Sept. 1996.

[2] Arnaud A. and Puaut I. Dynamic instruction cache locking
in hard real-time Systems. InProc. of the 14th International
Conference onReal-Time and Network Systems (RTNS’06),
pages 179–188, May 2006.

[3] Jacob B. L. and Bhattacharyya S. S. Real-time memory
management: Compile-time techniques and run-time mech-
anisms that enable the use of caches in real-time systems.
Technical report, Institute for Advanced Computer Studies,
University of Maryland at College Park, USA, Sept. 2000.

[4] Jain P., Devadas S., Engels D. W., and Rudolph L. Software-
assisted cache replacement mechanisms for embedded sys-
tems. InProc. of the International Conference on Computer-
Aided Design (ICCAD), Nov. 2001.

[5] Kirk D. B. SMART (Strategic Memory Allocation for Real-
Time) cache design. InProc. of the 10th IEEE Real-Time
Systems Symposium, pages 229–237, Dec. 1989.

[6] Li Y.-T. S., Malik S., and Wolfe A. Cache modeling for
real-time software: Beyond direct mapped instruction cache.
In Proc. of the 17th IEEE Real-Time Systems Symposium
(RTSS’96), pages 254–263, Dec. 1996.

[7] Lundqvist T. and Stenstrom P. An integrated path and timing
analysis method based on cycle-level symbolic execution.
Real-Time Systems, 17(2–3):183–207, Nov. 1999.

[8] Martí Campoy A., Pérez Jiménez A., Perles Ivars A., and
Busquets Mataix J. V. Using genetic algorithms in content
selection for locking-caches. InProc. of the IASTED In-
ternational Symposia Applied Informatics, pages 271–276.
Acta Press, Feb. 2001.

[9] Martí Campoy A., Puaut I., Perles Ivars A., and Busquets
Mataix J. V. Cache contents selection for statically-locked
instruction caches: an algorithm comparison. InProc.
of the 17th Euromicro Conference on Real-Time Systems
(ECRTS’05), pages 49–56, July 2005.

[10] Martí Campoy A., Tamura E., Sáez S., Rodríguez F., and
Busquets-Mataix J. V. On using locking caches in embedded
real-time systems. InProc. of the 2nd International Con-
ference on Embedded Software and Systems (ICESS-2005).
Lecture Notes in Computer Science (LNCS) vol. 3820, pages
150–159, Dec. 2005.

[11] G. McPherson.Applying and Interpreting Statistics: A Com-
prehensive Guide. Springer Texts in Statistics. Springer-
Verlag New York, Inc., second edition, 2001.

[12] Mueller F. Compiler support for software-based cache par-
titioning. In LCTES’95: Proc. of the ACM SIGPLAN 1995
workshop on Languages, Compilers, & Tools for real-time
Systems, pages 125–133, June 1995.

[13] Mueller F. Timing analysis for instruction caches.Real-Time
Systems, 18(2):217–247, May 2000.

[14] Muller H., May D., Irwin J., and Page D. Novel caches
for predictable computing. Technical Report CSTR-98-
011, Department of Computer Science, University of Bris-
tol, Oct. 1998.

[15] D. Patterson and J. Hennessy.Computer Organization and
Design: The Hardware/Software Interface. The Morgan
Kaufmann Series in Computer Architecture and Design.
Morgan Kaufmann, third edition, 2 Aug. 2004.

[16] Petrank E. and Rawitz D. The hardness of cache con-
scious data placement. InProc. of the 29th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages, pages 101–112, 2002.

[17] Puaut I. WCET-centric software-controlled instruction
caches for hard real-time systems. InProc. of the 18th
Euromicro Conference on Real-Time Systems (ECRTS’06),
pages 217–226, July 2006.

[18] Puaut I. and Decotigny D. Low-complexity algorithms for
static cache locking in multitasking hard real-time systems.
In Proc. of the 23rd IEEE Real-Time Systems Symposium
(RTSS’02), pages 114–123, Dec. 2002.

[19] Sasinowski J. E. and Strosnider J. K. A dynamic-
programming algorithm for cache memory partitioning for
real-time systems. IEEE Transactions on Computers,
42(8):997–1001, Aug. 1993.

[20] Sebek F. Measuring cache related pre-emption delay on a
multiprocessor real-time system. InIEE/IEEE Workshop on
Real-Time Embedded Systems (RTES’01), Dec. 2001.

[21] Shaw A. Reasoning about time in higher-level language
software. IEEE Transactions on Software Engineering,
15(7):875–889, July 1989.

[22] Staschulat J., Schliecker S., and Ernst R. Scheduling anal-
ysis of real-time systems with precise modeling of cache
related preemption delay. InProc. of the 17th Euromicro
Conference on Real-Time Systems (ECRTS’05), pages 41–
48, July 2005.

[23] Tamura E., Rodríguez F., Busquets-Mataix J. V., and Martí
Campoy A. High performance memory architectures with
dynamic locking cache for real-time systems. InProc. of
the Work-In-Progress Session of the 16th Euromicro Con-
ference on Real-Time Systems (WIP ECRTS’04). TR-UNL-
CSE-2004-0010, Department of Computer Science and En-
gineering. University of Nebraska-Lincoln, pages 1–4, June
2004.

[24] Tan Y. and Mooney V. A prioritized cache for multi-tasking
real-time systems. InProc. of the 11th Workshop on Synthe-
sis And System Integration of Mixed Information technolo-
gies (SASIMI’03), pages 168–175, Apr. 2003.

[25] Vera X., Lisper B., and Xue J. Data cache locking for higher
program predictability. InProc. of the 2003 ACM SIGMET-
RICS International Conference on Measurement and Mod-
eling of Computer Systems, pages 272–282, June 2003.

[26] Wehmeyer L. and Marwedel P. Influence of onchip scratch-
pad memories on WCET prediction. InProc. of the
4th International Workshop on Worst-Case Execution Time
(WCET) Analysis, pages 29–32, June 2004.

[27] Wehmeyer L. and Marwedel P. Influence of memory hi-
erarchies on predictability for time constrained embedded
software. InProc. of the Design, Automation and Test in
Europe Conference and Exhibition (DATE’05), pages 600–
605, Mar. 2005.

[28] Wolfe A. Software-based cache partitioning for real-time
applications. InProc. of the 3rd Workshop on Responsive
Computer Systems, Sept. 1993.

84

On the sensitivity of WCET estimates
to the variability of basic blocks execution times

Hugues Casséa, Christine Rochangea, Pascal Sainrata,b

aInstitut de Recherche en Informatique de Toulouse, bHiPEAC NoE
Université Toulouse III – Paul Sabatier

31062 Toulouse cedex 9, France
{casse, rochange, sainrat}@irit.fr

Abstract

The Implicit Path Enumeration Technique (IPET) is a
very popular approach to evaluate the Worst-Case
Execution Time (WCET) of hard real-time applications.
It computes the execution time of an execution path as
the sum of the execution times of the basic blocks
weighted by their respective execution counts. Several
techniques to estimate the execution time of a block
taking into account every possible prefix path have been
proposed: the maximum value of the block execution
time is then used for IPET calculation. The first purpose
of this paper is to analyze the sensitivity of block
execution times to prefix paths. Then we show how
expanding the IPET model to consider the execution
times related to different contexts for each basic block
improves the accuracy of WCET estimates.

1. Introduction

In hard real-time systems, the Worst-Case Execution
Times (WCETs) of critical tasks have to be estimated as
accurately as possible either to analyze the schedulability
or to determine a static schedule that makes it possible
for every task to meet its deadline. Several approaches to
WCET estimation have been investigated these last
fifteen years and the problem has been shown to be more
and more complex as the architecture of processors is
enhanced to provide better performance. Researchers
recommend the use of simple hardware but even so the
tendency is to consider high-performance processors in
order to fit increasing performance requirements: the
tasks to be executed are not necessarily more complex
but, in the context of some approaches like IMA
(Integrated Modular Avionics) or AUTOSAR
(Automotive Open System ARchitecture), a single
processing node should support several tasks.

Static methods for WCET analysis are usually
preferred to measurements because they get round the
need of examining every possible execution path. They
roughly consist in adding the execution times of the

basic blocks along execution paths. To be safe, they
must ensure that the execution times of basic blocks are
not under-estimated. When considering modern
processors, this requires to include the impact of the
context (i.e. the execution history) when analyzing the
pipelined execution of a block. The result is the
maximum execution time (or cost) of the block and is
used to compute the WCET of the whole program.

Our purpose, in this paper, is to show that the
execution time of a block depends sharply on the context
(prefix path) and that the whole WCET would be
estimated more tightly if different execution times (for
different contexts) were considered for each basic block.
In a second step, we introduce context-sensible data into
the IPET model. Experimental results show that this
helps in getting more accurate WCET estimates. The
sensitivity of these results to architectural parameters
(scalar/superscalar pipeline, static/dynamic instruction
scheduling, size of the instruction window) is also
investigated.

The paper is organized as follows. Section 2 provides

some background information on timing analysis and
pipeline modeling. In Section 3, we discuss experimental
results that show the sensitivity to the context of block
timings (experimental conditions are detailed in the
Appendix). The benefits (in terms of tightness of WCET
estimates) of extending the IPET model to include
context-related block execution times are shown in
Section 4. Section 5 concludes the paper.

2. Background: pipeline modeling for
WCET estimation

Modern processors cut the processing of an
instruction into several steps that are handled in a
pipelined manner: in the absence of stalls, instruction i
processes through step s in the same time as instruction
i-1 processes through step s-1 (Figure 1 shows a typical
processor pipeline). This means that, while the execution
time of a single instruction is the sum of the latencies of
all steps, the execution time of a sequence of instructions

85

is shorter than the sum of their individual execution
times due to the overlap in the pipeline. In theory, the
execution time of a sequence of N instructions in a
P-stage pipeline (each stage having a single-cycle
latency) should be P+N-1. In practice, the effective
execution time would be longer due to stalls that result
from resource conflicts and inter-instruction data
dependencies.

Figure 1. A typical 4-stage processor pipeline.

As said before, static WCET evaluation techniques
compute the execution time of a program from the
individual execution times of its basic blocks. To
estimate the execution time of a basic block tightly, one
must take into account the overlap of instructions in the
pipeline. When a basic block is fetched in a pipelined
processor, the pipeline is generally not empty and still
contains instructions from the previous block(s). Then,
two kind of effects should be taken into account in order
to get an accurate WCET estimate. First, the instructions
of the previous blocks use some resources and might be
responsible for delaying the processing of the evaluated
basic block. This is what we call the sensitivity to the
context. Second, the blocks that are simultaneously
present in the pipeline overlap, which reduces the
execution time of the sequence.

In this section, we will review the various approaches
that have been proposed to estimate the execution times
of basic blocks in a pipeline. We will first show how the
possible interferences between basic blocks can be
accounted for while computing the WCET of a program.
Then, we will explain how the behavior of a pipelined
processor can be modeled and how the interferences
between basic blocks can be evaluated.

2.1. Execution times and interferences between basic
blocks

In this section, we will show how it is possible to
evaluate the contribution of a basic block to the
execution time of an execution path it belongs to.

A conservative approach to get an upper bound of this
contribution consists in ignoring the overlap of
successive blocks in the pipeline and in considering the
full execution time of the block in an empty pipeline (i.e.
the time between the first instruction is fetched and the
last instruction is committed). Then the execution time
of the path is computed as the sum of the individual
execution times of its blocks. This is illustrated in
Figure 2. While being safe, this approach clearly
overestimates the execution time.

cycles

pipeline
stages

block i block i+1 block i+2

Figure 2. Conservative model to evaluate
the execution time of a sequence of
blocks.

To take into account the overlap of successive blocks
in the pipeline, every possible initial context should be
considered to derive time estimates for a given basic
block. However, not only the overlap but also the
possible block interferences must be analyzed.
According to the pipeline characteristics, these
interferences might lengthen or shorten the block
execution time (in a dynamically-scheduled processor,
timing anomalies can reduce or increase the final
execution time [13]).

Assuming that the interferences can be properly
analyzed (possible approaches will be reviewed in the
next section), Figure 3 shows how they can be
expressed. In this Figure, tB is the execution time of
block B when it is executed in an empty pipeline while
tB/A is the execution time of B when it is executed after A.
The cost cB/A is the contribution of block B to the
execution time of the sequence [A-B]. The execution time
of sequence [A-B] can be written as:

[] A B / AA Bt t c− = +

A

B

tA
tB

cB/A

tB/A

tA-B

Figure 3. Expressing block interferences
and overlapping.

Initially, users of the IPET method [11] to estimate
the Worst-Case Execution Time of a program in a
pipelined processor did not refer to the cost of blocks but
to pipeline gains. The execution time of sequence [A-B]
was expressed as:

[] []A BA B A Bt t t− −= + + δ

which is the same (cB/A stands for []B A Bt −+ δ).

Early implementations of the IPET method did only

consider 2-block sequences to determine the costs of
blocks. In 2002, Engblom showed that this approach was
no longer valid when considering modern processors [4].

86

To improve performance, modern processors often
implement some mechanisms that might be a source of
interferences between distant basic blocks (not only
adjacent ones). Such features include superscalar
execution, dynamic instruction scheduling, long-latency
functional units, etc. Figure 4 illustrates how
interferences between distant blocks may impact the
execution time of a sequence. The execution time of
sequence [A-B-C] should be computed as:

[] []A B / AA B C C / A Bt t c c− − −= + +

where []C / A Bc − might be shorter than, equal to or

longer than C / Bc due to the possible interferences from
block A.

A

B

C

tC

cC/B

tB

tB-C

tA-B-C

cB/A cC/A-B

Figure 4. Long timing effects.

The main difficulty comes from the fact that the span
of block interferences cannot be bounded, which means
that the cost of a basic block on an execution path might
be impacted by any other block on the path. In practice,
the cost of a block only depends on the few preceding
blocks but, for the sake of safety, a possible effect from
very distant blocks must be imagined. Existing
approaches to take all possible contexts into account to
evaluate the cost of a block will be presented in the next
section.

2.2. Pipeline model
Early contributions to pipeline modeling made use of

reservation tables to find out how every instruction of a
basic block would process through the pipeline [10][8].
A reservation table is a simple means to represent the use
of the processor internal resources (pipeline stages,
functional units, etc.) but its limited semantics is not
sufficient to express the behavior of superscalar and
dynamically-scheduled processors.

Cycle-level simulators (e.g. SimpleScalar [1]) make it
possible to accurately determine the execution time of a
sequence of blocks and the cost of each block in the
sequence. Unfortunately, the number of possible prefix
paths for a basic block in a real-life application is
generally huge and it is not possible to simulate each of
them. Then it is possible to determine the cost of a block
for a set of short possible prefix paths, but not the
maximum cost since all the possible prefixes cannot be
considered.

When all the possible prefix paths cannot be
considered one by one, the solution comes from static
analysis techniques. The aiT tool of the AbsInt
company [1] uses abstract interpretation to define an
abstract pipeline state at the beginning of each basic
block that includes every possible concrete
state [15][16]. It then simulates the execution of the
block on this input abstract pipeline state to determine an
output abstract state which is propagated to the
successors of the block. The tool iterates until a fix point
has been found. Then execution times of basic blocks
can be derived and included in the ILP (IPET) model to
estimate the WCET of the whole program.

Recently, Li et al. [12] introduced execution graphs
as a means for estimating the worst-case costs of basic
blocks. An execution graph expresses precedence
constraints between the processing steps of the
instructions of a block and computes earliest and latest
values of their respective finish times. Some preceding
instructions (prologue) can be included in the graph to
take the context into account and very conservative
hypotheses are made on earlier instructions so that the
computed cost is guaranteed to be an upper bound of the
real possible costs, whatever the prefix path is. Again,
this worst-case cost is used to compute the whole
program WCET.

The differences between these two methods reside in
the accuracy of the contexts considered for each basic
block. With abstract interpretation, the input abstract
pipeline state of a block results from the evaluation of
effective prefix paths. On the contrary, the execution-
graph method examines real prefixes until a given depth
(which equals the instruction-window size) and
considers that the previous instructions can be any. As a
consequence, the overestimation of the costs is higher,
which is the price of shorter analysis times.

3. On the sensitivity of block timings to the
context

The experimental results reported in this paper were
collected in the conditions detailed in the Appendix.

As explained in the previous section, static methods
for pipeline modelling derive the worst-case cost of basic
blocks. Our purpose here is to analyze the variability of
the cost when different contexts (i.e. the prefix paths) are
considered.

3.1. Context-related costs
For each basic block, we have examined the different

costs when d-block deep contexts are considered, with
0 ≤ d ≤ 4. In the rest of this paper, we will refer to the
cost of a block evaluated by considering a d-block long
prefix of the block as a d-cost.

87

At each depth level, the cost of a block would be
estimated conservatively by a static analysis approach as
the ones described in section 2.2. This estimate would be
greater than or equal to the maximum of the costs
evaluated at the next deeper level. In this work, we have
evaluated all the possible costs of each block considering
all its possible 8-block long prefixes (see the Appendix
for details about the methodology). Then i-cost
(0 ≤ i ≤ 4) of the block was computed as the maximum
value of the corresponding (i+1)-costs.

To illustrate this, Table 1 lists the different costs of
block A in the example CFG given in Figure 5 (in this
example, the length of contexts is limited to three
blocks). Block A has four possible 3-block contexts
([D1-C1-B1], [D2-C2-B1], [D3-C3-B2], [D4-C3-B2]). In the
table, the third column shows the number of different
paths represented by each cost. For example,

[]1 1 1A / D C Bc − − is the maximum value of the costs of A

observed in the two possible paths [F1-E1-D1-C1-B1-A] and
[F1-D1-C1-B1-A]. On a mean, each 3-cost represents 1.5
real cost values. We assume that paths [F1-D3-C3-B2-A]
and [F1-D4-C3-B2-A] have the same cost value for block A.
Then []3 2A / C Bc − represents two paths but a single cost

value. At the end, cA represents five different values and
is assigned the highest of them. Using cA to compute the
program WCET (instead of distinguishing between

1A / Bc and
2A / Bc) is a source of overestimation.

Context
depth Costs

represented
paths/values

mean #
represented

values

[]1 1 1A / D C Bc − − 2 / 2

[]2 1 1A / D C Bc − − 2 / 2

[]3 3 2A / D C Bc − − 1 / 1
3

[]4 3 2A / D C Bc − − 1 / 1

1.5

[]1 1A / C Bc − 2 / 2

[]2 1A / C Bc − 2 / 2 2

[]3 2A / C Bc − 2 / 1

1.67

1A / Bc 4 / 4
1

2A / Bc 2 / 1
2.5

0 Ac 6 / 5 5

Table 1. Context depth and number of
represented cost values (see Figure 5)

3.2. Variability of block execution times
For each context depth d, we have recorded the mean

number of different represented cost values over the set
B of basic blocks in the program (computed with the

formula below, where Pb(d) is the set of possible d-block
long prefixes of block b and Ap is the set of possible
paths before prefix p).

[]
()

1 1 1
−

∈ ∈ ∈

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑ ∑ ∑
pb d

b / a p
pb B p P a A

c
B P A

A

B1 B2

C1 C2 C3

D1 D2 D3 D4

E1 E1

F1

Figure 5. Example CFG.

In this section, we consider the 2-way superscalar
processor configuration given in the Appendix.
Results for each benchmark are given in Figure 6. As
expected, the mean number of represented cost values
decreases when deeper contexts are considered. For most
of the applications, the variability of costs is noticeable.
The case of jfdctint is interesting because each of its
blocks has a constant cost value whatever the context
depth is. This program contains three loops executed in
sequence, and each loop has a long (up to 89
instructions) single-block body. These three blocks are
the only ones to have two possible contexts and, since
they are long, the impact of these contexts is not visible
at the end of the blocks.

Considering the maximum of a set of possible costs
values instead of each cost value individually might be
detrimental to the accuracy of WCET estimates if the
values differ noticeably. Table 2 gives additional
information about the maximum number of represented
cost values (observed over the set of blocks) and about
the mean and maximum gap between the different cost
values of a block. We observe that several benchmarks
(fft1, fir, lms, minver, qurt) have at least one block
for which the 0-cost represents more than 7 values.
Moreover, the gap between cost values can be as long as
10 cycles (minver). This is likely to impact the whole
WCET since a block that has many different timings
probably belongs to a loop and might be executed many
times on the worst-case path. Note that the maximum
number of represented values and the maximum gap
between them remains large for 4-costs (even if their
means is lower). This indicates that some blocks are
impacted by long timing effects.

88

1

1,2

1,4

1,6

1,8

2

2,2

2,4

cr
c

ff
t1

ff
t1

k fir

jf
d
ct
in
t

lm
s

lu
d
cm

p

m
at

m
u
l

m
in
ve

r

qu
rt

se
le
ct

M
E
A
N

0-costs 1-costs 2-costs 3-costs 4-costs

Figure 6. Variability of the costs of blocks (2-way superscalar processor)

 0-costs 4-costs
benchmarks max. # values mean gap max. gap max. # values mean gap max. gap
crc 3 0.71 3 3 0.43 3

fft1 8 1.16 8 6 0.23 5

fft1k 5 1.02 5 4 0.22 4

fir 7 0.88 7 6 0.16 8

jfdctint 2 0.22 1 1 0 0

lms 7 1.09 8 6 0.2 7

ludcmp 6 1.3 7 4 0.3 4

matmul 3 0.67 3 2 0.22 1

minver 11 1.35 10 6 0.39 10

qurt 7 1.16 8 6 0.25 7

select 4 0.64 4 3 0.41 3

Table 2. Variation of the cost values represented by each 0-cost and 4-cost (2-way processor)

4. Context-sensitivity of blocks timings and
WCET estimates accuracy

4.1. Including context-related timings in the IPET
model

As said before, the execution time of an execution
path is usually computed as:

b b
b B

T x .c
∈

= ∑

where B is the set of blocks along the paths, xb is the
execution count of block b in the path and cb is the
maximum contribution of block b to the execution time
(cb is evaluated taking any possible context into
account).

This estimation can be refined by using deeper
costs. With depth d, xb.cb can be expanded into:

b(d)

b b b / p b / p
p P

x .c x .c
∈

= ∑

where Pb(d) is the set of d-block prefixes of block b.
As shown in earlier work by Ermedahl [7], a set of

constraints must be added to the IPET model to bound
the execution count of each prefix path. For each block,
and for each path p in the set P of the possible prefixes

of the block, with p being the sequence of blocks [p0-
p1-...-pn-1], the constraints to be added are:

[]1
0 1

b(d)

i i

b b / p
p P

b / p p p

x x

i, i n , x x
+

∈

−

=

∀ ≤ < − ≤

∑

where []1i ip px
+− is the execution count of sequence

[pi-pi+1].

4.2. Experimental results: improvement of WCET
estimates

Figure 7 shows how the WCET can be improved
when d-costs are used (the gain is computed against the
WCET estimated with 0-costs). On a mean, the WCET
estimation is improved by 5.5% with 1-costs, by 7%
with 2-costs, by 10% with 3-costs and by 11% with
4-costs. Some of the benchmarks (jfdctint, crc,
fft1, select) do not exhibit noticeable
improvements. This was expected for jfdctint since
the number of contexts is very limited. Other
benchmarks (fftk1, ludcmp, matmul, minver,
qurt) benefit from higher gains.

89

-30%

-25%

-20%

-15%

-10%

-5%

0%

cr
c

ff
t1

ff
t1

k

fi
r

jf
d
ct

in
t

lm
s

lu
d
cm

p

m
at

m
u
l

m
in

ve
r

q
u
rt

se
le

ct

0-costs 1-costs 2-costs 3-costs 4-costs

Figure 7. Improvement of the estimated WCET with deeper analysis (2-way superscalar).

4.3. Impact of the architecture parameters on the
WCET improvement

In this section, we analyze the impact of the
processor parameters on the WCET improvement
obtained by using 4-costs. Figure 8 shows how the
gains (against a WCET estimated with 0-costs) vary
with the pipeline width (with out-of-order execution).
It can be observed that very small gains are to be
expected from considering deeper contexts for a scalar
processor (only 2.3% on a mean). But the gains
increase rapidly with the pipeline width. For several
benchmarks, the improvement is higher than 20% for a
4-way processor (up to 43% for ludcmp) which is
considerable. For these benchmarks, we have recorded
up to 15-cycle gaps between the cost values
represented by some 0-costs. This means that the
execution time of a block is very dependent on the
execution history. This is not surprising since a large
pipeline with dynamic instruction scheduling can
produce a large number of instructions interleaves,
which generates inter-block effects.

In Figure 9, we observe the impact of the window
size on the results. Measurements were made for a
4-way out-of-order processor, with different reorder
buffer sizes, and the WCET was computed with 0-costs
and 4-costs (the diagram plots the improvement). For
most of the benchmarks, better gains are obtained when
the instruction window is deeper. This is not true for
matmul and select: they include some repeated small
loops that do not fit well in a small reorder buffer
(which generates many possible contexts for some
blocks). This is why they exhibit high gains with a
small instruction window.

Finally, we have considered in-order pipelines. The
results given in Figure 10 were obtained for a 4-way
processor with a 32-instruction window. As it could be
expected, it appears that taking deeper contexts into
account does only slightly improve WCET estimates
for a statically-scheduled processor. This is due to the
fact that the number of possible instruction interleaves

in the pipeline is smaller, which limits the number of
possible cost values for a basic block.

5. Conclusion

Estimating the WCET of a program using a static
approach requires evaluating the individual execution
times of basic blocks. When executing on a high-
performance processor, the execution time of a basic
block is likely to depend on the execution history (also
referred to as the context). Some techniques to take
into account all the possible contexts have been
proposed and they provide the maximum execution
time (or cost) of each basic block.

In this paper, we have presented some experimental
results that show how much block execution times are
sensitive to the context. For most of the benchmarks,
some blocks have many different cost values related to
different possible prefix paths (as many as 11 values)
and the gap between the minimum and maximum value
is large (up to 10 cycles). Considering the maximum
value instead of distinguishing each of them is likely to
lead to a large over-estimation of the WCET.

We have shown how taking context-related
execution times could improve the tightness of WCET
estimates. Experimental results prove that considering
4-block contexts tightens the WCET estimates by up to
25% for a 2-way superscalar out-of-order processor
(11% on average) and up to 43% (18% on average) for
a 4-way processor. As far as we know, most of the
existing tools (e.g. aiT) mainly consider 1-costs (even
if they might use loop unrolling techniques to take one
part of the context-sensitivity into account. Our results
show that considering deeper contexts is beneficial for
most of the applications. Additional results show that
the gain is slightly lower when the instruction window
(reorder buffer) is less deep (4-way out-of-order
processor) and that is negligible when instructions are
scheduled in order.

90

-45%

-40%

-35%

-30%

-25%

-20%

-15%

-10%

-5%

0%

cr
c

ff
t1

ff
t1

k

fi
r

jf
d

ct
in

t

lm
s

lu
d

cm
p

m
a

tm
u

l

m
in

v
e

r

q
u

rt

se
le

ct

1-way 2-way 4-way

Figure 8. Improvement of the estimated WCET as a function of the pipeline width.

-50%

-45%

-40%

-35%

-30%

-25%

-20%

-15%

-10%

-5%

0%

cr
c

ff
t1

ff
t1

k

fi
r

jf
d
ct

in
t

lm
s

lu
d
cm

p

m
a
tm

u
l

m
in

v
e
r

q
u
rt

se
le

ct

16-inst 32-inst 64-inst

Figure 9. Impact of the ROB size on the WCET improvement with 4-costs (4-way out-of-order).

-45%

-40%

-35%

-30%

-25%

-20%

-15%

-10%

-5%

0%

cr
c

ff
t1

ff
t1

k

fi
r

jf
d
ct

in
t

lm
s

lu
dc

m
p

m
a
tm

u
l

m
in

v
er

q
u
rt

se
le

ct

in-order out-of-order

Figure 10. Impact of the scheduling policy on the WCET improvement with 4-costs (4-way
superscalar, 32-inst. ROB)

References

[1] http://www.absint.com
[2] T. Austin, E. Larson, D. Ernst, SimpleScalar: An

Infrastructure for Computer System Modeling,
IEEE Computer, 35(2), 2002.

[3] H. Cassé, P. Sainrat, OTAWA, a framework for
experimenting WCET computations, 3rd
European Cong. on Embedded Real-Time
Software, 2006.

[4] J. Engblom, Processor Pipelines and and Static
Worst-Case Execution Time Analysis, Ph.D.
thesis, University of Uppsala, 2002.

[5] J. Engblom, A. Ermedahl, Pipeline Timing
Analysis using a Trace-Driven Simulator, 6th
Int’l Conference on Real-Time Computing
Systems and Applications (RTCSA), 1999.

[6] J. Engblom, A. Ermedahl, M. Sjödin,
J. Gustafsson, H. Hansson, Towards Industry-
Strength Worst Case Execution Time Analysis,
ASTEC 99/02 Report, 1999.

[7] A. Ermedahl, A Modular Tool Architecture for
Worst-Case Execution Time Analysis, Ph.D.
thesis, Uppsala University, 2003.

[8] C. Healy, R. Arnold, F. Mueller, D. Whalley,
M. Harmon, Bounding pipeline and instruction

91

cache performance, IEEE Transactions on
Computers 48(1), 1999.

[9] Y. Hur, Y.H. Bae, S.-S. Lim, S.-K. Kim, B.-D.
Rhee, S.-L. Min, C.Y. Park, H. Shin, C.S. Kim,
Worst case timing analysis of RISC processors:
R3000/R3010 case study, IEEE Real-Time
Systems Symposium, 1995.

[10] S.-S. Lim, Y. H. Bae, G. T. Jang, B.-D. Rhee, S.
L. Min, C. Y. Park, H. Shin, K. Park, C. S. Kim,
An accurate worst case timing analysis technique
for RISC processors, Real-Time Systems
Symposium, 1994.

[11] Y.-T. S. Li, S. Malik, Performance Analysis of
Embedded Software using Implicit Path
Enumeration, Workshop on Languages,
Compilers, and Tools for Real-time Systems,
1995.

[12] X. Li, A. Roychoudhury, T. Mitra, Modeling out-
of-order processors for WCET analysis, Real-
Time Systems, 34(3), 2006

[13] T. Lundqvist, P. Stenström, Timing Anomalies in
Dynamically Scheduled Microprocessors, IEEE
Real-Time Systems Symposium (RTSS), 1999.

[14] http://archi.snu.ac.kr/realtime/benchmark/
[15] S. Thesing, Safe and Precise WCET

Determination by Abstract Interpretation of
Pipeline Models, PhD thesis, Universität des
Saarlandes, 2004.

[16] H. Theiling, C. Ferdinand, Combining Abstract
Interpretation and ILP for Microarchitecture
Modelling and Program Path Analysis, 19th
IEEE Real-Time Systems Symposium (RTSS),
1998.

Appendix

The experiments reported in this paper were carried
out using the OTAWA framework [3]. OTAWA1
implements an infrastructure to support several kinds
of analyses that can be combined to estimate the
WCET of an application. In this work, we used a basic
flow analyzer (it builds the CFG from the object code
and retrieves user-specified flow facts), a cycle-level
simulator (it estimates the execution times of
sequences of blocks) and a module that generates the
constraints for WCET estimation with IPET and calls
an ILP solver.

Evaluating the costs of basic blocks from the
simulation of sequences of limited length is
questionable since some long timing effects might not
be captured this way. However, as mentioned in
Section 2, block interferences do not span over more
than a few blocks in practice. Then, the costs
considered in this work cannot be guaranteed as

1 OTAWA is supported by the French Agence Nationale pour la

Recherche (MasCoTte project)

100%-safe but can be thought as very close to the real
costs.

The simulator models a pipelined processor and
accepts different parameters: pipeline width,
instruction-scheduling policy (in-order/out-of-order),
fetch queue and reorder buffer sizes, functional units
parameters (width, latency, pipeline). It includes
perfect caches (every access is a hit) and a perfect
branch predictor. The configurations used in this work
are summarized in Table 3. The simulator accepts
PowerPC object code as input.

 CONFIGURATIONS
 1-way 2-way 4-way
instruction scheduling out-of-order
fetch queue size 4 8 8
reorder buffer size 4 8 32
functional units latency
 integer ALU 1 1 2 2
 memory unit 2 1 1 1
 fp ALU 6 1 1 1
 multiply unit 3 1 1 1
 divide unit 15 1 1 1

Table 3. Processor configurations

The benchmarks come from the SNU-suite [14] and
are listed in Table 4. They were compiled to PowerPC
code using gcc with the -O0 optimization level option.

 #
blocks

mean
block
length

Function

crc 52 5
CRC (Cyclic
Redundancy Check)

fft1 151 7
FFT (Fast Fourier
Transform) using Cooly-
Turkey algorithm

fft1k 48 8
FFT (Fast Fourier
Transform) for 1K array
of complex numbers

fir 94 7
FIR filter with Gaussian
number generation

jfdctint 10 22
JPEG slow-but-accurate
integer implementation
of the forward DCT

lms 85 7
LMS adaptive signal
enhancement

ludcmp 47 6 LU decomposition
matmul 14 4 Matrix product
minver 75 5 Matrix inversion

qurt 77 7
Root computation of
quadratic equations

select 30 4
N-th largest number
selection

Table 4. Benchmarks

92

 RTNS’07 – Session 3

 Scheduling 1

93

94

Efficient computation of response time bounds under fixed-priority scheduling

Enrico Bini
Scuola Superiore Sant’Anna

Pisa, Italy
e.bini@sssup.it

Sanjoy K. Baruah
University of North Carolina

Chapel Hill, NC
baruah@cs.unc.edu

Abstract

All algorithms currently known for computing the re-
sponse time of tasks scheduled under fixed-priority schedul-
ing have run-time pseudo-polynomial in the representation
of the task system. We derive a formula that can be com-
puted in polynomial time for determining an upper bound
on response times; our upper bound on response time has
the added benefit of being continuous in the task system
parameters. We evaluate the effectiveness of our approxi-
mation by a series of simulations; these simulations reveal
some interesting properties of (exact) response time, which
give rise to an open question that we pose as a conjecture.

Finally, the proposed upper bound of the response time
can be used to test effectively the schedulablity of task sets
in time linear with the number of tasks.

1. Introduction

In many real-time systems specific jobs are expected to
complete by specified deadlines. Basically, two main cat-
egories of algorithms have been proposed for determining
the response times of tasks in DM-scheduled systems: Rate
Monotonic Analysis (RMA) [13] and Response Time Anal-
ysis (RTA) [10, 2].

RTA computes, for each task, theworst-case response
times— the maximum amount of time that may elapse be-
tween the instant that a job is released for execution and the
instant it completes execution. If, for all tasks, the response
time is shorter than the deadline, then the task set is feasible.
Instead, RMA searches, for each task, any instant earlier
than the deadline, large enough to accommodate the com-
putational requirement of the task itself and all the higher
priority tasks. If such an instant exists for all tasks then the
task set is feasible.

Both approaches are known to have pseudo-polynomial
worst-case time complexity, and it is currently unknown
whether the task set feasibility can be computed in time
polynomial in the representation of the task system.

Despite the pseudo-polynomial time complexity, both
RMA and RTA have very efficient implementations in prac-
tice that render them suitable for feasibility analysis of
Fixed Priority (FP) systems. However, these algorithms
may not be particularly well-suited for use in interactive
real-time system design environments. When using such
design environments, the system designer typically makes
a large number of calls to a feasibility-analysis algorithm
during a process of interactive system design and rapid sys-
tem prototyping, since proposed designs are modified ac-
cording to the feedback offered by the feasibility-analysis
algorithm (and other analysis techniques). In such scenar-
ios, a pseudo-polynomial algorithm for computing the task
set feasibility may be unacceptably slow; instead, it may be
acceptable to use a faster algorithm that provides an approx-
imate, rather than exact, analysis.

Moreover, there are some circumstances in the real-time
system design, such as in control systems [8] and in holistic
analysis [19], where it is required to know the response time
of the tasks, and not only the system feasibility provided
by RMA. For this reason in this paper, we propose an algo-
rithm for computing efficiently an approximate upper bound
of the response time. In addition to computation efficiency,
our algorithm has the benefit of representing the (bound on)
response time as a continuous function of the task system
parameters, thereby facilitating optimisation of system de-
sign in applications, such as some control systems, where
task parameters may be tweaked locally without causing
catastrophic changes to application semantics. (Response
time is not in general a continuous function of system pa-
rameters; hence, no exact algorithm for computing response
times can possibly make a similar guarantee.)

There are many scenarios in which efficient computation
of (exact or approximate) response times is desirable.

• In distributed systems, tasks may be activated after the
completion of some other task [22, 19]. In such cases it
is necessary to know the response time of the first task
in order to analyse the scheduling of the second. This
task model is calledtransaction model[19], and the
analysis is performed by means of theholistic analy-

95

sis [22].

• In control systems, the response time of a task measure
the delay between the instant where the input are read
from the sensors and the output are written to the actu-
ators. The performance of the control system depends
upon this value [8] hence the response time has a di-
rect impact on the system performance. Moreover, as
our provided bound of the response time is a differen-
tiable function, it is possible to estimate the effect of
the variation of any system parameter.

• Finally, when the relative deadline parameters are per-
mitted to be larger than the periods, current algorithms
for the exact computation of response time require the
evaluation of the response times of each and every job
within the busy period [12, 23]. The resulting com-
plexity may be unacceptably high, especially in all
those design environments where the response time
routine is largely invoked.

1.1. Related work

The problem of reducing the time complexity of feasi-
bility tests has been largely addressed by the real-time re-
search community. The Rate Monotonic Analysis, after the
first formulation by Lehoczky et al. [13], has been improved
by Manabe and Aoyagi [17] who reduced the number of
points where the time demand needs to be checked. Bini
and Buttazzo [4] proposed a method to trade complexity vs.
accuracy of the RMA feasibility tests.

The efforts in the simplification of the Response Time
Analysis has been even stronger, probably due to the greater
popularity of RTA. Sjödin and Hansson [21] proposed sev-
eral lower bounds to the response time so that the orig-
inal response time algorithm [10] could start further and
the time spent in computing the response time is reduced.
Bril [7] proposed a similar technique to reduce the time
complexity of the exact RTA. Starting from the idea of Al-
bers and Slomka [1], who developed an estimate of the de-
mand bound function for EDF scheduled tasks, Fisher and
Baruah [9] have derived a fully polynomial time approxi-
mation scheme (FPTAS) of the RTA. Very recently, Richard
and Goossens [20] have extended the task model of a pre-
vious FPTAS [9] to take into account release jitter. Finally,
Lu et al. [16] proposed a method to reduce the number of
iterations for finding the task response times.

The remainder of this paper is organised as follows. In
Section 2 we formally state our task model, and reduce the
problem of bounding the response time of each task in a task
system to a problem of bounding the total workload gener-
ated by the task system. In Section 3 we derive a bound
on the workload, which immediately yields the desired re-
sponse time bound. We describe a series of simulation ex-

periments in Section 4 for determining the “goodness” of
our upper bound. We conclude in Section 5 with a brief
summary of the main results presented in this paper.

2. The Response Time Bound

We assume that a real-time system is modelled as be-
ing comprised of a pre-specified numbern of independent
sporadictasks [18, 3]τ1, τ2, . . . , τn, executing upon a sin-
gle shared preemptive processor. Each sporadic taskτi is
characterised by a worst-case execution time (WCET)Ci;
a relative deadline parameterDi; and a period/ minimum
inter-arrival separation parameterTi. Notice that the dead-
lines are arbitrary, meaning that no particular relationship
is assumed betweenDi andTi. Each such task generates
an infinite sequence of jobs, each with execution require-
ment at mostCi and deadlineDi time-units after its ar-
rival, with the first job arriving at any time and subsequent
successive arrivals separated by at leastTi time units. We
assume that the system is scheduled using a fixed-priority
(FP) scheduling algorithm such as the Deadline-Monotonic
(DM) scheduling algorithm [14], which is known to be an
optimal fixed-priority algorithm when all the sporadic tasks
have their relative deadline parameters no larger than their
periods.

We will use the termutilisationof τi (denoted byUi), to
represent the ratioCi/Ti, and letU denote thesystem util-
isation: U =

∑
n

i=1 Ui. We assume thattasks are indexed
according to priorities: taskτ1 is the highest-priority task,
andτi+1 has lower priority thanτi for all i, 1 ≤ i < n. No-
tice that we do not assume any specific priority assignment.

We start with some notations and definitions. Let us de-
fine theworst-case workloadas follows:

Definition 1 Let Wi(t) denote theworst-case workloadof
the i highest priority tasks over an interval of lengtht,
which is the maximum amount of time that a taskτj , with
1 ≤ j ≤ i can run over an interval of lengtht.

As proved by Liu and Layland in their seminal pa-
per [15], the worst-case workloadWi(t) occurs when all
the tasksτ1, . . . , τi are simultaneously activated, and each
task generates subsequent jobs as soon as legally permit-
ted to do so (i.e., consecutive jobs ofτi arrive exactlyTi

time units apart, for alli) – this sequence of job arrivals is
sometimes referred to as thesynchronous arrival sequence.
Thus,Wi(t) equals the maximum amount of time for which
the CPU may execute some task from among{τ1, . . . , τi},
over the time interval[0, t), for the synchronous arrival se-
quence.

We highlight that our definition of worst-case workload
is different than theworst-case demand, which is expressed

by the “classical ceiling” expression
∑

i

⌈
t

Ti

⌉
Ci. The

96

worst-case workload is the fraction of the demand which
can be executed in[0, t), under the synchronous arrival se-
quence hypothesis, whereas the demand is the maximum
amount of work which can bedemandedin [0, t).

A closely-related concept is that of theworst-case idle
time:

Definition 2 Let Hi(t) denote theworst-case idle timeof
thei highest priority tasks over an interval of lengtht.

This is the minimum amount of time that the CPU is not
executing some task in{τ1, . . . , τi} over the time interval
[0, t). It is straightforward to observe that

Hi(t) = t − Wi(t) (1)

Let us define the(pseudo) inverseof the idle time, as
follows:

Definition 3 The (pseudo) inverse functionXi(c) of Hi(t)
is the smallest time instant such that there are at leastc

time units when the processor is not running any tasks in
{τ1, . . . , τi}, over every interval of lengthXi(c). That is,

Xi(c) = min
t
{t : Hi(t) ≥ c}

We note thatHi(t) is not an invertible function, since
there may be several time-instantst for whichHi(t) is con-
stant — that is why we refer toXi(c) as a pseudoinverse.
In the remainder of this paper we will abuse notation some-
what, and use the following notation:

Xi(c) = [Hi(t)]
−1 (2)

Based upon this definition of the inverse of the idle time,
we obtain the following alternative representation of task
response time. (Observe that this relationship holds regard-
less of whether task deadlines are lesser than, equal to, or
greater than periods.)

Lemma 1 The worst-case response timeRi of taskτi is
given by:

Ri = max
k=1,2,...

{Xi−1(k Ci) − (k − 1)Ti} (3)

Proof. Xi−1(k Ci) is the instant when the firsti − 1 tasks
have leftk Ci units of time available for the lower priority
tasks. Hence it is also the finishing time of thekth job of τi

in the busy period.(k− 1)Ti is the activation of such a job.
The proof hence follows directly as in [23].�

Notice that if
∑i

j=1 Ui > 1 then the we clearly have
Ri = +∞. For this reason in realistic cases we assume∑i

j=1 Ui ≤ 1.
Some further notation: for any functionf(x), fub(x) de-

notes an upper bound, andf lb(x) denote a lower bound on
the functionf(x), so that we havef lb(x) ≤ f(x) ≤ fub(x)
for all x.

Theorem 1 For any upper boundW ub

i
(t) on the workload

Wi(t), there is a corresponding upper boundRub
i

on the
worst-case response timeRi.

Proof. SinceW ub

i
(t) is an upper bound ofWi(t) we have

by definition
W ub

i
(t) ≥ Wi(t)

from which it follows the obvious relationship for the idle
time

H lb

i (t) = t − W ub

i (t) ≤ t − Wi(t) = Hi(t)

which gives us a lower bound of the idle time. From this
relationship it follows that for any possible valuec we have

{t : H lb

i (t) ≥ c} ⊆ {t : Hi(t) ≥ c}

Now it is possible to find a relationship between the pseudo-
inverse functions. In fact we have

Xub

i
(c) = min

t
{t : H lb

i
(t) ≥ c} ≥

min
y

{t : Hi(t) ≥ c} = Xi(c)

from which it follows that

Rub

i = max
k=1,2,...

{Xub

i−1(k Ci) − (k − 1)Ti} ≥ Ri

as required.�

3. The workload upper bound

As stated above, it was proved by Liu and Layland [15]
that the worst-case workloadWi(t) occurs for the syn-
chronous arrival sequence of jobs — i.e., when all the
tasksτ1, . . . , τi are simultaneously activated, and consec-
utive jobs ofτi arrive exactlyTi time units apart, for all
i. Hence the functionWi(t) may be expressed by the sum
of the individual workload of each taskτj . If we let wj(t)
denote the maximum amount of time that the processor ex-
ecutes taskτj over the interval[0, t) in this worst-case sce-
nario, we can write:

Wi(t) =

i∑
j=1

wj(t)

This is shown in Figure 1.
Letting wo

j
(t) denote the maximum amount of time that

the processor executes taskτj in any interval of lengtht,
when task τj is the only task in the system, clearly we
have:

∀j ∀t wo

j
(t) ≥ wj(t)

97

1τ

τ2

τ3

τ4

t

Wi(t), wj(t)

w1(t)

w2(t)

w3(t)

w4(t)

W4(t)

Figure 1. An example of the Wi(t) and wj(t)

since the presence of additional jobs may only delay the
execution ofτj ’s jobs.

The workload wo
j
(t), which is equal to

min
{
t − (Tj − Cj)

⌊
t

Tj

⌋
,
⌈

t

Tj

⌉
Cj

}
, can be conveniently

upper bounded by the linear function as shown in Figure 2.
The equation of the linear bound isUj t + Cj(1 − Uj).

priority load
higher

t

τj

Tj

Cj

Cj

τo
j

linear bound
wj(t)

wo
j
(t)

Figure 2. The upper linear bound of wj(t)

Using these relationships found for the workloadwj(t)
of each task, if we sum overj from1 to i we obtain an upper

bound on the workload functionWi(t):

Wi(t) =

i∑
j=1

wj(t) ≤

i∑
j=1

wo

j (t) ≤

≤

i∑
j=1

(Uj t + Cj (1 − Uj)) (4)

We have so obtained the upper bound we were looking
for. The property of this bound is that we can compute con-
veniently its inverse function and then apply the Theorem 1
to finally find the bound of the response time.

Theorem 2 The worst-case response timeRi of taskτi is
bounded from above as follows:

Ri ≤

Ci +

i−1∑
j=1

Cj(1 − Uj)

1 −

i−1∑
j=1

Uj

= Rub

i (5)

Proof. The proof of this theorem is obtained by applying
Theorem 1 to the workload bound provided by the Eq. (4).
So we have:

W ub

i (t) =

i∑
j=1

(Uj t + Cj(1 − Uj))

H lb

i (t) = t

1 −

i∑
j=1

Uj

−

i∑
j=1

(Cj(1 − Uj))

Since H lb

i
(t) is invertible, it can be used to compute

Xub

i
(h).

Xub

i
(h) =

h +
∑

i

j=1 Cj(1 − Uj)

1 −
∑

i

j=1 Uj

Then the response time is bounded by:

max
k=1,2,...

(
kCi +

∑
i−1
j=1 Cj(1 − Uj)

1 −
∑

i−1
j=1 Uj

− (k − 1)Ti

)
(6)

We will now prove that the maximum in the Eq. (6) occurs
for k = 1. Let us consider this function on the real ex-
tension[1, +∞). On this interval we can differentiate with

98

respect tok. Doing so we get:

d

dk

(
kCi +

∑
i−1
j=1 Cj(1 − Uj)

1 −
∑i−1

j=1 Uj

− (k − 1)Ti

)
=

Ci

1 −
∑

i−1
j=1 Uj

− Ti =

Ti

(
Ui

1 −
∑i−1

j=1 Uj

− 1

)
=

Ti

(∑
i

j=1 Uj − 1

1 −
∑

i−1
j=1 Uj

)

which is always negative (or zero). In fact, if
∑i

j=1 Uj > 1
the response time is known to be arbitrarily long, and so
unbounded. Then, since the function is decreasing (or con-
stant), its maximum occurs in the left bound of the interval,
which meansk = 1. Finally, by substitutingk = 1 in
Eq. (6), we get:

Rub

i =
Ci +

∑i−1
j=1 Cj(1 − Uj)

1 −
∑i−1

j=1 Uj

(7)

as required.�

Moreover we can divide byTi to normalise the bound
and we get:

rub

i
=

Rub

i

Ti

=
Ui +

∑
i−1
j=1 aj Uj(1 − Uj)

1 −
∑

i−1
j=1 Uj

(8)

whereaj = Tj/Ti.

The time complexity of computing the response time up-
per boundRub

i
of taskτi is O(i). Hence the complexity of

computing the bound for all the tasks seems to beO(n2).
However, it can be noticed that the computation ofRub

i+1

can take advantage of the completed computation ofRub
i

.
In fact the two sums involved in Equation (5) can be simply
computed by adding only the values relative to the last index
to the sum values of the previous computation. This obser-
vation allows us to say that the computation of the response
time upper bound of all the tasks inO(n).

There are other techniques to bound the response time.
Similarly as suggested by Sjödin and Hansson [21], a differ-
ent upper bound on the worst-case response times may be
obtained from the recurrence used in response-time analy-
sis [10, 2] by replacing the ceiling function⌈x⌉ with x + 1.

We have:

Ri = Ci +
i−1∑
j=1

⌈
Ri

Tj

⌉
Cj

Ri ≤ Ci +

i−1∑
j=1

(
Ri

Tj

+ 1

)
Cj

Ri − Ri

i−1∑
j=1

Uj ≤ Ci +

i−1∑
j=1

Cj

Ri ≤

∑i

j=1 Cj

1 −
∑

i−1
j=1 Uj

Observe that this is a looser bound than the one we have
obtained above, in Theorem 2.

We conclude by reiterating the benefits of using the re-
sponse time upper bound presented in Theorem 2 above:

• it can be computed inO(n) time;

• it is continuous and differentiable in all the variables;

• the bound holds even for deadlines greater than the
period. In this case the exact algorithm for the re-
sponse time calculation [23] requires to check all the
jobs within the busy period;

• the bound has a closed formulation, instead that an it-
erative definition. Hence it is possible to adopt some
feedback on task parameters (Cj or Tj) so that the re-
sponse time is modified in some desired direction.

3.1. A sufficient schedulability test

In the same way as the exact values of the response times
allow to formulate a necessary and sufficient schedulability
test, the response time upper boundRub

i
allows to express a

sufficient schedulability condition for the fixed priority al-
gorithm. It is then possible to enunciate the followingO(n)
sufficient schedulability condition for tasks scheduled by
fixed priority with arbitrary deadline.

Corollary 1 A task setτ1, . . . , τn is schedulable by fixed
priorities if:

∀i Rub

i =
Ci +

∑i−1
j=1 Cj(1 − Uj)

1 −
∑i−1

j=1 Uj

≤ Di (9)

Proof. From Theorem 2 it follows thatRi ≤ Rub

i
. From

the hypothesis it follows thatRub
i

≤ Di. Then it follows
thatRi ≤ Di, which means that all the tasks do not miss
their deadlines.�

99

Corollary 1 provides a very efficient means for testing
the feasibility of task sets. This condition can also be
restated as a utilisation upper bound, and compared with
many existing schedulability tests [15, 12, 11, 6]. Since
some of these results are achieved assuming deadlines equal
to periods, we also provide the following corollary in this
hypothesis although this restriction doesn’t apply to our re-
sponse time upper bound.

Corollary 2 A task setτ1, . . . , τn, with deadlines equal to
periods (Di = Ti) is schedulable by fixed prioritiesif:

∀i

i∑
j=1

Uj ≤ 1 −
i−1∑
j=1

aj Uj(1 − Uj) (10)

whereaj = Tj/Ti.

Proof. From Equation (9) it follows that the taskτi is
schedulable if

Ui +
∑i−1

j=1 aj Uj(1 − Uj)

1 −
∑

i−1
j=1 Uj

≤ 1

whereaj =
Tj

Ti

. Also notice that if tasks are scheduled by
RM thenaj ≤ 1 always. From the last equation we have

Ui +

i−1∑
j=1

aj Uj(1 − Uj) ≤ 1 −

i−1∑
j=1

Uj

i∑
j=1

Uj ≤ 1 −

i−1∑
j=1

aj Uj(1 − Uj)

which proves the corollary, when ensured for all tasks.�

It is quite interesting to observe that when the periods are
quite large compared to the preceding one — meaning that
aj → 0 — then the test is very effective. On the other hand,
when all the periods are similar each other then the right
hand side of Eq. (10) may also become negative, making
the condition impossible. This intuition will be confirmed
in the next section dedicated to the experiments.

4. Experiments

The major benefits of the response time upper bound that
we have computed in Section 3 above lie in(i) thetime com-
plexitywhich, atO(n) wheren denotes the number of tasks,
is linear in the representation of the task system; and(ii)
the fact that the upper bound iscontinuouswith respect to
the task system parameters (and hence more useful in in-
teractive system design). It is however, also important to
evaluate the quality of the bound. Clearly, the tightness of

the approximation depends upon the task set parameters. In
order to estimate the distance between the exact value of
the response time and of our derived upper bound (thereby
determining the “goodness” of our upper bound), we per-
formed a series of experiments that explored the impact of
the different task characteristics.

4.1. Effect of task periods

In the first set experiments we evaluate the impact of task
periods on the response time upper bound. For this purpose,
we use a system comprised of only2 tasks. The period of
the higher-priority task is setT1 = 1, whereas the periodT2

of the low priority task is calculated so that the ratioT1/T2

ranges in the interval[0, 1]. The task computation timesC1

andC2 are chosen such that:

• the relative utilisations of the two tasks does not
change in the experiments. This is achieved by setting
U1/U2 = 0.25 always;

• the total utilisationU = U1 + U2 is equal to one of the
four values{0.2, 0.4, 0.6, 0.8} (we run four classes of
experiments, one for each value).

We leave the values ofD1 andD2 unspecified, since these
parameters have no effect on either the exact response time,
or our computed upper bound, under FP scheduling.

For each simulation, we computed the exact response
time R2 and our upper boundRub

2 for the taskτ2. Notice
that both the tasks will have response times smaller than
or equal to their respective periods since the Liu and Lay-
land utilisation bound for two tasks is2(

√
2 − 1) ≈ 0.828,

which is greater than all the total utilisations assumed in this
experiment. Hence the maximum response time occurs in
the first job ofτ2. Both the response time and the upper
bound are normalised with respect to the periodT2, so that
the comparison between different values of the periodT2 is
easier. The results are shown in Figure 3. Black lines are
the normalisedRub

2 values, gray plots are the exact response
times.

It may be noticed that the approximation is very good
whenT2 ≫ T1 (i.e. when the ratioT1/T2 is close to zero).
In fact, in this condition the workload estimate, upon which
the response time bound is built, becomes very tight. The
discontinuities in the response times occur when an addi-
tional job ofτ1 interferes with the response time ofτ2. Fi-
nally, it may be noticed that the approximation degrades as
the total utilisation increases. This can be explained by re-
iterating that the upper estimate of the workload is tight for
low utilisations, as can be observed from Figure 2.

Given this last observation, it becomes quite interesting
to test the case whenU = 1. In this condition of heavy
load, the task system utilisation is no longer≤ the Liu and

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

U = 0.8

U = 0.6

U = 0.4

U = 0.2

T1

T2

R
ub

2

T2

, R2

T2

Figure 3. Effect of task periods

Layland utilisation bound, and hence it is not guaranteed
that both tasks’ response times will be≤ their respective
period parameters. Furthermore, the response timeR2 does
not necessarily occur at the first job, and hence all the jobs
within the first busy period must be checked. (In fact, un-
der the conditionU = 1 the processor is always busy and
the busy period never ends, but the response time can still
be computed by checking all the jobs up to hyperperiod —
the least common multiple of all the periods.) A second —
more serious — problem is related to the nature of the ex-
periment: since we are running simulations as the period
T2 varies fromT1 to infinity, the hyperperiod can be ex-
tremely large! (Indeed, the hyperperiod does not even exist
if T1/T2 is irrational, although this phenomenon is not en-
countered with machine representable numbers.) Hence, in
our simulation setting the computation of the response time
is stopped after1000 jobs ofτ2. In the top part of Figure 4
we report the differenceRub

2 − R2 normalised with respect
to T2 as usual. The result is quite surprising.

From the figure we see that the upper bound is a very
tight approximation of the exact response time, unlesssome
harmonic relationship existsbetweenT1 andT2. Moreover,
the stronger the harmonicity the greater the difference be-
tween the bound and the exact value (for example when
T1

T2

∈
{
1, 1

2 , 1
4 , 2

3

}
.) When the periods are poorly harmonic

the upper bound is extremely tight.

In these experiments we observed that in poorly har-
monic periods, the response time routine needs to be con-
ducted much further than in more harmonic conditions. The
bottom part of Figure 4 reports, on a log scale, the index of
the job ofτ2 that experiences the maximum response time
(thecritical job). When the periods are in some harmonic

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

T
1
/T

2

(R
2ub

−
R

2)/
T

2
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

10

100

1000

T
1
/T

2

in
de

x
of

 c
rit

ic
al

 jo
b

Figure 4. Response time bound, when U = 1

relationship the critical job occurs relatively early. How-
ever, when the harmonic relationship is poor we often stop
our computation because of our job limit at1000 jobs.

This observation motivated the third and last set of ex-
periments exploring the influence of periods. We want to
evaluate what the critical job is, when the periods are poorly
harmonic. For this purpose, we setT2

T1

=
√

2 so that the no-
tion of hyperperiod doesn’t exist (clearly on machine rep-
resentable numbers,T1 andT2 are still rational.) We set
the ratioU1

U2

= 0.25 (meaning that theτ1 has a significantly
lower load thanτ2, although this setting did not seem to
significantly affect the simulation results). The experiments
are carried out varying the total utilisation in the proximity
of U = 1. Again, we stopped the computation of response
time after10000 jobs. Figure 5 reports the index of the crit-
ical job in log scale.

It may be noticed clearly that as the total utilisation ap-
proaches1 the index of the critical job progressively in-
creases, until the computation is artificially interruptedat
job 10000. Actually when the utilisation is exactly1, we
believe thatthere always exists some future job with longer
response time. Observing this phenomenon has lead us to
formulate the following conjecture.

Conjecture 1 WhenU = 1 and the ratioT2

T1

is irrational
then the index of the critical job is unbounded. Moreover

101

0.98 0.985 0.99 0.995 1
10

0

10
1

10
2

10
3

10
4

10
5

U (total utilisation)

in
de

x
of

 c
rit

ic
al

 jo
b

Figure 5. The index of the critical job.

we have
lim sup

k

R2,k = Rub

2 (11)

whereR2,k denotes the response time of thekth job of task
τ2.

4.2. Effects of the number of tasks

In this set of experiments we focus on the influence of
the number of tasks both on the actual response time and
on the upper bound derived by us in Section 3. The number
of tasks ranges from2 to 20. The experiment is run under
three different total load condition represented byU = 0.3
(light load),U = 0.5 (average load) andU = 0.8 (heavy
load). The total load is uniformly distributed among the sin-
gle tasks using the simulation routine suggested by Bini and
Buttazzo [5]. Notice that as the number of tasks increases
all the individual utilisationsUi tend to decrease because
the total utilisationU is kept constant. The periodT1 of τ1

is set equal to one, and the remaining periods are randomly
selected such thatTi+1/Ti is uniformly distributed in[1, 3].
For each pair (number of tasksn, total utilisationU) we ran
10000 simulations and computed the normalised response
timeRn/Tn — drawn in gray — and the normalised upper
boundRub

n
/Tn — in black. Figure 6 reports the average

value of all the simulations. The figure shows three pairs
of plots, relative to the three different values of utilisation
simulated.

It may seem quite unexpected that the response times
does not increase with the number of tasks. However, we
must remember that we are plotting values normalised with
the periodTn. To confirm the validity of the experiments
we can compute the limit of the normalised response time,
reported in Eq. (8), asn grows to infinity. In order to com-
pute the limit we assume that all the tasks utilisations are the
same (i.e., each is equal toU/n) and all the period ratiosaj

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

U = 0.8

U = 0.5

U = 0.3

R
ub

n

Tn

, Rn

Tn

n (number of tasks)

Figure 6. Response bound and tasks number

are equal to a common valuea. The asymptotic value of the
response time then is

lim
n→∞

rub

n =
U

n
+ (n − 1)aU

n
(1 − U

n
)

1 − (n − 1)U

n

=
U + (n − 1)a U(1 − U

n
)

n − (n − 1)U

=
U + (n − 1)a U

n − (n − 1)U

=
a U

1 − U

which is constant.

4.3. The sufficient test

In the final experiments we evaluated the number of tasks
sets accepted by the sufficient test stated in Corollary 2.
This test is compared with other simple sufficient tests: the
Hyperbolic Bound [6] and the utilisation RBound [11]. We
remind that the complexity of the test presented here and
the Hyperbolic Bound inO(n), whereas the complexity of
the utilisation RBound isO(n log n), wheren denotes the
number of tasks.

First we investigated the effect of the period on the qual-
ity of the sufficient tests. We arbitrarily set the number of
tasks equal to5 and the total utilisationU = 0.8 so that the
random task sets are not trivially schedulable. The periods
are randomly extracted as follows:(i) T1 is set equal to1
and(ii) the other periodsTi are uniformly extracted in the
interval[Ti−1, r Ti−1]. The parameterr, denoted byperiod
dispersionin Figure 7, measures how close each other are
the periods. For example ifr = 1 then all the periods are
the same, ifr is large then the next random period tends to
be large compared with the previous one. The experiments

102

are conducted forr varying from 1 to 7, and for each setting
we extracted 5000 task set. The quality of the tests is mea-
sured by theacceptance ratio, which is the percentage of
schedulable task sets accepted by each of the three sets [5].
The results are shown in Figure 7.

1 2 3 4 5 6 7
0

20

40

60

80

100

Rub-based test
hyperbolic b.
util. RBound

maxi{Ti/Ti−1} (period dispersion)

a
cc

e
p

ta
nc

e
ra

tio
(%

)

Figure 7. Acceptance ratio and periods

First, the figure confirms that the Hyperbolic Bound is
not affected at all by the variation of the periods. In fact, this
test is performed only on task utilisations which are left un-
changed. Then we observe that when the periods are close
each other (period dispersion close to 1) the RBound dom-
inates, whereas for large periods the test based on the re-
sponse time bound performs better than the others. The pos-
sible explanation is that the RBound is built starting from
the Liu and Layland [15] worst-case periods which are all
very close each other.

Finally, we evaluated the acceptance ratio as the number
of tasks varies from2 to 20. The total utilisation is equal to
0.75 so that a considerable number of task sets are schedula-
ble also when the number of tasks is maximum. The period
dispersionr, as defined previously, is set equal to1.4 so
that we work in an area where all the three tests seem com-
parable from Figure 7. The acceptance ratio is reported in
Figure 8.

In this case the Hyperbolic Bound is always superior to
the RBound, although this may happen because the period
dispersionr is chosen too high. Anyhow, the most interest-
ing aspect is that when the number of tasks grows beyond
8, the quality of theRub-based test starts increasing. This
phenomenon is justified by observing that as the number of
tasks grows, all the individual utilisations become smaller
and smaller. Under this condition, as discussed previously,
the workload upper bound — and the test based on it — is
very tight.

5. Conclusions

Response time analysis(RTA) is an important approach

2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

100 Rub-based test
hyperbolic b.
util. RBound

n (number of tasks)

a
cc

e
p

ta
nc

e
ra

tio
(%

)

Figure 8. Acceptance ratio and tasks number

to feasibility analysis of real-time systems that are sched-
uled using fixed-priority (FP) scheduling algorithms. Two
drawbacks of RTA are:(i) computing response times takes
time pseudo-polynomial in the representation of the task
system; and(ii) response times are not in general contin-
uous in task system parameters.

In this paper, we have derived an upper bound on the re-
sponse times in sporadic task systems scheduled using FP
algorithms. Our upper bound can be computed in polyno-
mial time, and has the added benefit of being continuous
and differentiable in the task system parameters. We have
designed and conducted a series of simulation experiments
to evaluate the goodness of our approach. These simula-
tions have had the added benefit of giving rise to an inter-
esting theoretical conjecture concerning response times for
systems in which all parameters need not be rational num-
bers.

References

[1] Karsten Albers and Frank Slomka. An event stream
driven approximation for the analysis of real-time sys-
tems. InProceedings of the16th Euromicro Confer-
ence on Real-Time Systems, pages 187–195, Catania,
Italy, June 2004.

[2] Neil C. Audsley, Alan Burns, Mike Richardson,
Ken W. Tindell, and Andy J. Wellings. Applying
new scheduling theory to static priority pre-emptive
scheduling.Software Engineering Journal, 8(5):284–
292, September 1993.

[3] Sanjoy K. Baruah, Aloysius K. Mok, and Louis E.
Rosier. Preemptively scheduling hard-real-time spo-
radic tasks on one processor. InProceedings of the
11th IEEE Real-Time Systems Symposium, pages 182–
190, Lake Buena Vista (FL), U.S.A., December 1990.

103

[4] Enrico Bini and Giorgio C. Buttazzo. Schedu-
lability analysis of periodic fixed priority systems.
IEEE Transactions on Computers, 53(11):1462–1473,
November 2004.

[5] Enrico Bini and Giorgio C. Buttazzo. Measuring the
performance of schedulability tests.Real-Time Sys-
tems, 30(1–2):129–154, May 2005.

[6] Enrico Bini, Giorgio C. Buttazzo, and Giuseppe M.
Buttazzo. Rate monotonic scheduling: The hyperbolic
bound.IEEE Transactions on Computers, 52(7):933–
942, July 2003.

[7] Reinder J. Bril, Wim F. J. Verhaegh, and Evert-Jan D.
Pol. Initial values for on-line response time calcula-
tions. InProceedings of the15th Euromicro Confer-
ence on Real-Time Systems, pages 13–22, Porto, Por-
tugal, July 2003.

[8] Anton Cervin and Johan Eker. Control-scheduling
codesign of real-time systems: The control server ap-
proach. Journal of Embedded Computing, 1(2):209–
224, 2005.

[9] Nathan Fisher and Sanjoy Baruah. A fully
polynomial-time approximation scheme for feasibility
analysis in static-priority systems. InProceedings of
the17th Euromicro Conference on Real-Time Systems,
pages 117–126, Palma de Mallorca, Spain, July 2005.

[10] Mathai Joseph and Paritosh K. Pandya. Finding re-
sponse times in a real-time system.The Computer
Journal, 29(5):390–395, October 1986.

[11] Sylvain Lauzac, Rami Melhem, and Daniel Mossé.
An improved rate-monotonic admission control and
its applcations. IEEE Transactions on Computers,
52(3):337–350, March 2003.

[12] John P. Lehoczky. Fixed priority scheduling of peri-
odic task sets with arbitrary deadline. InProceedings
of the11th IEEE Real-Time Systems Symposium, pages
201–209, Lake Buena Vista (FL), U.S.A., December
1990.

[13] John P. Lehoczky, Lui Sha, and Ye Ding. The rate-
monotonic scheduling algorithm: Exact characteriza-
tion and average case behavior. InProceedings of the
10th IEEE Real-Time Systems Symposium, pages 166–
171, Santa Monica (CA), U.S.A., December 1989.

[14] Joseph Y.-T. Leung and J. Whitehead. On the com-
plexity of fixed-priority scheduling of periodic real-
time tasks. Performance Evaluation, 2(4):237–250,
December 1982.

[15] Chung Laung Liu and James W. Layland. Scheduling
algorithms for multiprogramming in a hard real-time
environment.Journal of the Association for Comput-
ing Machinery, 20(1):46–61, January 1973.

[16] Wan-Chen Lu, Jen-Wei Hsieh, and Wei-Kuan Shih.
A precise schedulability test algorithm for scheduling
periodic tasks in real-time systems. InProceedings
of the ACM Symposium on Applied Computing, pages
1451–1455, Dijon, France, April 2006.

[17] Yoshifumi Manabe and Shigemi Aoyagi. A fea-
sibility decision algorithm for rate monotonic and
deadline monotonic scheduling.Real-Time Systems,
14(2):171–181, March 1998.

[18] Aloysius Ka-Lau Mok. Fundamental Design Prob-
lems of Distributed Systems for the Hard-Real-Time
Environment. PhD thesis, Dept. of Electrical Engi-
neering and Computer Science, Massachusetts Insti-
tute of Technology, Boston (MA), U.S.A., May 1983.

[19] José Carlos Palencia and Michael González Harbour.
Schedulability analysis for tasks with static and dy-
namic offsets. InProceedings of the19th IEEE
Real-Time Systems Symposium, pages 26–37, Madrid,
Spain, December 1998.

[20] Pascal Richard and Joël Goossens. Approximating re-
sponse times of static-priority tasks with release jit-
ters. In 18th Euromicro Conference on Real-Time
Systems, Work-in-Progress, Dresden, Germany, July
2006.

[21] Mikael Sjödin and Hans Hansson. Improved response-
time analysis calculations. InProceedings of the19th

IEEE Real-Time Systems Symposium, pages 399–408,
Madrid, Spain, December 1998.

[22] Ken Tindell and J. Clark. Holistic schedulability anal-
ysis for distributed hard real-time systems.Micropro-
cessing and Microprogramming, 50:117–134, April
1994.

[23] Ken W. Tindell, Alan Burns, and Andy Wellings.
An extendible approach for analysing fixed priority
hard real-time tasks.Journal of Real Time Systems,
6(2):133–152, March 1994.

104

Approximate Feasibility Analysis and Response-Time Bounds of
Static-Priority Tasks with Release Jitters

Pascal Richard
LISI/ENSMA

University of Poitiers (France)
pascal.richard@univ-poitiers.fr

Joël Goossens
Computer Science Department
Université Libre de Bruxelles

joel.goossens@ulb.ac.be

Nathan Fisher
Department of Computer Science

University of North Carolina, Chapel Hill
fishern@cs.unc.edu

Abstract

We consider static-priority tasks with constrained-
deadlines that are subjected to release jitter. We define an
approximate worst-case response-time analysisand pro-
pose a polynomial-time algorithm. For that purpose, we
extend the Fully Polynomial-Time Approximation Scheme
(FPTAS) presented in [6] to take into account release jit-
ter constraints; this feasibility test is then used to define
a polynomial time algorithm that approximate worst-case
response times of tasks. Nevertheless, the approximate
worst-case response time values have not been proved
to have any bounded error in comparison with worst-
case response times computed by an exact algorithm (with
pseudo-polynomial time complexity).

1 Introduction

Guaranteeing that tasks will always meet their dead-
lines is a major issue in the design of hard-real time sys-
tems. We consider the problem of ensuring that periodic
tasks scheduled by a preemptive static-priority scheduler
upon a uniprocessor platform meet all deadlines. Every
execution of a given task is called a job. We consider
tasks that have constrained-deadlines (i.e., deadlines are
less than or equal to task periods) and are subjected to re-
lease jitter. Arelease jittermodels an interval of time in
which a task waits the next tick of the RTOS in order to
start or is pending due to input communications.

Tasks are scheduled at run-time using a static-priority
scheduling policy. Every task has a static priority and at
any time the executed job has the highest priority among
tasks awaiting execution. The feasibility problem con-
sists of proving that tasks will always meet their dead-
lines at run-time. For the considered real-time systems,
the feasibility problem is not known to be NP-hard, but
only pseudo-polynomial time tests are known. How-
ever, pseudo-polynomial time complexity is too computa-

tionally expensive for performing on-line task admission
or for analysing large distributed systems using classical
methods such as the holistic analysis [19].

For a static-priority system, a task set isfeasibleon a
given processing platform, if every task will always meet
all deadlines when scheduled according to its given static-
priority on the given platform. A feasibility test is an al-
gorithm used to check if a task set is feasible or not. One
can distinguish several approaches to designing a feasibil-
ity test for real-time task sets:(i) an exact feasibility test,
(ii) a sufficient feasibility test (also known as pessimistic
feasibility test) and(iii) an approximate feasibility test.
We briefly describe their main characteristics.

An exact feasibility testcan always correctly catego-
rize task sets as eitherfeasibleor infeasibleupon a spe-
cific hardware platform [10, 13, 15]. An exact test will
label a periodic task set as “infeasible” if and only if
the task set will miss a deadline at run-time. Neither a
polynomial-time test nor NP-hardness result are known
for static-priority tasks having constrained-deadlines.

A sufficient feasibility testalways leads to an exact
positive decision: if the test concludes that a task set is
feasible then no deadline will be missed at run-time. But,
when it concludes that a task is infeasible, then it may be
a rather pessimistic decision (i.e., tasks may meet their
deadlines at run-time). Sufficient feasibility tests have a
lower computation complexity than corresponding exact
feasibility tests. Numerous sufficient feasibility tests are
known in the literature (e.g. [16, 11, 3, 9, 1, 4]).

An approximate feasibility testis based on the approx-
imability theory of NP-hard optimization problems [7].
It reduces the gap between the two previous approaches
to control the “unused processor capacity” for tests based
on the processor-demand analysis. It runs inpolynomial-
time according to an accuracy parameterǫ. An approxi-
mate feasibility test allows to conclude that a task set is
[6, 5]:

• feasible (upon a unit-speed processor).

105

• infeasible upon a(1 − ǫ)-speed processor. That is,
“we must effectively ignoreǫ of the processor ca-
pacity for the test to become exact” [6]. So, the
pessimism introduced by the feasibility test is kept
bounded by a constant multiplicative factor.

In [17], some numerical experiments are presented that
show the practical interest of several approximate feasi-
bility analysis in comparison with exact feasibility tests.

Most of feasibility tests produce a boolean decision:
feasibility or infeasibility. However, an important quali-
tative measure for a task is itsworst-case response time
(i.e., the maximum size interval of time between a release
of a task and its completion). Response-Time Analysis is
often used to quantify the maximum earliness or tardiness
of tasks and to bound release jitter of dependent tasks or
messages in a distributed system. For synchronous static-
priority systems, worst-case response times of tasks can
be computed inpseudo-polynomial time.

This research. As far as we know, no approxima-
tion algorithm is known for approximating worst-case re-
sponse times of tasks with a constant performance guar-
antee (i.e., upper bounds of worst-case response times).
The aim of this paper is to introduce such an analysis and
to try to show its relationship with approximate feasibility
analysis. We present anFPTAS for analysing the feasibil-
ity of static priority tasks with release jitter constraints.
We then show feasibility tests can be used to define up-
per bounds of worst-case response times based on a poly-
nomial time algorithm. Lastly, we show that there ex-
ists some task systems such that ratio between the exact
worst-case response time and the approximate worst-case
response time is not bounded.

Organization. The remainder of this paper is orga-
nized as follows. We first define a preliminary result for
computing worst-case response times while performing
a processor demand analysis (e.g., [13]), then we extend
the FPTAS presented in [6] with release jitter constraints.
These results are then combined to define for computing
approximate worst-case response times. Nevertheless, we
show via a counter-example that the computed approxi-
mate worst-case response times values are not guaranteed
to be close to actual worst-case response times (i.e., with
a bounded error).

2 Task Model and Exact Analysis

2.1 Task Model

In this paper, we assume that all tasks share a proces-
sor upon which all jobs must execute. Every job can be
preempted and resumed later at no cost or penalty. With-
out loss of generality, we also assume the the rate of the
processor is exactly one, since if it is not the case all pro-
cessing requirements can be normalized to the processor
speed.

A taskτi, 1 ≤ i ≤ n, is defined by a worst-case execu-
tion requirementCi, a relative deadlineDi and a period

Ti between two successive releases. Every task occur-
rence is called a job. We assume that deadlines are con-
strained: Di ≤ Ti. Such an assumption is realistic in
many real-world applications and also leads to simpler al-
gorithms for checking feasibility of task sets [12]. More-
over, we define the utilization factor of the periodic tasks

as follows: U
def
=

∑
n

i=1 Ci/Ti. We consider a discrete
scheduling model and thus we assume that all parameters
are integers.

In order to model delay due to input data communi-
cations of tasks, we also consider that jobs are subjected
to release jitter. A release jitterJi of a taskτi is a in-
terval of time after the release of a job in which it waits
before starting its execution. In the following, we assume
that 0 ≤ Ji ≤ Di (otherwise the system is obviously
not schedulable). Release jitter constraints model delays
introduced by the RTOS in presence of system ticks or
input communications. For this latter case, dependencies
among distributed tasks are modeled using the parameters
Ji, 1 ≤ i ≤ n. Using such a model, a distributed system
can be analysed processor by processor, separately using
for instance an holistic based schedulability analysis [19].

For a given processor, we assume that all tasks are in-
dependent and synchronously released. All tasks have
static priorities that are set before starting the application
and are never changed at run-time. At any time, the high-
est priority task is selected for execution among ready
tasks. Without loss of generality, we assume next that
tasks are indexed according to priorities:τ1 is the highest
priority task andτn is the lowest priority one.

2.2 Known Results

2.2.1 Request-Bound and Workload Functions

In presence of release jitter constraints, the request-bound
function of a taskτi at timet (denotedRBF(τi, t)) and the
cumulative processor demand (denotedWi(t)) of tasks at
time t of tasks having priorities greater than or equal toi

are respectively (see [19] for details):

RBF(τi, t)
def
=

⌈
t + Ji

Ti

⌉
Ci (1)

Wi(t)
def
= Ci +

i−1∑
j=1

RBF(τj , t) (2)

Informally, the request-bound function for a taskτi and
positivet is the maximum execution requirement of jobs
of τi released in any continuous interval of lengtht.

Using these functions, two distinct (but linked) exact
feasibility tests can be defined. We restate both results
that will be reused in the remainder.

2.2.2 Time-Demand Analysis

The time-demand approach checks that the processor ca-
pacity is always less than or equal to the processor capac-
ity required by task executions. [13] presents a processor-

106

demand schedulability test for constrained-deadline sys-
tems (but the test was extended for arbitrary deadline sys-
tems in [12]). It can be also easily extended to tasks sub-
jected to release jitter as stated in the following result (a
proof can be found in [8]):

Theorem 1 [13, 15] A static-priority system
with release jitter contraints is feasible iff

maxi=1...n

{
mint∈Si

Wi(t)
t

}
≤ 1, where Si is

the set of scheduling points defined as follows:

Si

def
= {aTj − Jj | j = 1 . . . i, a = 1 . . .

⌊
Di−Ji+Jj

Tj

⌋
}

∪{Di − Ji}.

Note that schedulability points correspond to a set of
time instants in the schedule where a task can start its
execution, after the delay introduced by its release jit-
ter. From a computational complexity point of view, for
any integerk, there is a task system with two tasks such
that the time complexity of the time-demand analysis is at
leastO(k) (Lemma 1, [15]).

2.2.3 Response-Time Analysis

An alternative approach for checking the feasibility of a
static-priority task set is to compute the worst-case re-
sponse timeRi. The worst-case response time ofτi is
formally defined as:

Definition 1 The worst-case response time
of a task τi subjected to a release jitter is:

Ri

def
= (min{t > 0 | Wi(t) = t}) + Ji.

Note that for infeasible tasksRi does not necessarily
correspond to the worst case response time, but instead
only corresponds to the worst-case response time of the
first job of τi.

Exact algorithms for calculating the worst-case re-
sponse time of periodic tasks are known (e.g., see [10]
for a recursive definition of the following method). Using
successive approximations starting from a lower bound of
Ri, we can compute the smallest fixed point ofWi(t) = t

with the following sequence. By Definition 1, this small-
est fixed point is the worst-case response time for feasible
taskτi.

W
(0)
i

=

i∑
j=1

Cj

W
(k+1)
i

= Ci +

i−1∑
j=1

RBF(τj , W
(k)
i

)

The recursion terminates (assuming thatU ≤ 1) for
the smallest integerk such that:W (k+1)

i
= W

(k)
i

(i.e.,
the smallest fixed point of the equationWi(t) = t has
been reached).

The processor-demand analysis and the response-time
analysis are both based on the cumulative request-bound
function (i.e., Equation 2).

Nevertheless, to the best of our knowledge, no direct
link is known between these methods for validating static-
priority task sets. In this section, we propose combining
the aforementioned analysis techniques in an algorithm
that calculates the response time of a periodic task in the
presence of release jitter constraints. The initial value
(e.g.,W (0)

i
) plays an important role to limit the number

of required iterations to reach the smallest fixed point of
equationWi(t) = t. Different approaches have been pro-
posed in [18, 2] and are quite useful in practice to reduce
computation time. Nevertheless, such improvements are
not necessary to present our results and for that reason are
not developed in the remainder.

As in the processor-demand approach, the worst-
case response-time computation can be done in pseudo-
polynomial time. Furthermore, for any integerk, there is
a task system with two tasks such that the time complexity
of the response-time analysis is at leastO(k) (Lemma 2,
[15]).

2.3 A Preliminary Result

We show that worst-case response times of tasks can
be computed using a Time-Demand Analysis (i.e., using
Theorem 1), for every feasible task set. For a feasible task
τi, it is sufficient to check the following testing set [13]:

Si

def
= {aTj − Jj | j = 1 . . . i, a = 1 . . .

⌊
Di−Ji+Jj

Tj

⌋
}

∪{Di − Ji}

We first define the critical scheduling point that facil-
itates the computation of the worst-case response time of
τi (under the assumption that the taskτi will meet its
deadline at execution time).

Definition 2 The critical scheduling point for a feasible

taskτi is: t∗
def
= min{t ∈ Si | Wi(t) ≤ t}.

We now prove ift∗ exists, thenWi(t
∗)+Ji defines the

worst-case response time ofτi.

Theorem 2 The worst-case response time of a feasible
taskτi is exactlyRi = Wi(t

∗) + Ji.

Proof:
Since taskτi is feasible then we verify thatWi(t

∗) ≤
t∗. Let Si = {ti1, ti2, . . . , tiℓ} with ti1 < ti2 < · · · <

t∗
i

< · · · < tiℓ = Di − Ji. By Definition 2, there ex-
ists t∗ = tij , where1 ≤ j ≤ ℓ, is the first schedul-
ing point verifyingWi(t

∗) ≤ t∗: Wi(t) > t for all t ∈
{ti1, . . . , tij−1} andWi(tij) ≤ tij .

Since Wi(t) is non-decreasing between subsequent
scheduling points{tia, tia+1}, 1 ≤ a ≤ ℓ − 1, then there
exists a timet ∈ (tij−1, tij] such thatWi(t) = t. Since
scheduling points inSi corresponds to task releases, then
no new task is released betweent and t∗ and as a con-
sequence we haveWi(t) = Wi(t

∗). The worst-case re-
sponse time ofτi is then defined asWi(t

∗) + Ji.

107

Tasks Ci Di Ti Ji

τ1 1 3 3 2
τ2 2 5 5 1
τ3 1 12 12 2

Table 1. Static-priority task set with release
jitter constraints

t ∈ Si 1 4 7 9
W1(t)/t 1
W2(t)/t 3 1
W3(t)/t 4 1.25 1.14 1

Table 2. Exact Time-Demand Analysis

Thus, for all feasible tasks, we can compute their
worst-case response times. But,t∗ is not defined for an in-
feasible taskτi , thus there is no scheduling pointt ∈ Si

such thatWi(t) ≤ t. For this latter case, the presented
method cannot be used to compute a worst-case response
time (i.e., some scheduling points after the deadline must
be considered).

Since the size ofSi depends on
∑i−1

j=1⌊
Di−Ji+Jj

Tj
⌋,

then the algorithm runs inpseudo-polynomial time. Note
that computing the smallest fixed-pointWi(t) = t using
successive approximation is also performed in pseudo-
polynomial time.

Let us take an example, consider the task set presented
in Table 1. The utilization factor isU = 0.81. The com-
putations associated with the exact tests are given in Ta-
ble 2. Figure 1 presentsW3(t) and the processor capacity
(i.e.,f(t) = t). Notice that for every taskτi, 1 ≤ i ≤ n

the first value such thatWi(t)/t ≤ 1 leads to its exact
worst-case response time:

• for τ1, R1 = W1(1) + J1 = 1 + 2 = 3,

• for τ2, R2 = W2(4) + J2 = 4 + 1 = 5,

• for τ3, R3 = W3(9) + J3 = 9 + 2 = 11.

3 A FPTAS for Feasibility Analysis of a Task

3.1 Approximating the Request-Bound Func-
tion

For synchronous task systems without release jitter, the
worst-case activation scenario for the tasks occurs when
they are simultaneously released [14]. When tasks are
subjected to release jitter, then the worst-case processor
workload occurs when all higher-priority tasks are simul-
taneously available afterJi units of time (e.g., when their
input data are available). Notice that deadline failures of
τi (if any) occur necessarily in an interval of time where
only tasks with a priority higher or equal toi are running.
Such an interval of time is defined as a level-i busy pe-
riod [13]. When analysing a taskτi, if we assume that the

analysed processor busy period starts at time 0, then the
worst-case workload in that busy period is defined by the
release of taskτj at time−Jj, j ≤ i. According to such a
scenario, the total execution time requested at timet by a

taskτi is defined by [19]:RBF(τi, t)
def
=

⌈
t+Ji

Ti

⌉
Ci.

The RBF function is a discontinuous function with a
“step” of heightCi everyTi units of time. In order to
approximate the request bound function according to an
error boundǫ (accuracy parameter,0 < ǫ < 1), we use
the same principle as in [6, 5]: we consider the first(k−1)
steps ofRBF(τi, t), wherek is defined ask = ⌈1/ǫ⌉ − 1
and a linear approximation, thereafter. The approximate
request bound function is defined as follow:

δ(τi, t) =

{
RBF(τi, t) for t ≤ (k − 1)Ti − Ji,

Ci + (t + Ji)
Ci

Ti

otherwise.
(3)

Notice that up to(k − 1)Ti − Ji the approximate
request-bound function is equivalent to the exact request-
bound function ofτi, and after that it is approximated
by a linear function with a slope equal to the utilization
factor of τi. The next subsection describes how we use
the approximation to the request-bound function to ob-
tain an approximation scheme for feasibility analysis of
static-priority tasks subjected to release jitter constraints.

3.2 Approximation Scheme

[19] shows that a static-priority task system with re-
lease jitter constraints is feasible, iff, worst-case response
times of tasks are not greater than their relative deadlines.
This problem is known as therelease jitter problem. An
alternative way is to define a time-demand approach for
solving the release jitter problem using the principles of
the well-known exact feasibility test presented for the rate
monotonic scheduling algorithm in [13].

As presented in Theorem 1, the cumulative request

bound function at timet is defined by:Wi(t)
def
= Ci +∑i−1

j=1 RBF(τj , t). A taskτi is feasible (with a constrained
relative deadline) iff, there exists a timet, 0 ≤ t ≤
Di − Ji, such thatWi(t) ≤ t. Since request bound
functions are step functions, thenWi(t) is also a step
function that increases for every scheduling point in the
following set Si = {t = bTa − Ja; a = 1 . . . i, b =

1 . . .
⌊

Di−Ji+Ja

Ta

⌋
} ∪ {Di − Ji}. The feasibility test can

then be formulated as follows: if there exists a schedul-
ing point t ∈ Si, such thatWi(t)/t ≤ 1 then the task is
feasible.

To define an approximate feasibility test, we define an
approximate cumulative request bound function as:

Ŵi(t)
def
= Ci +

i−1∑
j=1

δ(τj , t)

According to the error boundǫ leading tok = ⌈1/ǫ⌉−

1, we define the following testing set̂Si ⊆ Si:

108

Approximate Time-Demand Analysis (k=3)

0

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Approx(tau_3,t) Processor Capacity W(t3,t)

Figure 1. Exact and approximate cumulative request bound fu nctions W3(t) and Ŵ3(t) with ǫ = 0.3
leading to k = 3. Steps occurs at time aTi − Ji where 0 < a ≤ k − 1 and 0 ≤ i ≤ n before starting
linear approximations. The approximate test concludes tha t τ3 is not feasible upon a (1− ǫ)-speed
processor.

Ŝi

def
= {t = bTa − Ja; a = 1 . . . i − 1, b = 1 . . . k − 1}

∪{Di − Ji}

We consider the task set presented in Table 1, the cu-
mulative request bound function̂W3(t) is presented in
Figure 1 usingǫ = 0.3. This means exactly three steps
will be considered for every task (i.e.,k = 3) before
approximating the request bound function using a linear
function. We indicate without providing computation de-
tails that worst-case response times ofτ1 andτ2 can be
exactly computed since they are achieved before approx-
imating request bound functions. But as shown in Fig-
ure 1, the approximate feasibility test concludes thatτ3 is
not feasible becausêW3(t) > t for all scheduling points
(i.e., for all t ∈ Ŝ3).

This is aFPTAS since the algorithm is polynomial ac-
cording to the input size and the input parameter1/ǫ. We
now prove the correctness of this approximate feasibility
test.

3.3 Correctness of Approximation

The key point to ensure the correctness is:
δ(τi, t)/RBF(τi, t) ≤ (1 + ǫ). This result will then
be used to prove that if a task set is stated infeasible by
the FPTAS, then it is infeasible under a(1 − ǫ) speed
processor.

Theorem 3 ∀t ≥ 0, we verify that: RBF(τi, t) ≤
δ(τi, t) ≤ (1 + 1

k
)RBF(τi, t) wherek =

⌈
1
ǫ

⌉
− 1.

Proof: We first prove the first inequality: for allt ∈
[0, (k − 1)Ti − Ji]

δ(τi, t) = RBF(τi, t)

For t > (k − 1)Ti − Ji:

δ(τi, t) = Ci + (t + Ji)
Ci

Ti

= Ci

(
1 +

t + Ji

Ti

)
As a consequence:

δ(τi, t) ≥

⌈
t + Ji

Ti

⌉
Ci = RBF(τi, t)

We now prove the second inequality of the statement:
If δ(τi, t) > RBF(τi, t) then sincet > (k − 1)Ti − Ji

thenk − 1 steps before approximating the request bound
function, we verify:

RBF(τi, t) ≥ kCi (4)

Furthermore,

δ(τi, t) − RBF(τi, t) ≤ Ci

This is obvious ift ∈ [0, (k − 1)Ti − Ji] sinceδ(τi, t) =
RBF(τi, t), and if t > (k − 1)Ti − Ji, then:

δ(τi, t) − RBF(τi, t) = Ci + (t + Ji)
Ci

Ti

−

⌈
t + Ji

Ti

⌉
Ci

≤ Ci

As a consequence:δ(τi, t) ≤ RBF(τi, t)+Ci and using
inequality (4), we obtain the result:

δ(τi, t) ≤ (1 +
1

k
)RBF(τi, t)

As a consequence, both inequalities are verified.

109

Using the same approach presented in [6, 5], we can
establish the correctness of approximation.

Theorem 4 If there exists a time instantt ∈ (0, Di − Ji],
such thatŴi(t) ≤ t, thenτi is feasible (i.e.,Wi(t) ≤ t).

Proof: Directly follows from Theorem 3.

Theorem 5 If ∀t ∈ (0, Di − Ji], Ŵi(t) > t, thenτi is
infeasible on a processor of(1 − ǫ) capacity.

Proof: Assume that∀t ∈ (0, Di−Ji], Ŵi(t) > t, butτi is
still feasible on a(1− ǫ) speed processor. Since assuming
τi to be feasible upon a(1−ǫ) speed processor, then there
must exist a timet0 such thatτi: Wi(t0) ≤ (1−ǫ)t0. But,
using Theorem 3 we verify that̂Wi(t) ≤ (1 + 1

k
)Wi(t),

wherek =
⌈

1
ǫ

⌉
− 1, then for allt ∈ (0, Di − Ji], the

conditionŴi(t) > t implies that∀t ∈ (0, Di − Ji]:

Wi(t) >
t

1 + 1
k

>
k

k + 1
t ≥ (1 − ǫ)t.

As a consequence, a timet0 such thatWi(t0) ≤ (1 −
ǫ)t0 cannot exist andτi is infeasible.

To conclude the correctness, we must prove that
scheduling points are sufficient.

Theorem 6 For all t ∈ Ŝi such thatŴi(t) > t, then we
also verify that:∀t ∈ (0, Di − Ji], Ŵi(t) > t.

Proof: Let t1 andt2 be twoadjacentpoints in Ŝi (i.e.,
∄ t ∈ Ŝi such thatt1 < t < t2). SinceŴi(t1) >

t1, Ŵi(t2) > t2 and the fact that̂Wi(t) is an non-
decreasing step left-continuous function we conclude that
∀t ∈ (t1, t2) Ŵi(t) > t (see Figure 2 for details). The
property follows.

4 Approximate Response-Time Analysis
with Release Jitter

4.1 Approximate worst-case response time up-
per bound

According to a accuracy parameterǫ, we define ap-
proximate worst-case response times as in the classical
Combinatorial Optimization Problem theory [7]:

Definition 3 Letǫ be a constant andRi be the worst-case
response time of a taskτi, then the approximate worst-
case responses timêRi satisfies:Ri ≤ R̂i ≤ (1 + ǫ)Ri.

We shall combine results presented in Sections 2 and 3,
in order to define approximate worst-case response times.
Using theFPTASpresented in Section 3, we can check that
a task is feasible or not. If it is feasible, then we are able to
compute an upper bound of the worst-case response time
of a task as presented in Section 2.

t1 t2

y = t

y = Ŵi(t)

t

y

Figure 2. The scheduling points Ŝi are suf-
ficient

Definition 4 Consider a taskτi such that there exists a
time t satisfyingŴi(t) ≤ t, then an approximate worst-
case response time is defined by:

t∗
def
= min

(
t ∈ Ŝi | Ŵi(t) ≤ t

)
andR̂i

def
= Ŵi(t

∗) + Ji.

We now prove that such a method defines an upper
bound of the worst-case response time of taskτi.

Theorem 7 For every taskτi such that there exists a time
t satisfyingŴi(t) ≤ t, then:Ri ≤ R̂i

Proof: Let t be a scheduling point such that̂Wi(t) ≤ t.
From the approximate feasibility test, we verify thatτi is
feasible: there exists a timet∗ such thatWi(t

∗) ≤ t∗ and
t∗ ≤ t. SinceRi = Wi(t

∗) + Ji andR̂i = Ŵi(t) + Ji

then, it follows from properties of the approximate feasi-
bility test thatRi ≤ R̂i.

4.2 The Algorithm

The complete algorithm for computing approximate
worst-case response time of a taskτi is presented in Algo-
rithm 1. The algorithm contains three nested loops. The
first loop and the last one are bounded byn (i.e., the num-
ber of tasks). The second one is related tok, thus on the
value1/ǫ. Thus, this implementation of the approximate
feasibility test for a given task leads to aO(n2/ǫ) algo-
rithm. This algorithm is eligible to be aFPTAS since it
is polynomial in the size of the task set and the accu-
racy parameter1/ǫ. But, as we will prove in the next
section, it does not lead to bounded performance guaran-
tee on computed response times in comparison with an
exact response time analysis (performed with a pseudo-
polynomial time algorithm).

110

Algorithm 1 . Approximate worst-case response time of τi

input :
ǫ : real /* The FPTAS accuracy parameter */;
i : integer /* Index of the analysed task */;
n : integer /* Size of the task set */;
C[n], T [n], D[n], J [n] : array of integers /* Task parameters */;

output: Approximate response time ofτi or ’not feasible upon a(1 − ǫ)-speed processor’;

k = ⌈1/ǫ⌉ − 1 /* k is the number of steps considered in rbf(τi, t) */;
for j = 1 to i − 1 do

for ℓ = 1 to k do /* for each scheduling pointt */
if (ℓ = k and j = i − 1) then t = D[i] − J [i] ; /* t is the last scheduling point */
else t = ℓ × T [j] − J [j] ; /* t is another scheduling points */
w = Ci /* w is δ(τi, t) */;
for m = 1 to i − 1 do /* for all higher priority tasks */

if (t ≤ (k − 1)T [m]− J [m]) then w+ = C[m]⌈t/T [m]⌉ ; /* compute rbf(τm; t) */
else w+ = C[m] + (t + J [i])C[m]/T [m] ; /* compute linear approximation */

end
if (t ≥ w)) then return (w + J [i]); /* approximate response time of τi */

end
end
return (”not feasible upon a(1 − ǫ)-speed processor”);

4.3 Worst-case analysis of the algorithm perfor-
mance guarantee

We now show that this method does not lead to an ap-
proximation algorithm (i.e., with the expected bounded
error presented in Definition 3) even if the approximate
feasibility analysis returns a positive answer.

Theorem 8 There exist some task systems for which
cRi ≤ R̂i for any integerc.

Proof: Let us consider a task system with two tasks with
the following parameters:τ1 with C1 = 1−λ andT1 = 1
andτ2 with C2 = kλ andT2 = k+1/λ, where0 < λ < 1
andk is an arbitrary integer. (Both tasks have their jitter
parameter equal to zero). With these parameters and the
Rate-Monotonic scheduling policy, the taskτ2 can only
be executedλ unit of time within any interval of length
one in the schedule. Theτ2 completes at timek. The ap-
proximate feasibility analysis leads to the following com-
putations:

Ŵ2(t) = kλ + δ(τ1, t)

= kλ + (1 − λ) + t(1 − λ)

The corresponding approximate worst-case response time
will be achieved forŴ2(t) = t. The approximation
switches to a linear approximation at time(k − 1)T1 =
k − 1. The corresponding fixed-pointt is:

t = kλ + (1 − λ) + t(1 − λ)

t = k − 1 +
1

λ

As a consequence the approximate worst-case response
time is: R̂2 = k − 1 + 1/λ. The approximate feasibility

analysis always predicts that the task system is feasible for
any integerk since the approximate worst-case response
time is strictly less than the deadline of taskτ2. Therefore,
the approximate response time is strictly larger than the
exact, and can be made arbitrarily large: the ratio between
the exact worst-case response time and the approximate
one is exactly:

R̂2

R2
= 1 −

1

k
+

1

λk

This ratio increases without any bound asλ approaches
zero. So, for any arbitrary integerc, we can find a lambda
sufficiently small such that̂R2/R2 ≥ c.

The Figure 3 presents an example of this counterex-
ample withk = 10, λ = 0.1, ǫ = 0.33. The exact worst-
case response time ofτ2 is 10 and the approximate worst-
case response time is 19 (thusτ2 completes by its dead-
line equal to 20). Note that the slope of the approximated
cumulative request bound function tends to one whenλ

tends to zero. and thus becomes nearly parallel to the line
representing the processor capacity. That is why a perfor-
mance guarantee can not be achieved using our method.

5 Conclusion and Further Work

We presented a method for approximating worst-case
response times of static-priority tasks with release jitter
constraints. The method is based on aFPTASperforming
a feasibility test based on a Time-Demand Analysis. Ac-
cording to an accuracy parameterǫ, if the approximate
feasibility test concludes that a taskτi is feasible (i.e.,
meets its deadline) then we can compute an approximate

111

Counterexample

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

f(t)=t

approx_2(t)

W_2(t)

Figure 3. Counterexample with k = 3, λ =
0.1, ǫ = 0.3.The exact worst-case response
time is 10 and the approximate one is
achieved when lines intersect at time 19.
Thus, the approximate value is near 2 times
greater than the exact wors-case response
time. Reducing λ to an arbitrary small value
lead to an unbounded performance ratio.

worst-case response time, but without any constant per-
formance guarantee. But, when the approximate feasi-
bility test cannot conclude thatτi is feasible, we know
thatτi will not be feasible under a processor with capac-
ity (1 − ǫ); however, the proposed approach cannot guar-
antee that the approximate worst-case response times are
within a constant multiplicative factor of the actual worst-
case response time. Even if our results are not complete,
they allow to define a sufficient feasibility analysis that
can be used for analysing a component in a QoS Opti-
mization method or encapsulated within a holistic analy-
sis for analysing distributed real-time systems.

The existence of an approximation scheme (or weakly
an approximation algorithm) is still an interesting open
issue. If such a result exists for the worst-case response
time analysis, it will exactly quantify the pessimism of the
corresponding sufficient feasibility test.

Acknowledgments

The authors would like to thank anonymous reviewers
for their helpful comments that allow to improve the pre-
sentation of this paper.

References

[1] E. Bini, G. Buttazzo, and G. Buttazzo. Rate monotonic
scheduling: The hyperbolic bound.IEEE Transactions on
Computers, 2003.

[2] R. Bril, W. Verhaege, and E. Pol. Initial values for on-line
response time calculations.proc. Int Euromicro Conf. on
Real-Time Systems (ECRTS’03), Porto, 2003.

[3] A. Burchard and J. Liebeherr. New strategies for assigning
real-time tasks to multiprocessor systems.IEEE Transac-
tions on Computers, 1995.

[4] D. Chen, A. Mok, and T. Kuo. Utilization bound revisited.
IEEE Transactions on Computers, 2003.

[5] N. Fisher and S. Baruah. A polynomial-time approxima-
tion scheme for feasibility analysis in static-priority sys-
tems with arbitrary relative deadlines. In I. C. Society,
editor,Proceedings of the EuroMicro Conference on Real-
Time Systems, pages 117–126, 2005.

[6] N. Fisher and S. Baruah. A polynomial-time approx-
imation scheme for feasibility analysis in static-priority
systems with bounded relative deadlines.Proceedings
of the 13th International Conference on Real-Time Sys-
tems,Paris, France, pages 233–249, 2005.

[7] M. Garey and D. Johnson. Computers and intractability:
a guide to the theory of np-completeness.WH Freeman
and Company, 1979.

[8] L. George, N. Rivierre, and M. Spuri. Preemptive and
non-preemptive real-time uniprocessor scheduling.Tech-
nical Report 2966, Institut National de Recherche en In-
formatique et Automatique (INRIA), France, 1996.

[9] C. Han and H. Tyan. A better polynomial-time schedu-
lability test for real-time fixed-priority scheduling algo-
rithm. proc 18th IEEE Real-Time Systems Symposium
(RTSS’97), 1997.

[10] M. Joseph and P. Pandya. Finding response times in a
real-time systems.The Computer Journal, 29(5):390–395,
1986.

[11] S. Lauzac, R.Melhem, and D. Mossé. An improved rate-
monotonic admission control and its applications.IEEE
Transactions on Computers, 2003.

[12] J. Lehoczky. Fixed-priority scheduling of periodic task
sets with arbitrary deadlines.proc. Real-Time System Sym-
posium (RTSS’90), pages 201–209, 1990.

[13] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic
scheduling algorithm: exact characterization and aver-
age case behavior.proc. Real-Time System Symposium
(RTSS’89), pages 166–171, 1989.

[14] J. C. Liu and J. W. Layland. Scheduling algorithms for
multiprogramming in hard real-time environment.Jour-
nal of the ACM, 20(1):46–61, 1973.

[15] Y. Manabee and S. Aoyagi. A feasible decision algorithm
for rate monotonic and deadline monotonic scheduling.
Real-Time Systems Journal, pages 171–181, 1998.

[16] D.-W. Park, S. Natarajan, A. Kanavsky, and M. Kim. A
generalized utilization bound test for fixed-priority real-
time scheduling.proc. 2sd Workshop on Real-Time Sys-
tems and Applications, 1995.

[17] P. Richard. Polynomial time approximate schedulability
tests for fixed-priority real-time tasks: some numerical
experimentations.14th Real-Time and Network Systems,
Poitiers (France), 2006.

[18] M. Sjodin and H. Hansson. Improved response time anal-
ysis calculations.proc. IEEE Int Symposium on Real-Time
Systems (RTSS’98), 1998.

[19] K. Tindell. Fixed Priority Scheduling of Hard Real-Time
Systems. PhD thesis, University of York, 1994.

112

Schedulability Analysis using Exact Number of Preemptions and no Idle Time
for Real-Time Systems with Precedence and Strict Periodicity Constraints

Patrick Meumeu Yomsi
INRIA Rocquencourt

Domaine de Voluceau BP 105
78153 Le Chesnay Cedex - France
Email: patrick.meumeu@inria.fr

Yves Sorel
INRIA Rocquencourt

Domaine de Voluceau BP 105
78153 Le Chesnay Cedex - France

Email: yves.sorel@inria.fr

Abstract

Classical approaches based on preemption, such as
RM (Rate Monotonic), DM (Deadline Monotonic), EDF
(Earliest Deadline First), LLF (Least Laxity First), etc,
give schedulability conditions in the case of a single pro-
cessor, but assume the cost of the preemption to be negli-
gible compared to the duration of each task. Clearly the
global cost is difficult to determine accurately because, if
the cost of one preemption is known for a given proces-
sor, it is not the same for the exact number of preemptions
of each task. Because we are interested in hard real-time
systems with precedence and strict periodicity constraints
where it is mandatory to satisfy these constraints, we give
a scheduling algorithm which counts the exact number of
preemptions for each task, and thus leads to a new schedu-
lability condition. This is currently done in the particular
case where the periods of all the tasks constitute an har-
monic sequence.

1 Introduction

We address here hard real-time applications found in
the domains of automobiles, avionics, mobile robotics,
telecommunications, etc, where the real-time constraints
must be satisfied in order to avoid the occurrence of dra-
matic consequences [1, 2]. Such applications based on
automatic control and/or signal processing algorithms are
usually specified with block-diagrams. They are com-
posed of functions producing and consuming data, and
each function has a strict period in order to guarantee the
input/output rate as it is usually required by the automatic
control theory. Consequently, in this paper we study the
problem of scheduling tasks onto a single computing re-
source, i.e. a single processor, where each task corre-
sponds to a function and must satisfy precedence con-
straints in addition to its strict period. This latter con-
straint implies that for such a system, any task starts its
execution at the beginning of its period. We assume here
that no jitter is allowed at the beginning of each task.

Traditional approaches based on preemption, such as
RM (Rate Monotonic) [3], DM (Deadline Monotonic)
[4], EDF (Earliest Deadline First) [5], LLF (Least Lax-
ity First) [6], etc, give schedulability conditions but al-
ways assume the cost of the preemption to be negligible
compared to the duration of each task [7, 8]. Indeed, this
assumption is due to the Liu & Layland model [9], also
called “the classical model”, which is the pioneer model
for scheduling hard real-time systems. With this model,
the authors showed that a system of independent periodic
preemptive tasks with the periods of all tasks forming an
harmonic sequence [10] 1, is schedulable if and only if:

n

∑
i=1

C
′
i

Ti
≤ 1 (1)

Ti denotes the period and C
′
i the inflated worst case exe-

cution time (WCET) with the approximation of the cost
of the preemption for task τi. It is worth noticing that
most of the industrial applications in the field of auto-
matic control, image and signal processing consist of tasks
with periods forming an harmonic sequence. For exam-
ple, the automatic guidance algorithm in a missile falls
within this case. Actually, expression (1) takes into ac-
count the cost due to preemption inside the value of C

′
i .

Thus, C
′
i =Ci +ε′

i where Ci is the value of the WCET with-
out preemption, and ε′i is an approximation of the cost εi

of the preemption for this task, as explicitly stated in [9].
Thus, expression (1) becomes:

U + ε
′ ≤ 1 (2)

where

U =
n

∑
i=1

Ci

Ti
, and ε

′
=

n

∑
i=1

ε′
i

Ti

The cost of the preemption for task τi is εi = Np(τi) ·α,
where α denotes the temporal cost of one preemption
and Np(τi) is the exact number of preemptions of task τi.

1A sequence (ai)1≤i≤n is harmonic if and only if there exists qi ∈
N such that ai+1 = qiai. Notice that we may have qi+1 �= qi ∀i ∈
{1, · · · ,n}.

113

Np(τi) may depend on the instance of the task according
to the relationship between the periods of the other tasks
in the system. For example, in the case where the periods
of the tasks form an harmonic sequence Np(τi) does not
depend on the instance of τi. Therefore, since ε′

i is an ap-
proximation of εi and Ti is known, ε′

is an approximation
of the global cost ε due to preemption, defined by:

ε =
n

∑
i=1

Np(τi) ·α
Ti

If the temporal cost α of one preemption is known for
a given processor, it is not the same for the exact num-
ber of preemptions Np(τi) for each task τi during a pe-
riod Ti. Consequently, it becomes difficult to calculate
the global cost of the preemption, and thus to guaran-
tee that expression (2) holds. Obviously the approxima-
tion of this latter may lead to a wrong real-time execu-
tion whereas the schedulability analysis concluded that
the system was schedulable. To cope with this problem
the designer usually allows margins which are difficult to
assess, and which in any case lead to a waste of resources.
Note that the worst-case response time of a task is the
greatest time, among all instances of that task, it takes to
execute each instance from its release time, and it is larger
than the WCET when an instance is preempted. A. Burns,
K. Tindell and A. Wellings in [11] presented an analysis
that enables the global cost due to preemptions to be fac-
tored into the standard equations for calculating the worst-
case response time of any task, but they achieved that by
considering the maximum number of preemptions instead
of the exact number. Juan Echagüe, I. Ripoll and A. Cre-
spo also tried to solve the problem of the exact number
of preemptions in [12] by constructing the schedule using
idle times and counting the number of preemptions. But,
they did not really determine the execution overhead in-
curred by the system due to these preemptions. Indeed,
they did not take into account the cost of each preemption
during the scheduling. Hence, this amounts to consider-
ing only the minimum number of preemptions since some
preemptions are not considered: those due to the increase
in the execution time of the task because of the cost of the
preemptions themselves.

For such a system of tasks with strict periodicity and
precedence constraints, we propose a method to calculate
on the one hand the exact number of preemptions and thus
the accurate value of ε, and on the other hand the sched-
ule of the system without any idle time, i.e. the processor
will always execute a task as soon as it is possible to do
so. Although idle time may help the system to be schedu-
lable, when idle time is forbidden it is easier to find the
start times of all the instances of a task according to the
precedence relation.

The proposed method leads to a much stronger schedu-
lability condition than expression (1). Moreover, we do
this in the case where tasks are subject to precedence and
strict periodicity constraints, using our previous model

[13] that is well suited to the applications we are inter-
ested in. Afterwards, to clearly distinguish between the
specification level and its associated model, we shall use
the term operation instead of the commonly used “task”
[14] which is too closely related to the implementation
level.

The paper is structured as follows: Section 2 describes
the model and gives notations used throughout this paper.
Section 3 restricts the study field thanks on the one hand
to properties on the strict periods, and on the other hand
to properties on WCETs. Section 4 proposes a scheduling
algorithm which counts the exact number of preemptions,
and derives a schedulability condition, in the case where
the periods of all operations constitute an harmonic se-
quence. We conclude and propose future work in section
5.

2 Model

The model depicted in figure 1 is an extension, with
preemption, of our previous model [13] for systems with
precedence and strict periodicity constraints executed on
a single processor.

Figure 1. Model

Here are the notations used in this model assuming all
timing characteristics are non-negative integers, i.e. they
are multiples of some elementary time interval (for ex-
ample the “CPU tick”, the smallest indivisible CPU time
unit):
τi = (Ci,Ti): An operation
Ti: Period of τi

Ci: WCET of τi without preemption, Ci ≤ Ti

τk
i : The kth instance of τi

α: Temporal cost of one preemption for a given processor
Np(τk

i): Exact number of preemptions of τi in τk
i

Ck
i = Ci +Np(τk

i) ·α: Exact WCET of τi including its pre-
emption cost in τk

i
s0
i : Start time of the first instance of τi

sk
i = s0

i +(k−1)Ti: Start time of the kth instance of τi

Rk
i : Response time of the kth instance of τi

Ri: Worst-case response time of τi

Ti ∧Tj: The greatest common divisor of Ti and Tj,
when Ti ∧Tj = 1, Ti and Tj are co-prime
τi ≺ τ j: τi −→ τ j, τi precedes τ j

We denote by V the set of all systems of operations.
Each system consists in a given number of operations,
with precedence and strict periodicity constraints. Each

114

operation τi of a system in V consists of a pair (Ci,Ti): Ci

its WCET and Ti its period.
The precedence constraints are given by a partial order

on the execution of the operations. τi ≺ τ j means that
the start time s0

j of the first instance of τ j cannot occur

before the first instance of τi, started at s0
i , is completed.

This precedence relation between operations also implies
that sk

i ≤ sk
j, ∀k ≥ 1 thanks to the result given in [15]. In

that paper it has been proven that given two operations
τi = (Ci,Ti) and τ j = (Cj,Tj):

τi ≺ τ j =⇒ Ti ≤ Tj

Regarding the latter relation from the practical point of
view, it is worth noticing that when the precedence rela-
tions are due to data transfers and the periods of the oper-
ations exchanging data constitute an harmonic sequence,
the number of operations producing data between two
consecutive operations consuming the corresponding data,
is constant. Consequently, the number of buffers used to
actually achieve the data exchange is bounded, i.e. it can-
not increase indefinitely.

The strict periodicity constraint means that two succes-
sive instances of an operation are exactly separated by its
period: sk+1

i − sk
i = Ti ∀k ∈ N, ∀i ∈ {1, · · · ,n}, and no

jitter is allowed. In this model the start time is always
equal to the release time, in contrast to Liu & Layland’s
classical model. A great advantage of the strict periodic-
ity constraint for each task is that it is only necessary to
focus on the start time of the first instance, the other being
directly obtained from it.

It is fundamental to note that, because of the strict peri-
odicity constraint and the fact that we are dealing with the
single processor case, any two instances of any two op-
erations of the system cannot start their executions at the
same time.

3 Study field restriction

Firstly, we eliminate all the systems where the start
times of any two instances of any two operations are iden-
tical. This will be achieved thanks to properties on the
strict periods of the operations, using the Bezout theorem.
This is formally expressed through both theorems given in
section 3.1. Secondly, we eliminate all the systems where
the start time of any instance of an operation occurs while
the processor is occupied by a previously scheduled op-
eration thanks to properties on WCETs of the operations.
This is formally expressed through the theorem given in
section 3.2. These three theorems give sufficient non-
schedulability conditions. For the remaining systems of
operations, we adopt a constructive approach which con-
sists in building, i.e. in predicting, all the possible preemp-
tive schedules without any idle time. In so far, as we are
dealing with hard real-time systems whose main feature
is predictability, constructive techniques are better suited
than simulation techniques based on tests that are seldom
exhaustive. In addition, an exhaustive simulation assumes

that there exists a scheduling algorithm, e.g. RM or DM,
which is used to perform the simulation. In our case we
propose a scheduling algorithm which determines if the
system is schedulable and provides the schedule.

3.1 Restriction due to strict periodicity
Theorem 1

Given a system of n operations in V , if there are two
operations τi = (Ci,Ti) and τ j = (Cj,Tj) with (τi ≺ τ j)
starting their executions respectively at the dates s0

i and s0
j

such that
Ti ∧Tj = 1 (3)

then the system is not schedulable. Moreover, any
additional assumption (for example preemption and
idle times) on the system intending to satisfy all the
constraints is of no interest in this case.

Proof: The proof of this theorem uses the Bezout theorem
and is detailed in [16]. �

Theorem 2
Given a system of n operations in V , if there are two

operations τi = (Ci,Ti) and τ j = (Cj,Tj) with (τi ≺ τ j)
starting their executions respectively at the dates s0

i and
s0

j such that

Ti ∧Tj | (s0
j − s0

i) (4)

then the system is not schedulable. Moreover any addi-
tional assumption on the system intending to satisfy all
the constraints is of no interest in this case.

Proof: The proof of this theorem also uses the Bezout
theorem and is detailed in [16]. �

Theorems 1 and 2 give non-schedulability conditions
for systems with strict periodicity constraints when both
previous relations on the strict periods hold. Moreover,
any additional assumption on the system would be useless
because of the identical start times of two instances of at
least two operations.

We denote by Ωλ the sub-set of V excluding the cases
where the strict periods of the operations verify both pre-
vious relations.

Ωλ = {{(Ci,Ti)}1≤i≤n ∈V /∀i, j ∈ {1, · · · ,n}
∃λ > 1, Ti ∧Tj = λ and λ � (s0

j − s0
i)}

3.2 Restriction due to WCET
The scheduling analysis of a system of preemptive

tasks (operations) has shown its importance in a wide
range of applications because of its flexibility and its rel-
atively easy implementation [17]. Although preemptions
may allow schedules to be found that could not be found
without it, it can, unfortunately, cause non schedulability
of the system due to its global cost.

Since, given two operations τi = (Ci,Ti) and τ j =
(Cj,Tj) we have τi ≺ τ j =⇒ Ti ≤ Tj thus, the operations
must be scheduled in an increasing order of their periods

115

corresponding to classical fixed priorities. In other words
the smaller the period of an operation is, the greater its pri-
ority is, like in the RM scheduling. Note that the schedul-
ing analysis of a system of preemptive tasks with fixed
priorities has been a pivotal basis in real-time application
development since the work of Liu and Layland [9]. Now,
we assume that any operation of the system may only be
preempted by those previously scheduled, and that any op-
eration is scheduled as soon as the processor is free, i.e. no
idle time is allowed between the end of the first instance
of an operation and the start time of the first instance of
the next operation relatively to ≺. This assumption about
no idle time allows the greatest possible utilization factor
of the processor to be achieved. Therefore, to schedule
an operation τi relatively to those previously scheduled,
amounts to filling available spaces in the scheduling with
corresponding slices of the exact WCET of τi. Conse-
quently, from the point of view of operation τi the start
time s0

i of its first instance is yielded by the end of the first
instance of τi−1. Thus, the notion of release time of τi is
not relevant in this paper, or is equal to s0

i .
A potential schedule S of a system is given by a list of

the start times of the first instance of all the operations:

S = {(s0
1,s

0
2, · · · ,s0

n)} (5)

The start times sk
i (k ≥ 1, i = 1 · · ·n) of the other in-

stances of operation τi are directly deduced from the first
one, and this advantage derives directly from the model.
The response time Rk

i of the kth instance of operation
τi = (Ci,Ti) is the time elapsed between its start time sk

i
and its end time. This latter takes into account the pre-
emption thus,

Rk
i ≥Ci ∀k.

We call Ri the worst response time of operation τi, de-
fined as the maximum of the response times of all its in-
stances.

These definitions enable us to say that, in order to sat-
isfy the strict periodicity, any operation τi = (Ci,Ti) of a
potentially schedulable system in Ωλ must satisfy:

Ri ≤ Ti ∀i ∈ {1, · · · ,n} (6)

We say that a system in Ωλ has one overlapping when
the start time of any instance of a given operation occurs
while the processor is occupied by a previously scheduled
operation. Such systems are not schedulable, as expressed
in the following theorem.

Theorem 3
Given a system of n operations in Ωλ, if there are two

operations τi = (Ci,Ti) and τ j = (Cj,Tj) with (τi ≺ τ j)
starting their executions respectively at the dates s0

i and
s0

j such that for k ≥ 1

∃ β < k and 0 ≤ (s0
j +βTj)− (s0

i +(k−1)Ti) < Rk
i (7)

then the system is not schedulable. Moreover any addi-
tional assumption on the system intending to satisfy all

the constraints is of no interest in this case.

Proof: The proof of this theorem derives directly from
the assumption that an operation may only be preempted
by those previously scheduled, and it is detailed in [16].
An example is given below (see figure 2). �

Figure 2. System with an overlapping

Now we can partition Ωλ into the three following dis-
joint subsets: the subset Vc of systems with overlappings
which are not schedulable thanks to theorem 3, the subset
Vr of systems with regular operations, i.e. where the peri-
ods of all the operations constitute an harmonic sequence,
and the subset Vi of systems with irregular operations.
Thus, since the subset of operations where Ti ∧ Tj = 1
holds, the subset of operations where Ti ∧ Tj | (s0

j − s0
i)

holds, and the subset Vc are not schedulable, only the re-
maining subsets Vr and Vi are potentially schedulable (see
figure 3).

Vc = {{(Ci,Ti)}1≤i≤n ∈ Ωλ /∃i ∈ {1, · · · ,n−1},
∃ j ∈ {i+1, · · · ,n} and

0 ≤ (s0
j +βTj)− (s0

i +(k−1)Ti) < Rk
i , k ≥ 1; β ∈ N}

Vr = {{(Ci,Ti)}1≤i≤n ∈ Ωλ /T1 | T2 | · · · | Tn}

Vi = Ωλ\(Vc ∪Vr)

Figure 3. Ωλ-partitioning

In the remainder of this paper, we restrict our schedul-
ing analysis to the subset Vr.

4 Scheduling analysis for Vr

Given any system in Vr, both the exact WCET Ck
i and

the response time Rk
i of the kth instance of a given op-

eration τi are the same for all its instances, Ck
i = C∗

i =

116

Ci + Np(τi) ·α and Rk
i = Ri (equal to the worst response

time Ri of the operation) because the number of available
spaces left in each instance does not depend on the in-
stance itself. Therefore it is worth, in this case, noticing
that it is sufficient to give a schedulability condition for
the first instance of each operation.

We call Up (respectively U∗
p) the pth temporary load

factor (respectively the exact pth temporary load factor)
of the processor (1 ≤ p ≤ n) for a system of n operations
{τi = (Ci,Ti)}1≤i≤n in Vr.

Up =
p

∑
i=1

Ci

Ti
and U∗

p =
p

∑
i=1

C∗
i

Ti
= Up +

p

∑
i=1

Np(τi) ·α
Ti

This system will be said to be potentially schedulable
if and only if:

Un ≤ 1 (8)

and schedulable if and only if:

U∗
n ≤ 1 (9)

Notice that in (8), Ci is the WCET of operation τi with-
out preemption. From now on, we assume (8) is always
satisfied.

We say that the exact WCET C∗
i = Ci +Np(τi) ·α of an

operation τi = (Ci,Ti) of a system in Vr is a critical WCET
if its scheduling causes a temporal delay to the start time
of the first instance of operation τi+1 = (Ci+1,Ti+1), τi ≺
τi+1. In other words, this means from the point of view
of operation τi that C∗

i is critical when s0
i+1 > s0

i +R1
i , see

figure 4. Indeed, in this case the last slice of the exact
WCET of τi exactly fits the next available space in the
scheduling, and thus the first instance of the next operation
relatively to ≺ cannot start exactly at the end of the first
instance of τi.

Figure 4. Operation with a critical WCET

In order to make it easier to understand the general
case, we first study the simpler case of only two opera-
tions. Both cases are based on the same principle which
consists, for an operation, in filling available spaces left
in each instance with slices of its exact WCET taking into
account the cost of the exact number of preemptions nec-
essary for its scheduling.

4.1 System with two operations
We consider τ1 = (C1,T1) and τ2 = (C2,T2) to be a sys-

tem with two operations in Vr such as T1 | T2.

To be consistent with what we have presented up to
now, we will first schedule τ1, and then τ2, τ1 ≺ τ2. Hence,
since no idle time is allowed between the end of the first
instance of τ1 and the start time of the first instance of τ2,
we have:

C∗
1 = C1 and thus R1 = C1 and s0

2 = s0
1 +R1 (10)

Without any loss of generality, we assume in the re-
mainder of this paper that s0

1 = 0. Because the system is
potentially schedulable, we have:(⌈

R1 +T2

T1

⌉
−1

)
·C∗

1 +C2 ≤ T2, (11)

i.e. operation τ2 is schedulable without taking into ac-
count the cost of the preemption.

Now, on the one hand, if:

C1 +C2 ≤ T1

then operation τ2 is schedulable without any preemption,
and we have:

C∗
2 = C2 and R2 = C2 (12)

On the other hand, if:

C1 +C2 > T1 (13)

then the system requires at least one preemption of oper-
ation τ2 to be schedulable. To compute the exact number
of preemptions Np(τ2), we perform the algorithm below,
using a sequence of Euclidean divisions.

We denote e = T1 −C1 and we initialize C1 = C2. The
Euclidean division of C1 by e gives:

C1 = q1 · e+ r1 with q1 =

⌊
C1

e

⌋
and 0 ≤ r1 < e

For all k ≥ 0, we compute

Ck+1 = rk +qk ·α (14)

and at each step, we perform the Euclidean division of
Ck+1 by e which gives:

Ck+1 = qk+1 ·e+rk+1 with qk+1 =

⌊
Ck+1

e

⌋
and 0≤ rk+1 < e

We stop the algorithm as soon as: either there exists

m1 ≥ 1 such that
m1

∑
i=1

qi ·e > T2(1−U∗
1), and thus the oper-

ation τ2 is not schedulable in this case, or

∃m2 ≥ 1 such that Cm2 ≤ e (15)

and thus, Np(τ2) is given by:

Np(τ2) =
m2−1

∑
i=1

qi (16)

117

Hence
C∗

2 = C2 +Np(τ2) ·α (17)

and the worst response time R2 of the operation τ2 is given
by:

R2 = R0
2 − s0

2 (18)

where:

R0
2 = C∗

2 +

⌈
R0

2

T1

⌉
·C∗

1 (19)

R0
2 is easily obtained by using a fixed point algorithm ac-

cording to:⎧⎪⎨⎪⎩ R0,l+1
2 = C∗

2 +

⌈
R0,l

2

T1

⌉
·C∗

1 ∀l ≥ 0

R0,0
2 = C∗

2

(20)

The algorithm is stopped as soon as two successive
terms of the iteration are equal:

R0,l+1
2 = R0,l

2 , l ≥ 0 (21)

To simplify the notation, the worst response time will
be written as:

R2 =

{
R0

2 = C∗
2 +

⌈
R0

2

T1

⌉
·C∗

1

}
− s0

2 (22)

Therefore a necessary and sufficient schedulability
condition for operation τ2, and thus for the system {τ1,τ2}
taking into account the cost of the preemption is given by:

U∗
2 ≤ 1 i.e., U2 +

Np(τ2) ·α
T2

≤ 1 (23)

Example 1
Let τ1 and τ2 be a system with two operations in Vr

with the characteristics defined in table 1:

Table 1. Characteristics of example 4.1
Ci Ti

τ1 2 5
τ2 4 10

We have: U2 =
2
5

+
4
10

= 0.8 and e = 3.

As operation τ1 is never preempted, its worst response
time R1 is equal to its worst-case execution time: R1 =
C∗

1 = C1 = 2.
Because τ1 ≺ τ2, these operations are schedulable if

and only if preemption is used (is mandatory).
Although it is not realistic, let α = 1 be the cost of one

preemption for the processor in order to show clearly the
impact of the preemption. Since C1 +C2 = 6 > T1 = 5, the
computation of Np(τ2) is summarized in the table below:

Therefore, there is only one preemption Np(τ2) = 1
(see figure 5) and C∗

2 = 4+1 ·1 = 5
According to (20), R0

2 = 9, and the worst response time
R2 of operation τ2 is given by:

Table 2. computation of Np(τ2)
Steps qi Ci ri

1 1 4 1
2 0 2 2

R2 = 9−2 = 7 and we have R2 ≤ T2 = 10

Thus the system is schedulable because:

U∗
2 = U2 +

Np(τ2) ·α
T2

= 0.9 ≤ 1.

Figure 5. Scheduling of two operations

4.2 System with n > 2 operations
The strategy we will adopt in this section of calculating

the exact number of preemptions for an operation is dif-
ferent from the one used in the previous section, because
we can no longer perform a simple Euclidean division.
Although, we can perform the Euclidean division to find
the number of preemptions for the second operation, this
technique cannot be usable for a third operation, and so
on. Actually, the available spaces left after having sched-
uled the second operation may not be equal, as shown in
example 4.2 below, see figure 6.

Example 2
Let α = 1 and {τ1, τ2, τ3, τ4} be a system with four

operations in Vr with the characteristics defined in table 3:

Table 3. Characteristics of example 4.2
Ci Ti

τ1 2 5
τ2 1 10
τ3 3 20
τ4 3 40

The schedule is depicted in figure 6.
In figure 6, it can be seen that after the scheduling of the

first operation, the available spaces left have equal lengths
(3 time units) but it is no longer the case after the schedul-
ing of the second operation, and thus for the third opera-
tion after the scheduling of the second operation, and so
on.

The intuitive idea of our algorithm consists in two main
steps for each operation, according to the precedence re-
lation. First, determine the total number of available time
units in each instance, and then the lengths of each avail-
able space (consecutive available time units). These data

118

Figure 6. Difficulty of using a simple Eu-
clidean division

allow the computation of the instants when the preemp-
tions occur. A preemption occurence corresponds to the
switch from an available time unit to an already executed
one. Second, for each potentially schedulable operation,
fill available spaces with slices of its WCET up to the
value of its WCET, and then add the cost of the pre-
emptions (p ·α for p preemptions) to the current inflated
WCET, taking into account the increase in the execution
time of the operation because of the cost of the preemp-
tions themselves. Finally, the last inflated WCET corre-
sponds to the exact WCET. Thus, it is possible to verify
the schedulability condition and then whether this opera-
tion is schedulable.

Notice that the number of available spaces is the same
for all the instances of an operation, thus it is only neces-
sary to verify the schedulability condition in the first in-
stance which is bounded by the period of the operation. In
addition, this verification is performed only once for each
operation. Consequently, the complexity of the algorithm
even though it has not been yet computed precisely, will
actually not explode.

Before going through our proposed algorithm, let us
make some assumptions:

1. we will add the cost due to the preemptions to the
scheduling analysis of a system if and only if the sys-
tem is already schedulable without taking it into ac-

count, that is
n

∑
i=1

Ci

Ti
≤ 1.

2. we have scheduled the first j−1 (2 ≤ j ≤ n−1) op-
erations, and we are about to schedule the jth opera-
tion,

3. we have potentially enough available spaces to
schedule operation τ j, that is to say:

j−1

∑
i=1

(⌈
s0

j +Tj

Ti

⌉
−
⌈

s0
j

Ti

⌉)
·C∗

i +Cj ≤ Tj

Under assumption 2, if Fj denotes the number of avail-
able time units left in each instance of the operation τ j,

then we have:
Fj = Tj · (1−U∗

j−1) (24)

Therefore, the operation τ j = (Cj,Tj) is schedulable if
and only if:

0 < C∗
j ≤ Fj i.e., C∗

j ∈ {1, · · · ,Fj} (25)

Let:
L j = {1, · · · ,Fj} (26)

L j denotes the set of all the possible exact WCET C∗
j of

operation τ j = (Cj,Tj). Thus, it also contains all the pos-
sible WCETs for operation τ j. Once (25) is satisfied, the
worst response time of τ j is given by:

Rj =

{
R0

j = C∗
j +

j−1

∑
i=1

⌈
R0

j

Ti

⌉
·C∗

i

}
− s0

j (27)

and Rj is obtained by using a fixed point algorithm similar
to the one given in the previous section, used to obtain R2.

4.3 Scheduling algorithm
Hereafter is the scheduling algorithm which counts the

exact number of preemptions in order to accurately take
into account its cost in the schedulability condition. It has
the twelve following steps.

1: Determine the start time s0
j of the first instance of

operation τ j = (Cj,Tj) according to whether the ex-
act WCET C∗

j−1 = Cj−1 + Np(τ j−1) ·α of operation
τ j−1 = (Cj−1,Tj−1) is critical or not.

2: Calculate the number of available time units Fj left
in each instance of τ j, and build the set L j thanks to
relations (24) and (25).

3: Make a first ordered partition of L j in k j−1 =
Tj

Tj−1
sub-sets of equal cardinals such that:

L j = L1
j ∪L2

j ∪·· ·∪Lk j−1
j with∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

L1
j =

{
1, · · · , Fj

k j−1

}
L2

j =

{
Fj

k j−1
+1, · · · ,2 Fj

k j−1

}
...

Lk j−1
j =

{
(k j−1 −1)

Fj

k j−1
+1, · · · ,Fj

}
4: For each subset L i

j obtained in the previous step,
make, if possible, a second ordered partition in hj−1

subsets such that:

L i
j = L i,1

j ∪L i,2
j ∪·· ·∪L i,h j−1

j ; i = 1, · · · ,k j−1

where the cardinal of each L i,σ
j with 2 ≤ σ ≤ h j−1

equals the cardinal of the subset at the same position
in the partition of L j−1 starting from the subset with
the greatest pair (k j−2,h j−2) of indices (the subset the
furthest on the right).

119

To make this step clear, let us give an example with
(k j−2,h j−2) = (2,2).
Let the partition of L j−1 be such that:

L j−1 = L1,1
j−1 ∪L1,2

j−1 ∪L2,1
j−1 ∪L2,2

j−1

= {1,2}∪{3,4,5}∪{6,7}∪{8,9,10}
and let L j, and k j−1 be such that:{

L j = {1,2,3,4,5,6,7,8,9,10,11,12}
k j−1 = 2

Thanks to step 3, we have:

L j = L1
j ∪L2

j

where

L1
j = {1,2,3,4,5,6} and L2

j = {7,8,9,10,11,12}
In step 4, we obtain:

L1
j = L1,1

j ∪L1,2
j ∪L1,3

j
= {1}∪{2,3}∪{4,5,6}

L2
j = L2,1

j ∪L2,2
j ∪L2,3

j
= {7}∪{8,9}∪{10,11,12}

Thus, at the end of step 4, we can write:

L j =

k j−1[

i=1

⎧⎨⎩
h j−1[

σ=1

L i,σ
j

⎫⎬⎭ (28)

5: Set: ∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

0 = L1,1
j

1 = L1,2
j

...

h j−1 −1 = L1,h j−1
j

h j−1 = L2,1
j

...

2h j−1 −1 = L2,h j−1
j

2h j−1 = L3,1
j

...

k j−1h j−1 −1 = Lk j−1,h j−1
j

θ denotes the subset of the possible exact WCETs C∗
j

of operation τ j, preempted θ times. Because opera-
tion τ j is potentially schedulable, thus:

∃θ1 ∈ {0,1, · · · ,k j−1h j−1 −1} and Cj ∈ θ1 (29)

If θ1 = 0, then Np(τ j) = 0. If it is not the case, i.e.
θ1 �= 0, thus we obtain for operation τ j the exact num-
ber of preemptions Np(τ j) using the algorithm below:
We initialize ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

C1 = Cj

q1 = θ1

A1 =
θ1−1

∑
k=0

card(k)

r1 = C1 −A1

For l ≥ 1, we compute:

Bl+1 =
l

∑
k=1

Ak +(rl +θl ·α) (30)

If Bl+1 ≤ Fj, thus ∃θl+1 ≥ 0 such that Bl+1 ∈
θ1 + · · ·+θl+1. If θl+1 = 0, then expression (31)
holds with m2 = l + 1 and Np(τ j) is given by (32),
else we set:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Cl+1 = rl +θl ·α
ql+1 = θl+1

Al+1 =
θ1+···+θl+1−1

∑
k=θ1+···+θl

card(k)

rl+1 = Cl+1 −Al+1

The algorithm is stopped as soon as: either there ex-
ists m1 ≥ 1 such that Bm1 > Fj, and thus operation τ j

is not schedulable in this case, or

∃m2 ≥ 1 such that θm2 = 0 (31)

and therefore:

Np(τ j) =
m2−1

∑
k=1

qk (32)

We compute the exact WCET C∗
j of operation τ j:

C∗
j = Cj +Np(τ j) ·α (33)

6: Determine the set I j of all the possible critical exact
WCETs C∗

j of operation τ j = (Cj,Tj). Each element

of I j is the maximum of each subset L i,σ
j , except Fj,

with (1 ≤ i ≤ k j−1) and (1 ≤ σ ≤ h j−1) obtained in
step 4.
We distinguish between two types of critical exact
WCETs: critical exact WCET of the first order and
critical exact WCET of the second order.
Critical exact WCET of the first order consists of the
ordered set I1

j given by:

I1
j =

{
max(L i

j) for 1 ≤ i ≤ k j−1
}\{Fj}

=

{
Fj

k j−1
,2

Fj

k j−1
, · · · ,(k j−1 −1)

Fj

k j−1

}
Critical exact WCET of the second order consists of
the ordered set I2

j given by:

I2
j =

k j−1[

i=1

I2,i
j with

I2,i
j =

{
max(L i,σ

j) for 1 ≤ σ ≤ h j−1

}
\I1

j

Hence I j = I1
j ∪ I2

j and can be rewritten as the ordered
set defined by:

I j = I2,1
j ∪

{
Fj

k j−1

}
∪ I2,2

j ∪
{

2
Fj

k j−1

}
∪·· ·

· · ·∪
{

(k j−1 −1)
Fj

k j−1

}
∪ I

2,k j−1
j (34)

120

Again, to make this step clear, let us give an example,
using the same one as in step 4. In this step we obtain:

I1
j =

{
max(L1

j),max(L2
j)
}\{12} = {6}

I2,1
j =

{
max(L1,σ

j), 1 ≤ σ ≤ 3
}
\{6} = {1,3}

I2,2
j =

{
max(L2,σ

j), 1 ≤ σ ≤ 3
}
\{6} = {7,9}

Thus, by writing I j like in expression (34) we obtain:

I j = {1,3}∪{6}∪{7,9}
7: Determine whether C∗

j is a critical WCET, i.e. C∗
j ∈ I j,

or not, thanks to step 6.
8: Determine the delay Λ j(Cj) that operation τ j will

cause to the start time of the first instance of oper-
ation τ j+1 = (Cj+1,Tj+1). There are three possible
cases for C∗

j :

• C∗
j ∈ L j\I j, i.e. C∗

j is not a critical exact WCET,
then:

Λ j(Cj) = 0 (35)

• C∗
j ∈ I1

j , i.e. C∗
j is a critical exact WCET of the

first order, then:

Λ j(Cj) = s0
j (36)

• C∗
j ∈ I2

j , i.e. C∗
j is a critical exact WCET of the

second order, then:

Λ j(Cj) = Λ j−1(C
0
j−1) (37)

such that for each possible value C0,i
j ∈ I2,i

j of C∗
j

with (1 ≤ i ≤ k j−1),

Λ j(C
0,i
j) = Λ j−1(C′

j−1)

where C′
j−1 ∈ I j−1 and C′

j−1 is at the same posi-

tion in I j−1 written as in (34) as C0,i
j in I2,i

j , start-
ing in I j−1 from its maximum which belongs to
the sub-set with the greatest pair (2,k j−2) of in-

dices I
2,k j−2
j−1 (the subset the furthest on the right).

Again, to make this step clear, let us give an example,
using that of step 4. Thanks to everything we have
presented up to now,

I j−1 = I2,1
j−1 ∪{5}∪ I2,2

j−1 = {2}∪{5}∪{7}
if we assume we had:
Λ j−1(5) = s0

j−1 and Λ j−1(2) = Λ j−1(7) = s0
j−2, then

as

I j = {1,3}∪{6}∪{7,9}
In this step we obtain:⎧⎨⎩

Λ j(6) = s0
j because 6 ∈ I1

j

Λ j(3) = Λ j(9) = Λ j−1(7) = s0
j−2

Λ j(1) = Λ j(7) = Λ j−1(5) = s0
j−1

9: Calculate the worst response time Rj of operation τ j

thanks to expression (27).
10: Increment j: j ← j + 1 and determine the start

time s0
j+1 of the first instance of operation τ j+1 =

(Cj+1,Tj+1) according to whether operation τ j =
(Cj,Tj) has a critical exact WCET C∗

j , or not.

s0
j+1 = Rj + s0

j +Λ j(Cj) (38)

11: Go back to step 2 as long as there remain potentially
schedulable operations.

12: Give the necessary and sufficient schedulability con-
dition:

U∗
n ≤ 1 i.e., Un +

n

∑
i=2

Np(τi) ·α
Ti

≤ 1 (39)

and the valid schedule S for the system taking into
account the global cost due to preemptions:

S = {(s0
1,s

0
2, · · · ,s0

n)} (40)

Example 3
Let α = 1 and {τ1,τ2,τ3,τ4} be a system with four op-

erations in Vr with the characteristics defined in table 4.

Table 4. Characteristics of example 4.3
Ci Ti

τ1 2 5
τ2 1 10
τ3 3 20
τ4 3 40

That system is potentially schedulable, indeed:

U4 =
2
5

+
1
10

+
3
20

+
3
40

= 0.725

The scheduling algorithm that we introduced previously
gives: C∗

1 = 2,C∗
2 = 1,C∗

3 = 4,C∗
4 = 5, thus:

U∗
4 =

2
5

+
1
10

+
4
20

+
5
40

= 0.825

and we obtain (see figure 7):

Figure 7. Scheduling algorithm

In figure 7, for each operation, we can see its actual
exact WCET (squared), its critical exact WCET (circled),
and its exact number of preemptions.

121

The global cost due to preemption is given by:

pr =
1
10

·0+
1
20

·1+
1
40

·2 = 0.1

and therefore the schedulability condition is:

U∗
4 = U4 + pr = 0.825 ≤ 1

The valid schedule of the system of operations obtained
with our scheduling algorithm is given in figure 8, and is
such that:

S = {(s0
1,s

0
2,s

0
3,s

0
4) = (0,R1,R2 + s0

2,R3 + s0
3)}

= {(0,2,3,9)}

Figure 8. Preemptions taken into account

5 Conclusion and future work

We are interested in hard real-time systems with prece-
dence and strict periodicity constraints where it is manda-
tory to satisfy these constraints. We are also interested
in preemption which offers great advantages when seek-
ing schedules. Since classical approaches are based on an
approximation of the cost of the preemption in WCETs,
possibly leading to a wrong real-time execution, we pro-
posed a constructive approach so that its cost may be taken
into account accurately. We proposed a scheduling algo-
rithm which counts the exact number of preemptions for a
system in Vr which is the subset of systems where the pe-
riods of all operations constitute an harmonic sequence as
presented in section 3.2, and thus gives a stronger schedu-
lability condition than Liu & Layland’s condition.

Currently, we are seeking a schedulability condition for
systems in Vi which is the subset of systems with irregular
operations and we are planning to study the complexity of
our approach in both Vr and Vi. Moreover, because idle
time may increase the possible schedules we also plan to
allow idle time, even though this would increase the com-
plexity of the scheduling algorithm.

References

[1] Joseph Y.-T. Leung and M. L. Merrill. A note on preemp-
tive scheduling of periodic, real-time tasks. Information
Processing Letters, 1980.

[2] Ray Obenza and Geoff. Mendal. Guaranteeing real time
performance using rma. The Embedded Systems Confer-
ence, San Jose, CA, 1998.

[3] J.P. Lehoczky, L. Sha, and Y Ding. The rate monotonic
sheduling algorithm: exact characterization and average
case bahavior. Proceedings of the IEEE Real-Time Systems
Symposium, 1989.

[4] N.C. Audsley, Burns A., M.F. Richardson, and A.J.
Wellings. Hard real-time scheduling : The deadline-
monotonic approach. Proceedings 8th IEEE Workshop on
Real-Time Operating Systems and Software, 1991.

[5] H. Chetto and M. Chetto. Some results on the earliest dead-
line scheduling algorithm. IEEE Transactions on Software
Engineering, 1989.

[6] Patchrawat Uthaisombut. The optimal online algorithms
for minimizing maximum lateness. Proceedings of the
9th Scandinavian Workshop on Algorithm Theory (SWAT),
2003.

[7] M. Joseph and P. Pandya. Finding response times in real-
time system. BCS Computer Journal, 1986.

[8] Burns A. Tindell K. and Wellings A. An extendible ap-
proach for analysing fixed priority hard real-time tasks. J.
Real-Time Systems, 1994.

[9] C.L. Liu and J.W. Layland. Scheduling algorithms for mul-
tiprogramming in a hard-real-time environment. Journal of
the ACM, 1973.

[10] Tei-Wei Kuo and Aloysius K. Mok. Load adjustment in
adaptive real-time systems. Proceedings of the 12th IEEE
Real-Time Systems Symposium, 1991.

[11] Tindell K. Burns A. and Wellings A. Effective analysis
for engineering real-time fixed priority schedulers. IEEE
Trans. Software Eng., 1995.

[12] I. Ripol J. Echage and A. Crespo. Hard real-time preemp-
tively scheduling with high context switch cost. In Pro-
ceedings of the 7th Euromicro Workshop on Real-Time Sys-
tems, 1995.

[13] L. Cucu, R. Kocik, and Y. Sorel. Real-time scheduling
for systems with precedence, periodicity and latency con-
straints. In Proceedings of 10th Real-Time Systems Con-
ference, RTS’02, Paris, France, March 2002.

[14] J.H.M. Korst, E.H.L. Aarts, and J.K. Lenstra. Scheduling
periodic tasks. INFORMS Journal on Computing 8, 1996.

[15] L. Cucu and Y. Sorel. Schedulability condition for systems
with precedence and periodicity constraints without pre-
emption. In Proceedings of 11th Real-Time Systems Con-
ference, RTS’03, Paris, March 2003.

[16] P. Meumeu and Y. Sorel. Non-schedulability conditions for
off-line scheduling of real-time systems subject to prece-
dence and strict periodicity constraints. In Proceedings
of 11th IEEE International Conference on Emerging tech-
nologies and Factory Automation, ETFA’06, WIP, Prague,
Czech Republic, September 2006.

[17] Radu Dobrin and Gerhard Fohler. Reducing the number of
preemptions in fixed priority scheduling. In 16th Euromi-
cro Conference on Real-time Systems (ECRTS 04), Cata-
nia, Sicily, Italy, July 2004.

122

Algorithm and complexity for the global scheduling of sporadic tasks
on multiprocessors with work-limited parallelism

Sébastien Collette∗ Liliana Cucu† Joël Goossens

Université Libre de Bruxelles, C.P. 212
50 Avenue Franklin D. Roosevelt

1050 Brussels, Belgium
E-mail: {sebastien.collette, liliana.cucu, joel.goossens}@ulb.ac.be

Abstract

We investigate the global scheduling of sporadic, im-
plicit deadline, real-time task systems on identical multi-
processor platforms. We provide a task model which in-
tegrates work-limited job parallelism. For work-limited
parallelism, we prove that the time-complexity of decid-
ing if a task set is feasible is linear relatively to the num-
ber of (sporadic) tasks for a fixed number of processors.
Based on this proof, we propose an optimal scheduling
algorithm. Moreover, we provide an exact feasibility uti-
lization bound.

1 Introduction

The use of computers to control safety-critical real-
time functions has increased rapidly over the past few
years. As a consequence, real-time systems — computer
systems where the correctness of each computation de-
pends on both the logical results of the computation and
the time at which these results are produced — have be-
come the focus of much study. Since the concept of
“time” is of such importance in real-time application sys-
tems, and since these systems typically involve the shar-
ing of one or more resources among various contending
processes, the concept of scheduling is integral to real-
time system design and analysis. Scheduling theory as it
pertains to a finite set of requests for resources is a well-
researched topic. However, requests in real-time environ-
ment are often of a recurring nature. Such systems are
typically modeled as finite collections of simple, highly
repetitive tasks, each of which generates jobs in a very
predictable manner. These jobs have bounds upon their
worst-case execution requirements and their periods, and
associated deadlines. In this work, we consider sporadic
task systems, i.e., where there are at least Ti time units
between two consecutive instants when a sporadic task τi

generates jobs and the jobs must be executed for at most

∗Aspirant du F.N.R.S.
†Post-doctorante du F.N.R.S.

Ci time units and completed by their relative deadline Di.
A particular case of sporadic tasks are the periodic tasks
for which the period is the exact temporal separation be-
tween the arrival of two successive jobs generated by the
task. We shall distinguish between implicit deadline sys-
tems where Di = Ti,∀i; constrained deadline systems
where Di ≤ Ti,∀i; and arbitrary deadline systems where
there is no constraint between the deadline and the period.

The scheduling algorithm determines which job[s]
should be executed at each time instant. We distinguish
between off-line and on-line schedulers. On-line sched-
ulers construct the schedule during the execution of the
system; while off-line schedulers mimic during the exe-
cution of the system a precomputed schedule (off-line).
Remark that if a task is not active at a given time instant
and the off-line schedule planned to execute that task on
a processor, the latter is simply idled (or used for a non-
critical task).

When there is at least one schedule satisfying all con-
straints of the system, the system is said to be feasible.
More formal definitions of these notions are given in Sec-
tion 2.

Uniprocessor sporadic (and periodic) real-time sys-
tems are well studied since the seminal paper of Liu and
Layland [9] which introduces a model of implicit dead-
line systems. For uniprocessor systems we know that
the worst-case arrival pattern for sporadic tasks corre-
sponds to the one of (synchronous and) periodic tasks
(see, e.g. [11]). Consequently, the results obtained for pe-
riodic tasks apply to sporadic ones as well. Unfortunately,
this is not the case upon multiprocessors due to scheduling
anomalies (see, e.g. [1]).

The literature considering scheduling algorithms and
feasibility tests for uniprocessor scheduling is tremen-
dous. In contrast for multiprocessor parallel machines the
problem of meeting timing constraints is a relatively new
research area.
Related research. Even if the multiprocessor scheduling
of sporadic task systems is a new research field, impor-
tant results have already been obtained. See, e.g., [2] for
a good presentation of these results. All these works con-

123

sider models of tasks where job parallelism is forbidden
(i.e., job correspond to a sequential code). This restric-
tion is natural for the uniprocessor scheduling since only
one processor is available at any time instant even if we
deal with parallel algorithms. Nowadays, the use of par-
allel computing is growing (see, e.g., [8]); moreover, par-
allel programs can be easily designed using the Message
Passing Interface (MPI [5, 6]) or the Parallel Virtual Ma-
chine (PVM [12, 4]) paradigms. Even better, sequential
programs can be parallelized using tools like OpenMP
(see [3] for details). Therefore for the multiprocessor case
we should be able to describe jobs that may be executed on
different processors at the same time instant. For instance,
we find such requirements in real-time applications such
as robot arm dynamics [13], where the computation of dy-
namics and the solution of a linear systems are both par-
allelizable and contain real-time constraints.

When a job may be executed on different processors
at the very same instant we say that the job parallelism
is allowed. For a task τi and m identical processors we
define a m-tuple of real numbers Γi

def= (γi,1, . . . , γi,m)
with the interpretation that a job of τi that executes for t
time units on j processors completes γi,j × t units of ex-
ecution. Full parallelism, which corresponds to the case
where Γi = (1, 2, . . . ,m) is not realistic; moreover, if
full parallelism is allowed the multiprocessor scheduling
problem is equivalent to the uniprocessor one (by consid-
ering, e.g., a processor m times faster).

In this work, we consider work-limited job parallelism
with the following definition:

Definition 1 (work-limited parallelism) The job paral-
lelism is said to be work-limited if and only if for all Γi

we have:

∀1 ≤ i ≤ n, ∀1 ≤ j < j′ ≤ m,
j′

j
>

γi,j′

γi,j
.

For example, the m-tuple Γi = (1.0, 1.1, 1.2, 1.3, 4.9)
is not a work-limited job parallelism, since γi,5 = 4.9 >
1.3× 5

4 = 1.625.
Remark that work-limited parallelism requires that for

each task (say τi), the quantities γi,j are distinct (γi,1 <
γi,2 < γi,3 < · · ·).

The work-limited parallelism restriction may at first
seem strong, but it is in fact intuitive: we require that
parallelism cannot be achieved for free, and that even if
adding one processor decreases the time to finish a paral-
lel job, a parallel job on j′ processors will never run j′/j
times as fast as on j processors. Many applications fit in
this model, as the increase of parallelism often requires
more time to synchronize and to exchange data between
the parallel processes.

Few models and results in the literature concern
real-time systems taking into account job parallelism.
Manimaran et al. in [10] consider the non-preemptive
EDF scheduling of periodic tasks, moreover they con-
sider that the degree of parallelism of each task is static.

Meanwhile, their task model and parallelism restriction
(i.e., the sub-linear speedup) is quite similar to our model
and our parallelism restriction (work-limited). Han et al.
in [7] considered the scheduling of a (finite) set of real-
time jobs allowing job parallelism. Their scheduling prob-
lem is quite different than our, moreover they do not pro-
vide a real model to take into account the parallelism. This
manuscript concerns the scheduling of preemptive real-
time sporadic tasks upon multiprocessors which take into
account the job parallelism. From the best of our knowl-
edge there is no such result and this manuscript provides
a model, a first feasibility test and a first exact utilization
bound for such kind of systems. This research. In this
paper we deal with global scheduling1 of implicit dead-
line sporadic task systems with work-limited job paral-
lelism upon identical parallel machines, i.e., where all the
processors are identical in the sense that they have the
same computing power. We formally define our model,
and consider the feasibility problem of these systems, tak-
ing into account work-limited job parallelism. For work-
limited job parallelism we prove that the feasibility prob-
lem is linear relatively to the number of tasks for a fixed
number of processors. We provide a scheduling algo-
rithm.
Organization. This paper is organized as follows. In Sec-
tion 2, we introduce our model of computation. In Sec-
tion 3, we present the main result for the feasibility prob-
lem of implicit deadline sporadic task systems with work-
limited job parallelism upon identical parallel machines
when global scheduling is used. We prove that the feasi-
bility problem is linear relatively to the number of tasks
when the number of processors is fixed. In Section 4, we
provide a linear scheduling algorithm which is proved op-
timal. We conclude and we give some hints for future
work in Section 5.

2 Definitions and assumptions

We consider the scheduling of sporadic task systems
on m identical processors {p1, p2, . . . , pm}. A task sys-
tem τ is composed by n sporadic tasks τ1, τ2, . . . , τn,
each task is characterized by a period (and implicit dead-
line) Ti, a worst-case execution time Ci and a m-tuple
Γi = (γi,1, γi,2, . . . , γi,m) to describe the job parallelism.

We assume that γi,0
def= 0 (∀i) in the following. A job

of a task can be scheduled at the very same instant on
different processors. In order to define the degree of par-
allelization of each task τi we define the execution ratios
γi,j ,∀j ∈ {1, 2, . . . ,m} associated to each task-index of
processor pair. A job that executes for t time units on j
processors completes γi,j × t units of execution. In this
paper we consider work-limited job parallelism as given
by Definition 1.

We will use the notation τi
def= (Ci, Ti,Γi),∀i with

Γi = (γi,1, γi,2, . . . , γi,m) with γi,1 < γi,2 < · · · < γi,m.

1Job migration and preemption are allowed.

124

Such a sporadic task generates an infinite sequence of jobs
with Ti being a lower bound on the separation between
two consecutive arrivals, having a worst-case execution
requirement of Ci units, and an implicit relative hard
deadline Ti. We denote the utilization of τi by ui

def= Ci

Ti
.

In our model, the period and the worst-case execution time
are integers.

A task system τ is said to be feasible upon a multipro-
cessor platform if under all possible scenarios of arrivals
there exists at least one schedule in which all tasks meet
their deadlines.
Minimal required number of processors. Notice that a
task τi requires more than k processors simultaneously if
ui > γi,k; we denote by ki the largest such k (meaning
that ki is the smallest number such that the task system
{τi} is feasible on ki + 1 processors):

ki
def=

{
0, if ui ≤ γi,1

maxm
k=1{k | γi,k < ui}, otherwise.

Notice that if ki = m for any i, the task system is
infeasible as at least one task requires m + 1 processors.

For example, let us consider the task system τ =
{τ1, τ2} to be scheduled on three processors. We have
τ1 = (6, 4,Γ1) with Γ1 = (1.0, 1.5, 2.0) and τ2 =
(3, 4,Γ2) with Γ2 = (1.0, 1.2, 1.3). Notice that the sys-
tem is infeasible if the job parallelism is not allowed since
τ1 will never meet its deadline unless it is scheduled on
at least two processors. There is a feasible schedule if the
task τ1 is scheduled on two processors and τ2 on a third
one.

Definition 2 (schedule σ) For any task system τ =
{τ1, . . . , τn} and any set of m processors {p1, . . . , pm}
we define the schedule σ(t) of system τ at instant

t as σ : R+ → {0, 1, . . . , n}m where σ(t) def=
(σ1(t), σ2(t), . . . , σm(t)) with

σj(t)
def=

 0, if there is no task scheduled on pj

at instant t;
i, if τi is scheduled on pj at instant t

for all 1 ≤ j ≤ m.

Definition 3 (canonical schedule) For any task system
τ = {τ1, . . . , τn} and any set of m processors
{p1, . . . , pm}, a schedule σ is canonical if and only if the
following equations are satisfied:

∀j ∈ [1,m], ∀t, t′ ∈ [0, 1), t < t′ : σj(t′) ≤ σj(t)

∀j, j′ ∈ [1,m], j < j′, ∀t, t′ ∈ [0, 1) : σj(t) ≤ σj′(t′)

and the schedule σ contains a pattern that is repeated ev-
ery unit of time, i.e.,

∀t ∈ R+, ∀1 ≤ j ≤ m : σj(t) = σj(t + 1).

Without loss of generality for the feasibility problem,
we consider a feasibility interval of length 1. Notice that
the following results can be generalized to consider any
interval of length `, as long as ` divides entirely the period
of every task.

3 Our feasibility problem

In this section we prove that if a task system τ is fea-
sible, then there exists a canonical schedule in which all
tasks meet their deadlines. We give an algorithm which,
given any task system, constructs a canonical schedule or
answers that no schedule exists. The algorithm runs in
O(n) time with n the number of tasks in the system.

We start with a generic necessary condition for schedu-
lability using work-limited parallelism:

Theorem 1 In the work-limited parallelism model and
using an off-line scheduling algorithm, a necessary con-
dition for a sporadic task system τ to be feasible on m
processors is given by:

n∑
i=1

(
ki +

ui − γi,ki

γi,ki+1 − γi,ki

)
≤ m

Proof. As τ is feasible on m processors, there exists a
schedule σ meeting every deadline. We consider any time
interval [t, t + P) with P

def= lcm{T1, T2, . . . , Tn}.
Let ai,j denote the duration where jobs of a task τi are

assigned to j processors on the interval [t, t+P) using the
schedule σ.

∑m
j=1 j · ai,j gives the total processor use of

the task τi on the interval (total number of time units for
which a processor has been assigned to τi). As we can use
at most m processors concurrently, we know that

n∑
i=1

m∑
j=1

j · ai,j ≤ m · P

otherwise the jobs are assigned to more than m proces-
sors on the interval. If on some interval of length `, τi is
assigned to j processors, we can achieve the same quan-
tity of work on j′ > j processors on an interval of length
`

γi,j

γi,j′
. In the first case, the processor use of the task i is

` j, while in the second case it is `j′
γi,j

γi,j′
. By the restric-

tion that we enforced on the tuple Γi (see Definition 1),
we have

`j′
γi,j

γi,j′
> `j′

γi,j′
j
j′

γi,j′

> `j

Let σ′ be a slightly modified schedule compared to σ,
where ∀i 6= i′,∀j, a′i,j = ai,j . For the task τi′ , it is sched-
uled on j′ processors instead of j < j′ in σ for some
interval of length `, i.e.

125

a′i′,j = ai′,j − `

a′i′,j′ = ai′,j′ + `
γi,j

γi,j′

Then, for that task τi′ ,

m∑
j=1

j · a′i′,j >
m∑

j=1

j · ai′,j

This proves that increasing the parallelism yields an in-
creased sum; as we want to derive a necessary condition,
we schedule the task on the minimal number of processors
required. A lower bound on the sum is then given by

ki · P +
ui − γi,ki

γi,ki+1 − γi,ki

· P

which corresponds to scheduling the task on ki + 1 pro-
cessor for a minimal amount of time, and on ki processors
for the rest of the interval. Then

m∑
j=1

j · ai,j ≥ ki · P +
ui − γi,ki

γi,ki+1 − γi,ki

· P

and thus

n∑
i=1

m∑
j=1

j · ai,j ≤ m · P

n∑
i=1

(
ki · P +

ui − γi,ki

γi,ki+1 − γi,ki

· P
)

≤ m · P

n∑
i=1

(
ki +

ui − γi,ki

γi,ki+1 − γi,ki

)
≤ m

which is the claim of our theorem.

Theorem 2 Given any feasible task system τ , there exists
a canonical schedule σ in which all tasks meet their dead-
lines.

Proof. The proof consists of three parts: we first give an
algorithm which constructs a schedule σ for τ , then we
prove that σ is canonical, and we finish by showing that
the tasks meet their deadline if τ is feasible.

The algorithm works as follows: we consider sequen-
tially every task τi, with i = n, n−1, . . . , 1 and define the
schedule for these tasks in the time interval [0, 1), which
is then repeated.

We calculate the duration (time interval) for which a
task τi uses ki + 1 processors. If we denote by `i the
duration that the task τi spends on ki + 1 processors, then
we obtain the following equation:

`i γi,ki+1 + (1− `i) γi,ki
= ui.

Therefore we assign a task τi to ki +1 processors for a
duration of

ui − γi,ki

γi,ki+1 − γi,ki

and to ki processors for the remainder of the interval,
which ensures that the task satisfies its deadline, since
each job generated by the sporadic task τi which arrives
at time t receives in the time interval [t, t + Ti) exactly
Ti × ui = Ci time units.

The task τn is assigned to the processors
(pm, . . . , pm−kn

) (see Figure 1). If un 6= γn,kn+1,
another task can be scheduled at the end of the interval
on the processor pm−kn

, as τn does not require kn + 1
processors on the whole interval.

..

.

p1

..

.

pm−kn

pm

τn

0 1`n

..

.

pm−kn−kn−1

`n + `n−1

τn−1

Figure 1. Schedule obtained after schedul-
ing the task τn

We continue to assign greedily every task τi, by first
considering the processors with highest number.

The schedule produced by the above algorithm is
canonical as it respects the three constraints of the defi-
nition:

• on every processor j we assign tasks by decreasing
index, thus σj(t) is monotone and decreasing;

• for all i < i′, if τi′ is scheduled on a processor pj′ ,
then τi is assigned to a processor pj with j ≤ j′;

• the schedule is repeated every unit of time.

The last step is to prove that if our algorithm fails to
construct a schedule, i.e., if at some point we run out of
processors while there are still tasks to assign, then the
system is infeasible.

In the case of a canonical schedule, λi corresponds to:

λi = ki +
ui − γi,ki

γi,ki+1 − γi,ki

.

So for instance, if a task τi is assigned to λi = 2.75 pro-
cessors, it means that it is scheduled on two processors

126

for 0.25 time unit in any time interval of length 1, and on
three processors for 0.75 time unit in the same interval.

If our algorithm fails, it means that
∑n

i=1 λi > m,
which by Theorem 1 implies that the system is infeasible.

Corollary 3 In the work-limited parallelism model and
using an off-line scheduling algorithm, a necessary and
sufficient condition for a sporadic task system τ to be fea-
sible on m processors is given by:

n∑
i=1

(
ki +

ui − γi,ki

γi,ki+1 − γi,ki

)
≤ m

Please notice that Corollary 3 can be seen as feasi-
bility utilization bound and in particular a generaliza-
tion of the bound for uniprocessor (see [9]) where a spo-
radic and implicit deadline task system is feasible if and
only if

∑n
i=1 ui ≤ 1. Like the EDF optimality for

sporadic implicit deadline tasks is based on the fact that∑n
i=1 ui ≤ 1 is a sufficient condition, we prove the op-

timality of the canonical schedule based on the fact that∑n
i=1

(
ki + ui−γi,ki

γi,ki+1−γi,ki

)
≤ m is a sufficient condition.

Corollary 4 There exists an algorithm which, given any
task system, constructs a canonical schedule or answers
that no schedule exists in O(n) time.

Proof. We know that the algorithm exists as it was used
in the proof of Theorem 2. For every task, we have to
compute the number of processors required (inO(1) time,
as the number of processors m is fixed), and for every
corresponding processor j, define σj(t) appropriately. In
total, O(n) time is required.

4 Scheduling algorithm

In this section we give a detailed description of the
scheduling algorithm provided in the proof of Theorem 2.
Based on the results of Section 3 this algorithm is optimal
and runs in O(n) time (see Corollary 4).

For example for the task system τ = {τ1, τ2} given
before we have k1 = 1 and k2 = 0. By using Algorithm
1 we obtain:

σ3(t) = 2,∀t ∈ [0, 0.75)
σ3(t) = 1,∀t ∈ [0.75, 1)
σ2(t) = 1,∀t ∈ [0, 1)
σ1(t) = 1,∀t ∈ [0, 0.75)
σ1(t) = 0,∀t ∈ [0.75, 1).

Notice that in Algorithm 1, we do not consider the op-
timization relatively to the number of preemptions or mi-
grations and the scheduling algorithm does not provide
satisfactory schedules for problems for which this is a is-
sue. Nevertheless, the algorithm can decide the feasibility
of every task system.

Algorithm 1 Scheduling algorithm of implicit deadline spo-
radic task system τ of n tasks on m processors with work-
limited job parallelism
Require: The task system τ and the number of processors m

Ensure: A canonical schedule of τ or a certificate that the sys-
tem is infeasible

1: let j = m

2: let t0 = 0

3: let σp(t) = 0, ∀t ∈ [0, 1), ∀1 ≤ p ≤ m

4: for i = n downto 1 do
5: if ui ≤ γi,1 then
6: let ki = 0
7: else
8: let ki = maxm

k=1{k | γi,k < ui}
9: end if

10: for r = 1 upto ki do
11: let σj(t) = i, ∀t ∈ [t0, 1)
12: let σj−1(t) = i, ∀t ∈ [0, t0)
13: let j = j − 1
14: end for
15: let tmp = t0 +

ui−γi,ki
γi,ki+1−γi,ki

16: if tmp > 1 then
17: let σj(t) = i, ∀t ∈ [t0, 1)
18: let j = j − 1
19: let t0 = 0
20: let tmp = tmp− 1
21: end if
22: let σj(t) = i, ∀t ∈ [t0, tmp)
23: let t0 = tmp
24: if j ≤ 0 then
25: return Infeasible
26: end if
27: end for

127

5 Discussions

Job parallelism vs. task parallelism. In this manuscript
we study multiprocessor systems where job parallelism is
allowed. We would like to distinguish between two kinds
of parallelism, but first the definitions: task parallelism
allows each task to be executed on several processors at
the same time, while job parallelism allows each job to
be executed on several processors at the same time. If we
consider constrained (or implicit) deadline systems task
parallelism is not possible. For arbitrary deadline sys-
tems, where several jobs of the same task can be active
at the same time, the distinction makes sense. Task par-
allelism allows the various active jobs of the same task to
be executed on a different (but unique) processor while
job parallelism allows each job to be executed on several
processors at the same time.
Optimality and future work. In this paper we study the
feasibility problem of implicit deadline sporadic task sys-
tems with work-limited job parallelism upon identical par-
allel machines when global scheduling is used. We prove
that our problem has a time-complexity that is linear rel-
ative to the number of tasks. We provide an optimal
scheduling algorithm that runs in O(n) time and we give
an exact feasibility utilization bound.

Our algorithm is optimal in terms of the number of pro-
cessors used. It is left open whether there exists an optimal
algorithm in terms of the number of preemptions and mi-
grations. As a first step, we used an interval of length 1
to study the feasibility problem. If we generalize our al-
gorithm to work on an interval of length equal to the gcd
of the periods of every task, we decrease the preemptions
and migrations. We do not know, however, if the result is
optimal.

The definitions of work-limited job parallelism was
given here for identical processors, one should investigate
an extension of this definition to the uniform processor
case.

Acknowledgments

The authors would like to thank Sanjoy Baruah for pos-
ing the feasibility problem and Jean Cardinal for taking
part in interesting discussions. Finally the detailed com-
ments of an anonymous referee greatly helped in improv-
ing the presentation of the manuscript.

References

[1] B. Andersson. Static-priority scheduling on multiproces-
sors. PhD thesis, Chalmers University of Technology,
Göteborg, Sweden, 2003.

[2] J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. Ander-
son, and S. Baruah. A categorization of real-time multi-
processor scheduling problems and algorithms. Handbook
of Scheduling, 2005.

[3] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDon-
ald, and R. Menon. Parallel programming in OpenMP.

Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2001.

[4] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek,
and V. Sunderam. PVM: Parallel Virtual Machine A
Users’ Guide and Tutorial for Networked Parallel Com-
puting. MIT Press, 1994.

[5] S. Gorlatch and H. Bischof. A generic MPI implemen-
tation for a data-parallel skeleton: Formal derivation and
application to FFT. Parallel Processing Letters, 8(4):447–
458, 1998.

[6] W. Gropp, editor. Using MPI : portable parallel program-
ming with the message-passing interface. Cambridge,
MIT Press, 2nd edition, 1999.

[7] C. Han and K.-J. Lin. Scheduling parallelizable jobs on
multiprocessors. Proceedings of the 10th IEEE Real-Time
Systems Symposium (RTSS’89), pages 59–67, 1989.

[8] E. Leiss. Parallel and vector computing. McGraw-Hill,
Inc., 1995.

[9] C. Liu and J. Layland. Scheduling algorithms for multi-
programming in a hard-real-time environment. Journal of
the ACM, 20(1):46–61, 1973.

[10] G. Manimaran, C. Siva Ram Murthy, and K. Ramam-
ritham. A new approach for scheduling of parallelizable
tasks in real-time multiprocessor systems. Real-Time Sys-
tems, 15:39–60, 1998.

[11] A. Mok. Fundamental Design Problems of Distributed
Systems for the Hard-Real-Time Environment. PhD thesis,
Laboratory for Computer Science, Massachusetts Institute
of Technology, 1983.

[12] V. Sunderam. PVM: A framework for parallel dis-
tributed computing. Concurrency: Practice and Experi-
ence, 2(4):315–339, 1990.

[13] A. Y. Zomaya. Parallel processing for real-time simula-
tion: A case study. IEEE Parallel and Distributed Tech-
nology:System and Technology, 4(2):49–55, 1996.

128

 RTNS’07 – Session 4

 Scheduling 2

129

130

Schedulability analysis of OSEK/VDX applications

Pierre-Emmanuel Hladik
LINA (FRE CNRS n◦2729)
École des Mines de Nantes

pierre-emmanuel.hladik@emn.fr

Anne-Marie Déplanche, Sébastien Faucou and Yvon Trinquet
IRCCyN (UMR CNRS n◦6597)

Université de Nantes
firstname.name@irccyn.ec-nantes.fr

Abstract

This paper deals with applying state-of-the art schedu-
lability analysis techniques to OSEK/VDX-based applica-
tions for real-time embedded systems. To do so, we ex-
plore two complementary problems: (i) extending state-
of-the-art results in schedulability analysis in order to take
into account OSEK/VDX specific constructs; (ii) defining
design rules that must be followed in order to build appli-
cations that comply with the hypothesis made during the
analysis. The main work reported here deals with a simple
periodic task model. An extension to software architec-
tures with precedence constraints, which will be discussed
in a future paper, is also briefly introduced.

1. Introduction

This paper deals with the design and schedulability
analysis of monoprocessor real-time embedded applica-
tions executed on top of an OSEK/VDX-compliant real-
time kernel. An OSEK/VDX application consists of a set
of concurrent tasks, which compete for the processor. An
OSEK/VDX application can be as simple as a set of in-
dependent periodic tasks, but it can be much more com-
plicated. Nevertheless, as long as we deal with real-time
systems, one of the key requirements to meet at the design
step is the verification of the timing constraints. In order
to check this, the designer usually performs a schedula-
bility analysis of the task set, based on a technique that
makes hypothesis on the application task model. Thus, in
order to have the possibility to use schedulability analysis
techniques, the designer must master the complexity of the
application that he creates, according to the used real-time
kernel services, in order to comply with the analysis hy-
pothesis. This is rather difficult because of the vast num-
ber of services and the vast number of possible application
models.

In this context, our main objective is to provide:

• schedulability analysis techniques that take into ac-
count the specificities of the OSEK/VDX real-time
kernel;

• design rules that must be followed in order to comply
with the hypothesis made by the proposed schedula-
bility analysis techniques.

Notice that our goal is not to develop new schedulabil-
ity analysis techniques. Hence, to fulfill the first item, we
worked on adapting state-of-the art results to OSEK/VDX
applications. The second item can be thought of as an at-
tempt to define design guidelines for OSEK/VDX-based
applications. Another objective, not presented here, is
to build a tool that will complete our OSEK/VDX open
source implementation [1, 7].

The paper is organised as follows. First of all, the basic
features of OSEK/VDX are presented. Then, we intro-
duce the independent periodic task model together with
an analysis technique and some design guidelines. Next,
we consider some possible extensions of this work, espe-
cially the case of software architectures including prece-
dence constraints, before to conclude.

2. Summary of the OSEK/VDX RTOS speci-
fication

OSEK/VDX (”Offene Systeme und deren
Schnittstellen fur die Elektronik im Kraftfahrzeug/Vehicle
Distributed eXecutive”) [11] aims at being an industry
standard for RTOS used in distributed control units in
vehicles. The OSEK group aims at standardising the
interfaces of the operating system to ease application
software portability, interoperability, re-use and the
supply of software packages independently of hardware
units. Various parts are proposed for the standard: OS
(the basic services of the real-time kernel), COM (the
communication services), NM (the Network Management

131

services) and OIL1 (OSEK Implementation Language).
The presentation below concerns only the kernel of
the operating system (OS 2.2.3, Feb. 2005). For more
information refer to [11].

All the objects of an OSEK/VDX application are static:
they are created before the start-up of the application and
are never destroyed (no dynamic allocation).

Task management. OSEK/VDX specification pro-
vides two different task types. On one side, a basic task is
a sequential code without system call being able to block
the task. Synchronisation points are only at the beginning
and the end of the task. On the other side, an extended task
is composed of one or several blocks separated by invoca-
tions of OS services, which may result in a waiting state.
According to the conformance classes of OSEK/VDX OS
(see below), it is possible to authorise the record of acti-
vation requests of a task while it is already active. Every
request is then recorded (no multiple instances) and taken
into account when the task ends. The basic services of-
fered for task management are: ActivateTask (activates the
target task), TerminateTask (mandatory auto-termination
of the current task) and ChainTask (atomic combination
of ActivateTask and TerminateTask).

Conformance classes. The conformance classes de-
fine four versions of the real-time kernel, in order to adapt
it to different requirements. They are determined by three
main attributes and some implementation requirements:
the type of task (basic or extended), the possibility of
recording multiple activation requests for a basic task and
finally the number of tasks per priority level. The four
conformance classes are BCC1, BCC2, ECC1 and ECC2.
They are summarized in table 1.

Task type Activ. queuing Tasks / priority

BCC1
Basic

No 1
BCC2 Yes (Basic) Many

ECC1 Basic +
Extended

No 1
ECC2 Yes (Basic) Many

Table 1. OSEK/VDX OS conformance
classes summary

Scheduling policy. For scheduling, static priorities are
assigned to tasks and the ”Highest Priority First” policy
is used, with FIFO as a second criterion for BCC2 and
ECC2 applications where many tasks share the same pri-
ority level. For an application, the scheduling can be: full
non preemptive, full preemptive or mixed preemptive. In
this last case, every task has its appropriate mode (preemp-
tive or non preemptive, specified in the OIL file). There
exists also a notion of group, for tasks that share a com-
mon internal resource. An internal resource is automati-
cally taken by a task of the group when it gets the CPU

1An OIL file describes at a low-level the software architecture of an
OSEK/VDX application in order to automatically generate kernel con-
figuration files. More details can be found in [10].

and released when it terminates, waits for an event or in-
vokes the Schedule service. Usual preemption rules are
used for the tasks which are not in the group, according
to their priority level. Inside the group the tasks can’t pre-
empt among themselves.

Task synchronisation. Synchronisation (extended
tasks only) is based on the private event mechanism: only
the owner task can explicitly wait for the occurrence of
one or more of its events (logical OR). The setting of oc-
currences can be made by tasks (basic or extended) or
ISRs (Interrupt Service Routine). There is no timeout
associated to the WaitEvent service, but using the alarm
concept (see below) it is possible to build watchdogs to
monitor the timing behaviour.

Resources management. OSEK/VDX coordinates the
concurrent access to shared resources with the OSEK-
PCP protocol (Priority Ceiling Protocol). OSEK-PCP pro-
tocol is more simple than original PCP [16, 9]. It is also
known as ”Immediate Priority Ceiling Protocol” (IPCP).
When a task gets a resource, its priority is immediately
raised to the resource priority, so that other tasks that share
the same resource cannot get the CPU. The resource shar-
ing is allowed between tasks and ISRs or between ISRs.
For that purpose, a virtual priority is assigned to every in-
terrupt. Two services allow to control access to resources:
GetResource and ReleaseResource. A predefined system
resource (Res Scheduler) allows a task to lock the proces-
sor and execute some code in non preemptive scheduling
mode.

Alarms and counters. These objects allow mainly
the processing of recurring phenomena: timer ticks, sig-
nals from mechanical organs of a car engine (camshaft,
crankshaft). They constitute complements to the event
mechanism. They allow the management of periodic tasks
and watchdog timers for the monitoring of various situa-
tions (wait for an event occurrence, send/receive a mes-
sage). A Counter is an object intended for the counting of
”ticks” from a source. An Alarm allows to link a Counter
and a Task. An Alarm expires when the value of its associ-
ated counter reaches a predefined value. When an Alarm
expires, an action is taken: either the activation of the as-
sociated task, the setting of an event of the task or the
execution of a routine. An Alarm can be defined to be
single-shot or cyclic, the corresponding Counter value be-
ing absolute or relative to the current Counter value.

Communication. The communication services of
OSEK/VDX are built around the Message object. Two
types of messages are offered: those using the black-
board model (Unqueued, single place buffer); those using
a FIFO (Queued). The communication services are the
same whatever the communication is local or distant. For
more information refer to [11].

In this paper, we focus on the BCC1 and BCC2 confor-
mance classes, thus ignoring the event management ser-
vices. We also focus on monoprocessor systems, thus ig-
noring distributed communication services. Moreover, we
investigate the case of software architectures where com-

132

municating tasks follow the blackboard pattern, so that
data flows can easily be implemented through shared vari-
ables2 (and, when needed, resources). Hence, we ignore
local communication services.

3. The periodic task model

In this section, we consider a subset of OSEK/VDX
task configurations. It combines most of the specificities
of the BCC1 and BCC2 classes, while giving rise to acces-
sible schedulability analyses. We list its features: all tasks
are periodic and non-concrete, i.e. the date of the first
activation of a task is unknown; some tasks can have the
same priority; the scheduler is mixed preemptive; there
are no precedence between tasks, but some tasks can share
resources with the IPCP protocol as well as internal re-
sources through groups.

First , we propose an equivalent model for the schedu-
lability analysis of such tasks. Then, we discuss about the
implementation of such tasks so as to ensure consistency
between the model and the OSEK/VDX application.

3.1. Notations and definitions
We want to point out that with the OSEK/VDX con-

figurations we are looking at, the scheduling behaviour is
not a ”strictly fixed priority” one in the sense that the pri-
ority of a task may not remain fixed on-line. The priorities
that are assigned to tasks when they are declared are used
by the scheduler to select the next running task. How-
ever, because of shared resources and mixed preemptive
scheduling, the priority of a task can increase during its
execution. Such a behaviour can be captured with the no-
tion of preemption threshold in a quite generic way. The
preemption threshold was introduced in [18], and is the
priority level that the task has during its execution, i.e. the
priority considered by the scheduler for the task after its
first start event, and before its terminate event. The notion
of preemption threshold that we use hereafter is brought
at the code section level in tasks.

3.1.1 Model

Let Γ = {τi}, 1 ≤ i ≤ n be the set of the n tasks of
the application under analysis. Each task τi is a tuple <
pi, di, πi, ei > where: pi is its period; di is its relative
deadline (we allow either di ≤ pi, or di > pi); πi its user-
declared priority level; and ei = {< eij , γij >} is a set
of execution times with their corresponding preemption
threshold. A 2-uplet < eij , γij > describes a code section
of task τi of which eij is the worst-case execution time
(without preemption) and γij the priority to be given to τi

while executing this code (see Fig. 1).
Here, for each task, ei0 is its worst-case execution time

and γi0 is deduced from its characteristics: for a non-

2To our knowledge, all OSEK/VDX implementations use a flat mem-
ory model. Hence, there is no need for system services dedicated to
shared variable handling

Figure 1. Task model

preemptive task, γi0 is considered as infinite (or the high-
est priority level); for a task belonging to a task group, γ i0

is equal to the priority of the group, i.e. a priority higher
than all priorities of the tasks in the group; and for other
tasks γi0 = πi.

Each other 2-uplet < eij , γij >, 1 ≤ j, corresponds to
a critical section in τi, with eij the time needed to execute
the code between the lock and unlock operations, and γ ij

its ceiling priority, i.e., a priority higher than the highest
priority of the tasks that share the same resource. If the
resource is the processor, the ceiling priority is considered
as infinite (or the highest priority level).

3.1.2 Definitions

The schedulability analysis presented in this paper is
based on the computation of the worst-case response time
of each task. If the worst-case response time of a task
is smaller than its deadline, then the task is schedula-
ble. If all the tasks in the system are schedulable, then
the system is schedulable too. The response time com-
putation is based on the well-known busy period analy-
sis [2, 5, 8, 18]; it requires to determine the length of the
busy period which starts at a critical instant.

A π-busy period is a time interval during which the pro-
cessor is continuously processing at priority π or higher.
Remark that in our model, a non preemptive task is al-
ways executed with a priority higher than π (cf. its γ i0).
An instance of τi is necessarily executed during a πi-busy
period. Furthermore, more than one instance of τ i can be
executed during the same πi-busy period. For a πi-busy
period, we define ai(q) the date of the qth activation of τi

in the busy period, si(q) its start time, and fi(q) its finish
time. By definition, the response time of the qth instance
of τi in a πi-busy period is:

ri(q)
def= fi(q) − ai(q)

Then, the worst-case response time of τi is defined by:

Ri
def= max

∀πi-busy-period,∀q≥1
{ri(q)}

The critical instant for a task τi describes a πi-busy
period where τi meets its worst-case response time. Thus,
to compute the worst-case response time of τi, we need to

133

know its critical instant and to compute each fi(q) in this
πi-busy period.

We point out that the computation of the worst-case re-
sponse time developed in the next section is an exact one
in the sense that the critical instant that is defined there de-
scribes a worst-case scenario for the task that may occur
actually; and that the given expressions are not approxi-
mate ones.

3.2. Schedulability analysis
In [18], the authors consider the same model as us, but

without shared resources and identical priorities. The crit-
ical instant is described as an instant (time 0) when τi is
activated together with an instance of each higher priority
task, and the task that contributes to the maximum block-
ing time has just started executing prior to time 0. They
prove that in computing the blocking time for a task τ i,
one needs to consider blocking from only one lower prior-
ity task with a preemption threshold higher than or equal
to πi. Such a critical instant specification can easily be ex-
tended in order to take into account shared resources and
identical priorities.

With regard to shared resources, even if it is slightly
different in the implementation than the original priority
ceiling protocol (PCP), IPCP exhibits the same worst-case
performance (from a scheduling view point) [3]. Thus the
property of PCP shown by Sha et al. in [16] is still true
and the corresponding worst-case blocking time of τ i is
reduced to at most the duration of at most one critical sec-
tion of a lower priority task that is using a resource whose
ceiling priority is higher than or equal to π i. For the uni-
fying model we consider, it is easy to show that a task τ i

can be blocked by at most one critical section of a lower
priority task with a preemption threshold higher than or
equal to πi.

As for tasks with identical priorities, in [2] the authors
prove that the critical instant for tasks with the same pri-
ority occurs when all tasks are activated simultaneously.

Thus, by combining these various properties, the criti-
cal instant can be defined for the specific model studied in
this section. It occurs when (1) τi is activated (time 0) to-
gether with (2) an instance of each higher or equal priority
task, and (3) the longest code section with a higher pre-
emption threshold but belonging to a lower priority task
starts at time 0.

3.2.1 Computing Blocking Time

A task τi can be blocked by a task τj with a lower priority,
if a code section of τj with a higher or equal preemption
threshold than πi exists. Thus, the longest blocking time
of τi is [16]:

Bi = max
∀(j,k),πj<πi≤γjk

{ejk}

3.2.2 Computing the qth start time

The qth instance of a task τi in a πi-busy period can
start its execution at the latest when: the blocking time
is elapsed; and all the previous instances of τi in the busy
period have completed; and all higher priority tasks acti-
vated before si(q) have completed; and all the equal pri-
ority tasks activated before ai(q) have completed because
of the FIFO scheduling for tasks with the same priority.

Thus, the start time of the qth instance of τi is obtained
by computing the fix-point of [18, 2]:

si(q) = Bi + (q − 1)ei0

+
∑

∀j,πj>πi

(
1 +

⌊
si(q)
pj

⌋)
ej0

+
∑

∀j �=i,πj=πi

(
1 +

⌊
(q − 1)pi

pj

⌋)
ej0

3.2.3 Computing the qth finish time

Between the start time of the qth instance of τi and its
finish time, the scheduler can select for running only a
task with a priority higher than γi0. Thus, the finish time
is computed by solving the fix-point of [18, 2]:

fi(q) = si(q) + ei0

+
∑

∀j,πj>γi0

(⌈
fi(q)
pj

⌉
−
⌊

si(q)
pj

⌋
− 1
)

ej0

3.2.4 Computing the worst-case response time

To determine the worst-case response time of τi it is nec-
essary to check the finish time for each instance of τ i in
the busy period started at the critical instant. The length
of this πi-busy period is:

Li = Bi +
∑

∀j,πj≥πi

⌈
Li

pj

⌉
ej0

The number of instances of τi in the busy period is
Ni = �Li/pi�, and so:

Ri = max
q∈[1,Ni]

{fi(q) − (q − 1)pi}

3.3. Implementation
The schedulability analysis technique presented above

extends state-of-the art results in order to integrate some
specific constructs of the OSEK/VDX kernel. Neverthe-
less, it relies on a set of hypothesis that must be verified
by the implementation. We expose in this section a set of
rules that must be followed in order to achieve this goal.

The model of computation of the periodic task model
requires that:

• the first activation of a task is free. Thus it can be
triggered by an external event (R1) or at a specified
date (R1’);

134

• the following activations are periodic (R2), or spo-
radic or sporadically periodic (R2’);

• the body of a task does not call a service that could
cause a preemption except for resource unlocking
(note that resource locking is not a preemption point
in OSEK/VDX), neither does it contains suspension
points (R3);

• the body of a task implements a deterministic algo-
rithm, and a WCET can be computed (R4);

The formalization of the model in the previous sec-
tion expresses explicitly requirements R1 and R1’. It also
states that the tasks of the system are periodic ones (R2).
However, as the analysis is based on a worst-case scenario,
the analysis is also valid for sporadic or sporadically pe-
riodic tasks (these activation patterns produce the same
worst-case scenario as the periodic pattern). Hence, we
have requirement R2’. Lastly, requirements R3 and R4
are implicit: they translate the model of computation tra-
ditionally used in the real-time scheduling theory.

Let us consider requirements R1 and R2. In order to
program recurring tasks, OSEK/VDX provides the Alarm
object. As stated in section 2, an Alarm is used to link
a Counter and a Task. When the Counter reaches a spe-
cific value, the Alarm expires and triggers an action on
the target Task: activation, or event signaling (not pos-
sible for BCCx applications). Thus, when the triggering
event of the first activation of τi is raised, the serving ISR
must program the Alarm so that it expires every p i. The
ISR also performs the first activation of the task, subse-
quent activations being made by the kernel, according to
the Alarm configuration given in the OIL application de-
scription file. As shown in fig. 2, the SetRelAlarm service
must be used. Its parameters are (in this order): reference
to the target Alarm, relative date of first expiration, and cy-
cle time (both expressed in Counter ticks). The figure also
shows the OIL code used to link the Alarm, the Counter
(here SYSTIMER) and the Task.

// C code
ISR(TriggerFunc){

ActivateTask(Ti);
SetRelAlarm(AwakeTi,Pi,Pi);

}

// OIL code
ALARM AwakeTi {

COUNTER=SYSTIMER;
ACTION=ACTIVATETASK{

TASK=Ti;
};
AUTOSTART=FALSE;

};

Figure 2. C and OIL codes to ensure require-
ments R1 and R2

If we consider requirement R1’ instead of R1, we
can use the AUTOSTART attribute of the Alarm object to

achieve the desired behavior if the date of the first acti-
vation is not 0 (see figure 3). Indeed, according to the
OSEK/VDX standard, setting parameter Oi (offset of task
τi) to 0 would produce an implementation specific be-
havior. Hence, in this particular case, we must use the
AUTOSTART attribute of the Task object for the first ac-
tivation, and the AUTOSTART attribute of the Alarm ob-
ject for subsequent ones, where the ALARMTIME attribute
(first expiry date) is set to Pi (where Pi is pi). The cor-
responding OIL code is given figure 4.

ALARM AwakeTi {
COUNTER=SYSTIMER;
ACTION=ACTIVATETASK{

TASK=Ti;
};
AUTOSTART=TRUE{

ALARMTIME=Oi;
CYCLETIME=Pi;
APPMODE=DefaultMode;

};
};

Figure 3. OIL code to ensure requirements
R1’ and R2 when Oi �= 0.

TASK Ti {
AUTOSTART=TRUE{
APPMODE=DefaultMode;

};
...

};
ALARM AwakeTi {

COUNTER=SYSTIMER;
ACTION=ACTIVATETASK{

TASK=Ti;
};
AUTOSTART=TRUE{

ALARMTIME=Pi;
CYCLETIME=Pi;
APPMODE=DefaultMode;

};
};

Figure 4. OIL code to ensure requirements
R1’ and R2 when Oi= 0.

As OSEK/VDX targets small real-time embedded sys-
tems, it does not enforce implementations to provide more
than one Alarm object. Hence, one can face the situation
where the number of Alarm objects is lower than the num-
ber of periodic tasks. Obviously, our previous approach
cannot be used anymore. To solve this problem, one so-
lution consists in using a periodic task, τtime, which will
in turn activates the other tasks of the system. Of course,
τtime must be included in the analysed task set. In or-
der to achieve all the activations, its period must equal
the greatest common divider of the other periodic tasks
(ptime = gcd{pi}1≤i≤n). For some configurations, this
can lead to a high cpu utilization. However, this is a re-

135

current problem of tick-driven schedulers and it is out of
the scope of this paper. So as to be able to preempt any
running task and activate a task of potentially greater pri-
ority, τtime must be granted the highest priority among
the tasks: ∀τi ∈ Γ, πi < πtime. These conditions are
not sufficient: some tasks can be non preemptive (and all
tasks can become non preemptive for some time by taking
the Res Scheduler resource). A problem may arise when
the duration of such a non preemptive section is greater or
equal to ptime: one or more of τtime activation requests
might be lost. To avoid this situation, mtime, the number
of activation requests memorized for τtime must fulfill the

following constraint: mtime >
⌈

Rtime

ptime

⌉
. If mtime > 1,

we must use the BCC2 conformance class. Let us under-
line that this selection of the number of memorized ac-
tivation requests must also be considered when the worst
case execution time of a task is greater than its period (and
lower than its deadline). Indeed, schedulability analysis
techniques always suppose that all activation requests are
memorized.

Let us consider now requirement R2’: after the first ac-
tivation, the tasks are sporadic or sporadically periodic.
A sporadic task is a real-time event-triggered task (for
instance supervision of functional modes of the applica-
tion, emergency handling, etc.). In order to allow analysis
of sporadic behavior, a minimal inter-arrival time, called
pseudo-period, must be given. In the worst case, a spo-
radic task has a periodic behaviour, its period being equals
to its pseudo-period. A sporadically periodic task is a real-
time event triggered functionality: once triggered, the task
that implements the functionality is periodic. Depending
on the functional mode, the functionality can be stopped.
Hence, the task is not dispatched anymore until the func-
tionality is one more time requested. In order to allow
analysis of sporadically periodic behavior, a delay must
be respected between a deactivation and the subsequent
activation of the functionality. Hence, in the worst case, a
sporadically periodic task has a periodic behaviour, its pe-
riod being equals to the minimum between its period and
its deactivation-activation delay. As worst-case response
time computation techniques consider worst cases, spo-
radic tasks and sporadically periodic tasks can be consid-
ered as periodic tasks and analysis techniques do not need
to be extended.

On the implementation side, OSEK/VDX does not of-
fer any native support to ensure that the effective activa-
tion law of a sporadic task (resp. sporadically periodic)
will not violate the pseudo-period (resp. deactivation-
activation delay) hypothesis. Hence, while there exists
no mechanism to solve this problem, it is not safe to use
sporadic or sporadically periodic tasks in an OSEK/VDX
application. In other words, requirement R2’ cannot be
fulfilled. However, it is out of the scope of this paper
to discuss the implementation of such robustness mech-
anisms.

Let us consider now requirement R3. To express im-
plementation constraints, we cut the body of tasks in a

sequence of a Computation part and a Finalization part.
In its Computation part, the task is not allowed to use
the following services: ActivateTask, TerminateTask and
ChainTask. Moreover, if it performs an I/O that has a non
negligible response time (more than just reading/writing a
value from/into a dedicated register), it enters a busy-wait,
which is taken into account in its WCET. Of course, if the
I/O response time is too costly, another solution should be
used (for instance delegating the interaction with the de-
vice to an ISR, or considering to use an other device). For
this model, the Finalization part consists in a call to the
TerminateTask service.

Lastly, requirement R4 is common to all real-time ap-
plications and has been largely studied by the scientific
community. It is out of the scope of our current work. As
an entry point, the interested reader can refer to [13].

4. Adding precedence relations

In this section, the software architecture (task model)
of section 3 is supplemented with precedence relations
modelled by precedence graphs between tasks. Of course,
we consider here precedence relations without cycle. A
root task of a graph is still strictly periodic and non-
concrete, whereas a non-root task is activated upon the
completion of its predecessor task(s), ie., a task can have
multiple predecessors in the same graph, see Fig. 5(a).

4.1. Transformation of precedence graph into prece-
dence chain

As we will justify in paragraph 4.3, in order to imple-
ment software architectures specified as a set of periodic
precedence graphs, while meeting the hypothesis of anal-
ysis algorithms, we must transform each periodic prece-
dence graph into a periodic precedence chain, i.e., in a
chain, a task has at most one successor and at most one
predecessor, see Fig. 5(b).

(a) Initial precedence graph

(b) Associated precedence chain

Figure 5. Transformation of a precedence
graph into a precedence chain

In the case where tasks cannot share a same priority
level, Richard proves in [15] that the transformation from

136

a set of graphs to a set of chains preserves the execu-
tion sequences. We simply adapt his transformation to
the OSEK/VDX case. Mathematically, the chain has to
be a linear extension of the partial order defined by the
precedence graph. Moreover, it must exhibit the same be-
haviour with regards to task activation and termination in-
stants so as to be a correct implementation of the specifi-
cation. It means especially that when two tasks of a graph
are unrelated, then the task with the higher priority must
be inserted in the chain before the task with the lower pri-
ority (see Fig. 5). As these two criteria are not sufficient to
define a total order (remember that tasks can share a same
priority level), at least an other criterion must be consid-
ered, for instance the alphabetical order – as the specifica-
tion is not deterministic, any implementation is correct –
(see tasks τ4 and τ5 in Fig. 5).

As a consequence, in the following sections, we only
consider precedence chains.

4.2. Schedulability Analysis
Due to space limitation, we cannot expand the schedu-

lability analysis of our model. For a detailed presentation
of the computation algorithms, we refer the reader to [6].
Contrary to the section 3, the computation for precedence
chain gives an upper bound of the worst-case response
time.

The computation of the worst-case response time for
precedence chains is based on [5, 15]. However, be-
cause of some specificities of OSEK/VDX – e.g., mixed
scheduling, task groups, same priority level – some major
modifications have to be done.

4.3. Implementation
In order to implement software architectures described

in the form of a set of periodic precedence graphs and to
preserve the meanings of analysis results for the effective
system, we have to explain the implicit hypothesis made
by the analysis technique. It is supposed that a task (that
has at least one predecessor) is activated as soon as all
its predecessors are finished. To be more explicit, it also
means that a task (that has at least one predecessor) is not
activated before all its predecessor are finished. Hence,
considering a task, the termination of its last predecessor
and its activation must be combined in an atomic action.
The only way to obtain such a behaviour in OSEK/VDX
is to use the ChainTask service. The problem now is that
ChainTask implements a 1-to-1 precedence relationship.
So we have to transform the specification into an imple-
mentation, where the only form of precedence authorized
is 1-to-1, that is, a precedence chain. We follow the tech-
nique described in section 4.1 to perform the transforma-
tions.

Our problem now is to implement precedence chains
on top of OSEK/VDX. As we did for the periodic task
model, we list the requirements that need to be met:

• the root task of a chain must follow requirements R1
(or R1’), R2, R3 and R4 defined in section 3.3;

• the activation of a non-root task of the chain must
correspond to the termination of its predecessor (re-
quirement R5);

• non-root tasks of the chain must follow requirements
R3 and R4.

We have given in section 3.3 the implementation rules
that must be followed in order to achieve requirements R1
to R4. In order to achieve requirement R5 we have only
one rule to update: for every task of the chain that has
a successor, its Finalization part consists in a call to the
ChainTask service (instead of TerminateTask), where the
target of the service is the successor of the task. Notice
that, as non-root tasks do not need to follow requirements
R1 (or R1’) and R2, the activation mechanism described
in section 3.3 must not be used for them. The only possi-
bility for these tasks to be activated is the execution of the
Finalization part of their predecessor in the chain.

5. Further extensions

In this section, we discuss possible extensions of the
work presented above.

5.1. Offsets
With regard to the periodic task model of the section 3,

the assumption made about the first activation dates can be
modified and offsets can be given, i.e. the date of the first
activation is a priori known for each task. For the same
reasons as in [4], it can be proved that the computation
conducted in section 3.2 still gives an upper bound of the
worst-case response time. However in the case where the
offsets are not all equal (tasks are said asynchronous), the
work of Redell and Törngren [14] can be used to reduce
the approximation. In this work, all tasks are assumed:
periodic; with some offsets; independent; with different
priority levels, or not; with deadlines that can be arbitrary
large; and with shared resources managed with PCP. In or-
der to compute the worst-case response time of a task τ i,
Redell and Törngren separate all the task instances that
may interfere with τi into different sets. These sets are
function of the activation date of these instances and the
start date of τi (as for the computation presented in Sec-
tion 3, where we consider interference before s i(q), and
after). To extend their method to tasks with preemption
threshold, we can simply adapt the interference caused by
the instances that occur after the start time by considering
only instances with a higher priority than the preemption
threshold (Eq(12) in [14]).

5.2. Taking into account system overheads
In [2], Bimbard and George study the overheads of an

OSEK/VDX OS implementation in the context of schedu-
lability analysis. In a first time, they identify the source of
kernel overheads that influence the response time of tasks;
in a second time they show how to take into account these
overheads in the computation of the worst-case response

137

time. They give four sources for system overheads : the
execution time of the counter-management-ISR that oc-
curs every tick (see Section 3.3); the computation time
required to activate a task; the computation time required
to schedule the tasks; the computation time to terminate a
task and reschedule. In this paper, because of shared re-
sources, we have to add the computation time needed to
lock and unlock a resource (GetResource and ReleaseRe-
source services).

In [2], the interference of each overhead is included
into worst-case response time computation equations. Ex-
tending this method in order to take into account shared
resources and preemption thresholds seems to be in-
tractable and inefficient. The main reason is that the com-
putation of the response time is not an exact computation
when the mode becomes too complex (e.g. when using the
model with precedence). Some approximations are done.
Hence, worst-case execution times are upper bounds, and
critical instants describe unrealistic execution sequences
(but still give safe values). Extending the worst-case re-
sponse time computation equations so as to take into ac-
count explicitly the overhead of each system activity dur-
ing an execution sequence requires a large amount of
work. In our opinion, when the software architecture is
too complex to be analysed by an exact method, a more
reasonable approach to treat system overheads is to in-
clude them as contributions to the worst-case execution
time of code sections (eij).

Following this last approach, an immediate improve-
ment could be to derive a worst-case context for each ser-
vice call, so as to use more accurate overhead values. In-
deed, the execution time of a system activity can some-
times be dependant of the number of objects handled by
the system. For instance, in Trampoline [1, 7], the execu-
tion time for inserting a task in the ready list is composed
of a constant part plus a variable one, linear in the number
of higher priority tasks already in the ready list. Such an
approach is immediate because: (i) OSEK/VDX OS is a
static kernel; (ii) we know the software architecture of the
application; (iii) we have access to the source code of our
OSEK/VDX OS implementation.

5.3. ECCx classes
In this paper, we explore the BCCx conformance

classes of the OSEK/VDX OS specifications. Obviously,
they support model of computations that are close to the
schedulability analysis models. However, they are limited
and some application may require more complex services.
Thus, we have to explore the ECCx conformance classes.
The difference between ECCx and BCCx is the possibility
for an extended task to enter a WAITING state, by waiting
for one or more event.

By restricting the use of the event handling services, it
should be simple to adapt the analysis algorithms defined
for precedence graphs. To do so, an extended task could
be considered as a chain of tasks with the same priority,
where the calls to the WaitEvent services denote the limit

between two tasks.
However, we have to perform further work to verify

that this interpretation is correct and to precisely define the
accompanying design rules. Moreover, such an approach
forbids some constructs of interest, for instance the pos-
sibility for a task to wait for different events at the same
time and to be awaken as soon as one of this event is sig-
nalled. Thus, we also have to extend analysis algorithms
in order to be able to relax too restrictive rules.

5.4. Distributed systems
Another natural extension concerns the analysis and

implementation of applications distributed among a set of
networked ECUs (Electronic Control Unit). It is natural
because the OSEK/VDX set of specifications includes an
application-level communication protocol: OSEK/VDX
COM.

On the one hand, depending on the chosen communi-
cation paradigm (COM supports both ”blackboard” and
”mailbox”), on the synchronization between the applica-
tion layer and the communication subsystem, etc., a wide
variety of software architecture can be implemented. On
the other hand, there exists some results on the analysis
of distributed real-time systems [17, 12]. Following the
example of the work described in this paper, we have to
adapt these analysis algorithms to the specific constructs
of OSEK/VDX OS+COM, and to precisely define design
rules that will ensure the predictability of the implemen-
tation.

5.5. Tool support
We are currently developing an open-source imple-

mentation of the OSEK/VDX OS 2.2.3 specifications [1,
7], together with an OSEK/VDX OIL 2.5 compiler in or-
der to ease system generation.

In order to instantiate the work presented in this paper,
we will define new OIL properties, so as to be able to di-
rectly extract schedulability analysis model from the OIL
description of the application. Moreover, we plan to in-
clude specific rules in the OIL compiler to check that an
application complies to the design rules associated to the
selected analysis algorithms (these rules must also be able
to parse and analyse the source code for tasks).

6. Conclusion

We have explored the problem of analysing the schedu-
lability of OSEK/VDX-based applications. We focused
on mono-ECU systems, and considered only the BCCx
conformance classes of the OSEK/VDX OS specifica-
tions. In this context, we did study two cases:

• software architectures composed of a set of indepen-
dent periodic and sporadic tasks;

• software architectures composed of a set of indepen-
dent periodic and sporadic graphs of tasks;

138

In both cases, we have defined the software architecture
model. For the first model, we have shown how to adapt
state-of-the-art schedulability analysis algorithms so as to
take into account the specific constructs of OSEK/VDX
OS (mixed preemptive / non-preemptive scheduling, in-
ternal resources and task groups, mutliple tasks per pri-
ority level, etc.). Due to space limitation, we could not
give the details of the schedulability analysis of the sec-
ond model. The intersted reader may refer to [6]. In both
case, we have also defined a set of design rules in order
to ensure the consistency between the analysis model and
the implementation.

Our approach is a pragmatic one. It aims at helping
the designer of an application to fill the semantic gap be-
tween the analysis level and the implementation level. Al-
though real-time operating systems are designed in order
to achieve predictability of the applications, they also of-
fer services the use of which may violates the hypothesis
made by the analysis technique. The most simple answer
to this problem consists in completely forbidding the us-
age of such services. However, this answer is unbearable
in practice, as it hugely increases the complexity of the
implementation. Hence, we try to give more reasonable
answers, by restricting the usage of the problematic ser-
vices (through design rules), while adapting the analysis
algorithms. As we quickly discovered, such an approach
requires a deep knowledge of both domains (analysis and
services). In other words, solving the ”simple” problem of
”implementing an analysable application” is not straight-
forward.

The work presented in this paper is a first attempt to
give reasonable answers. However, the design rules are
still restrictive, so we should explore if they can be re-
laxed. This includes especially the extension of our pro-
posal to the ECCx OSEK/VDX OS conformance classes.
Then, it will be necessary to take into account the case of
distributed systems. Lastly, by extending OIL, we will be
able to provide a tool integrating system generation and
schedulability analysis.

References

[1] J. Bechennec, M. Briday, S. Faucou, and Y. Trin-
quet. Trampoline an open source implementation of the
OSEK/VDX RTOS. In Proceeding of the Eleventh IEEE
International Conference on Emerging Technologies and
Factory Automation (ETFA’06), 2006.

[2] F. Bimbard and L. George. FP/FIFO feasibility condi-
tions with kernel overheads for periodic tasks on an event
driven osek system. In Proceeding of the Ninth IEEE Inter-
national Symposium on Object-Oriented Real-Time Dis-
tributed Computing (ISORC 2006), pages 566–574, 2006.

[3] A. Burns and A. Wellings. Real-Time Systems and Pro-
gramming Languages (Third Edition) Ada 95, Real-Time
Java and Real-Time POSIX. Addison Wesley Longmain,
2001.

[4] J. Goossens. Scheduling of offset free systems. Real-Time
Systems, 24(2), 2003.

[5] M. Harbour, M. Klein, and J. Lehoczky. Fixed priority
scheduling periodic tasks with varying execution priority.
In Proceedings of the Twelfth Real-Time Systems Sympo-
sium (RTSS 1991), pages 116–128, 1991.

[6] P. Hladik, A. Déplanche, S. Faucou, and Y. Trin-
quet. Computation of worst-case response time
of OSEK/VDX applications with precedence rela-
tions. http://www.irccyn.ec-nantes.fr/
∼faucou/rtns07prec.pdf, 2007.

[7] IRCCyN. Trampoline, real-time systems group.
http://trampoline.rts-software.org, 2005.

[8] J. Lehoczky. Fixed priority scheduling of periodic task sets
with arbitrary deadlines. In Proceedings of the Eleventh
IEEE Real-Time Systems Symposium (RTSS 1990), pages
201–209, 1990.

[9] J. Liu. Real-Time Systems. Prentice Hall Inc, 2000.
[10] OSEK. OSEK/VDX System Generation – OIL : OSEK

Implementation Language version 2.5, 2004. http://
www.osek-vdx.org/.

[11] OSEK group. OSEK/VDX Operating System version 2.2.3,
2005. http://www.osek-vdx.org/.

[12] J. C. Palencia and M. G. Harbour. Exploiting precedence
relations in the schedulability analysis of distributed real-
time systems. In proceedings of the Twentieth IEEE Real-
time Systems Symposium (RTSS 1999), 1999.

[13] P. Puschner and A. Burns. Guest Editorial: A Review of
Worst Case Execution Time Analysis. Real-Time Systems,
18(2-3):115–128, 2000.

[14] O. Redell and M. Törngren. Calculating exact worst case
response times for static priority scheduled tasks with
offsets and jitter. In Proceedings of the Eighth IEEE
Real Time Technology and Applications Symposium (RTAS
2002), 2002.

[15] M. Richard. Contribution à la Validation des Systèmes
Temps Réel Distribués : Ordonnancement à Priorités
Fixes & Placement. PhD thesis, Université de Poitiers,
2002.

[16] L. Sha, R. Rajkumar, and J. Lehoczky. Priority inheri-
tance protocols: An approach to real-time synchroniza-
tion. IEEE Transactions on Computers, 39(9):1175–1185,
1990.

[17] K. Tindell and J. Clark. Holistic schedulability analysis
for distributed hard real-time systems. Microprocessing
and Microprogramming, 40:117–134, 1994.

[18] Y. Wang and M. Saksena. Scheduling fixed-priority tasks
with preemption threshold. In Proceedings of the Sixth In-
ternational Conference on Real-Time Computing Systems
and Applications (RTCSA’99), pages 328–337, 1999.

139

140

Improvements in the configuration and analysis of Posix 1003.1b scheduling

Mathieu Grenier Nicolas Navet

LORIA-INRIA
Campus Scientifique, BP 239

54506 Vandoeuvre-lès-Nancy- France
{grenier, nnavet}@loria.fr

Abstract

Posix 1003.1b compliant systems provide two well-
specified scheduling policies, namely sched_rr (Round-
Robin like) and sched_fifo (FPP like). Recently, an op-
timal priority and policy assignment algorithm for Posix
1003.1b has been proposed in the case where the quan-
tum value is a system-wide constant. Here we extend this
analysis to the case where quanta can be chosen on a
task-per-task basis. The algorithm is shown to be opti-
mal with regards to the power of the feasibility test (i.e.
its ability to distinguish feasible and non feasible config-
urations). Though much less complex than an exhaustive
exploration, the exponential complexity of the algorithm
limits its applicability to small or medium-size problems.
In this context, as shown in the experiments, our proposal
allows achieving a significant gain in feasibility over FPP
and Posix with system-wide quanta, and therefore using
the computational resources at their fullest potential.

1. Introduction

Context of the paper. This study deals with the
scheduling of real-time systems implemented on Posix
1003.1b compliant Operating System (OS). Posix
1003.1b [7], previously known as Posix4, defines real-
time extension to Posix mainly concerning signals, inter-
process communications, memory mapped files, syn-
chronous and asynchronous IO, timers and scheduling (a
recap of Posix’s features related to scheduling is given in
§2.1). This standard has become very popular and most of
today’s OS conform, at least partially, to it.

Problem definition. Posix 1003.1b compliant OSs pro-
vide two scheduling policiessched_fifoand sched_rr,
which under some restrictions discussed in §2.1, are re-
spectively equivalent to Fixed Preemptive Priority (FPP)
and Round-Robin (RR for short). Thus, under Posix
1003.1b, each process is assigned both a priority, a
scheduling policy and, in the case of Round-Robin, a
quantum. At each point in time, one of the ready pro-
cesses with the highest priority is executed, according to

the rules of its scheduling policy (e.g. yielding the CPU
after a quantum under RR).

The problem addressed here is to assign priorities, poli-
cies and quanta to tasks in such a way as to respect dead-
line constraints. For FPP alone, the well-known Auds-
ley algorithm [2] is optimal. A similar algorithm exists
for both RR and FPP in the case of a system-wide quan-
tum [6]. Here we consider the case where quanta can be
chosen on a task-per-task basis. As it will be seen in §3.2,
the complexity of the problem is such that an exhaustive
search is usually not feasible even on small size problems.
For instance, a task set of cardinality10 with quanta cho-
sen among 5 different values requires to analyze the fea-
sibility of more1011 different configurations (see §3.2).

Contributions. Traditionally, the RR policy is only con-
sidered useful for low priority processes performing some
background computation tasks “when nothing more im-
portant is running”. In this paper, as we did in [10, 6],
we argue that the combined use of RR and FPP allows to
successfully schedule a large number of systems that are
unschedulable with FPP alone.

The contribution of the paper is twofold, first we pro-
pose an algorithm for assigning priorities, policies and
quanta that is optimal in the sense that if there exists at
least a feasible solution1, then the algorithm will return
a feasible solution. The algorithm being an extension of
the classical Audsley algorithm [2] and theAudsley-RR-
FPP from [6], we name it theAudsley-RR-FPP∗ algo-
rithm. The worst-case complexity of the algorithm is as-
sessed and a set of optimizations are proposed to reduce
the search space. The second contribution of the paper
is that we give further evidences that the combined use
of both FPP and RR is effective - especially when quanta
can be chosen for each individual task - for finding fea-
sible schedules even when the workload of the system is
high.

Related work. We identify two closely related lines of
research: schedulability analyses and priority assignment.

1We call here afeasiblesolution, a solution that successfully passes
a schedulability test verifying property 2 (see §2.5). In the following, we
make use of the response time bound analysis derived in [9].

141

Audsley in [2, 3] proposes an optimal priority assignment
algorithm for FPP, that is now well-known in the literature
as the Audsley algorithm. Later on in [5], this algorithm
has been shown to be also optimal for the non-preemptive
scheduling with fixed priorities. The problem of best as-
signing priorities and policies under Posix 1003.1b was
first tackled in [9] but the solution relies on heuristics and
is not optimal in the general case. Then, in [6], an optimal
solution is proposed for the case where the quantum value
is a system-wide constant.

As in [6], the problem addressed here is different than
in the plain FPP case because the use of RR leads to the
occurrence of scheduling “anomalies”, which are some-
times counter-intuitive. For instance, as it will be seen in
§2.5, increasing the quantum value for a task can leads
sometimes to a greater worst-case response time for this
task. Similarly, decreasing the set of higher priority tasks,
can increase the response time (see [6]). This prevents
us from using the proposed priority and assignment algo-
rithm with the schedulability assessed by simulation, or
with a feasibility test that would not possess some spe-
cific properties discussed in §2.5. Indeed there would be
cases where the algorithm would discard schedulable as-
signments and thus not be optimal. In this study, feasi-
bility is assessed by the analysis published in [9], which
ensures that the computed response time bounds decrease
when the set of higher priority tasks is reduced. This prop-
erty enables us to use an Audsley-like algorithm for the
assignment that will be shown to be optimal with regard
to the power of the test, that is its ability to distinguish
feasible or non feasible configurations.

Organisation. Section2 summarizes the main features
of the scheduling under Posix 1003.1b and introduces the
model and notations. In section 3, we present the opti-
mal priority, policy and quantum assignmentAudsley-RR-
FPP∗ algorithm. Efficiency of the proposal is then as-
sessed in section 4.

2. Scheduling under Posix 1003.1b: model
and basic properties

In this section we present the system model and sum-
marize the main features related to scheduling of Posix
1003.1b. We then present the assumptions made in this
study and derive some basic properties of the scheduling
under Posix 1003.1b that will be used in the subsequent
sections.

2.1. Overview of Posix 1003.1b scheduling
In the context of OS, we define a task as a recurrent

activity which is either performed by repetitively launch-
ing a process or by a unique process that runs in cycle.
Posix 1003.1b specifies 3 scheduling policies:sched_rr,
sched_fifoand sched_other. These policies apply on a
process-by-process basis: each process run with a partic-
ular scheduling policy and a given priority. Each process

inherits its scheduling parameters from its father but may
also change them at run-time.

– sched_fifo: fixed preemptive priority with First-In
First-Out ordering among same-priority processes.
In the rest of the paper, it will be assumed that all
sched_fifotasks of an application have different pri-
orities. With this assumption and without change
during run-timesched_fifois equivalent to FPP.

– sched_rr: Round-Robin policy (RR) which allows
processes of the same priority to share the CPU. Note
that a process will not get the CPU until a higher pri-
ority ready-to-run processes are executed. The quan-
tum value may be a system-wide constant (e.g. QNX
OS), process specific (e.g. VxWorks OS) or fixed for
a given priority interval.

– sched_otheris an implementation-defined scheduler.
It could map ontosched_fifoor sched_rr, or also im-
plement a classical Unix time-sharing policy. The
standard merely mandates its presence and its doc-
umentation. Because we cannot rely on the same
behaviour ofsched_otherunder all Posix compliant
OSs, it is strongly suggested not to use it if a porta-
bility is a matter of concern. We will not consider it
in our analysis.

Associated with each policy is a priority range. Depend-
ing on the implementation, these priority ranges may or
may not overlap but most implementations allow over-
lapping. Note that these previously explained scheduling
mechanisms similarly apply to Posix threads with the sys-
tem contention scope as standardised by Posix 1003.1c
standard [7].

2.2. System model
The activities of the system are modeled by a setT

of n periodic and independent tasksT = {τ1, τ2, ..., τn}.
Each taskτi is characterized by a tuple(Ci, Ti, Di) where
each request ofτi, called an instance, has an execution
time ofCi, a relative deadlineDi and a period equal toTi
time units. One denotes byτi,j thejth release ofτi. As
usual, the response time of an instance is the time elapsed
between its arrival and its end of execution.

Under Posix 1003.1b, see §2.1, each taskτi possesses
both a prioritypi and a scheduling policyschedi. In this
study, we choose the convention “the smaller the numeri-
cal value, the higher the priority”. In addition to the prior-
ity, under RR, each taskτi is assigned a quantum valueψi.
The priority and scheduling policy assignmentP is fully
defined by a set ofn tuples(τi, pi, sched

P
i
) (i.e. one for

each task). A quantum assignment underP , denoted by
ΨP , defines the set of quantum valuesψΨP

i
whereψΨP

i
is

the quantum ofτi. The whole scheduling is fully defined
by the tuple(P ,ΨP) which is called aconfigurationof
the system.

Under assignmentP , the set of tasksT is partitioned
into separate layers, one layer for each priority levelj

142

where the layerT P
j

is the subset of tasks assigned to pri-
ority levelj. UnderP , T P

hp(j) (resp.T P

lp(j)) denotes the set
of all tasks possessing a higher (resp. lower) priority than
j. A layer in which all tasks are scheduled with RR (resp.
FPP) is called an RR layer (resp. FPP layer). In the fol-
lowing,P or ΨP will be omitted when no confusions are
possible. A list of the notations is provided in appendix at
the end of the paper.

In the following, a taskτi is saidschedulableunder as-
signment(P ,ΨP) if its response time bound, as computed
by the existing Posix 1003.1b schedulability analysis [9],
is no greater than its relative deadline (i.e. maximum du-
ration allowed between the arrival of an instance and its
end of execution). The whole system is said schedulable
if all tasks are schedulable. Note that the test presented
in [9] is sufficient but not necessary, there are thus task
sets which won’t be classified as schedulable while there
exist configurations under which no deadlines are missed.

2.3. Assumptions
In this study, as explained in§2.1, only sched_fifoand

sched_rrare considered for portability concern. Due to
the complexity of assigning priorities and scheduling poli-
cies, the following restrictions are made:

1. context switch latencies are neglected, but they could
be included in the schedulability analysis of [9] as
classically done (see, for instance, [11]),

2. since a priority level without any tasks has no effect
on the scheduling, we impose the priority range to be
contiguous,

3. two tasks having different scheduling policies have
different priorities, i.e., ∀i 6= j, schedi 6=
schedj =⇒ pi 6= pj ,

4. all sched_fifotasks must possess distinct priorities
(schedi = schedj = sched_fifo =⇒ pi 6= pj).
With this assumption and without priority change at
run-time,sched_fifois equivalent to fixed-preemptive
priority (FPP). Thus, several tasks having the same
priority are necessarily scheduled undersched_rr
policy,

5. the quantum value can be chosen on a task-per-task
basis in the interval[Ψmin,Ψmax], whereΨmin and
Ψmax are natural numbers whose values are OS-
specific constraints or chosen by the application de-
signer.

2.4. Schedulability analysis under Posix: a recap [9]
In this paragraph, we summarize the schedulability

analysis [9] of a configuration(P ,ΨP) under Posix.
Tasks scheduled under Posix can be described as a super-
position of priority layers [9]. At each point in time, one
of the ready instances with the highest priority (let’s say
pi) is executed as soon as and as long as no instances in
the higher priority layers (instances of tasks inThp(pi)) are

pending. Inside each priority layer, instances are sched-
uled either according to FPP or RR with the restrictions
that all instances belonging to the same layer have the
same policy.

FPP policy is achieved when a ready instanceτi,j is ex-
ecuted when no higher priority instances is pending. Un-
der RR, a taskτi has repeatedly the opportunity to execute
during a time slot of maximal lengthψΨP

i
. If the task has

no pending instance or less pending work than the slot
is long, then the rest of the slot is lost and the task has
to wait for the next cycle to resume. The time between
two consecutive opportunities to execute may vary, de-
pending on the actual demand of the others tasks, but it is

bounded byψ
ΨP

i =
∑
τk∈T P

pi

ψΨP

k
in any interval where

the considered task has pending instances at any moment.
In [9], worst-case response time bounds for priority lay-
ers have been derived in a way that is independent from
the scheduling policies used for each layer. This analysis
is based on the concept of majorizing work arrival func-
tions, which measure a bound on the processor demand,
for each task, over an interval starting at a “generalized
critical instant”. The majorizing work arrival function on
an interval of lengtht for a periodic taskτi is:

si(t) = Ci ·

⌈
t

Ti

⌉
. (1)

The worst-case response time bound can be expressed as

maxj<j∗(ei,j − ai,j) , (2)

wherej∗ = min{j | ei,j ≤ ai,j+1}, whereai,j is the

release of thejth instance ofτi after the critical instant
andei,j is a bound on the execution end of this instance.
Sinceτi is a periodic task,ai,j = (j−1)·Ti (j = 1, 2, ...).
If τi is in an FPP layer, then

ei,j = min{t > 0 | s̃i(t) + si,j = t} , (3)

where s̃i(t) =
∑

τk∈T P

hp(pi)

sk(t) is the demand from

higher priority tasks (i.e. task inT P

hp(pi)
) and si,j =∑

j

i=1 Ci is the demand from previous instances and the
current instance ofτi. If τi is in an RR layer, then

ei,j = min{t > 0 | Ψi(t) + si,j = t} , (4)

where the demand from higher priority tasks and of all
other tasks of the RR layer is:

Ψi(t) = min

(⌈
si,j

ψΨP

i

⌉
· (ψ

ΨP

i
− ψΨP

i
) + s̃i(t), s

∗
i
(t)

)
,

(5)

whereψ
ΨP

i
− ψΨP

i
is the sum of the quanta of all other

tasks of the RR layer and

s∗
i
(x) = max

u≥0
(si(u) + s̃i(u + x) + si(u + x) − u) ,

(6)

143

wheresi(u+x) =
∑

τk∈T P
pi

\{τi}
sk(u+x) is the demand

from other tasks thanτi in T P
pi

. The algorithm for com-
puting the worst-case response time bounds can be found
in [9]. It is to stress that this schedulability analysis is suf-
ficient but not necessary; some task sets may fail the test
while they are perfectly schedulable. This will certainly
induce conservative results but the approach developed
here remains valid with another - better - schedulability
test as long as it is sufficient and possesses the properties
described in §2.5.

2.5. Scheduling under Posix 1003.1b: basic properties
Under FPP, as well as under RR, any higher priority

task will preempt a lower priority task thus the following
properties hold for any taskτi :

1. all ready instances, with higher priorities thanpi, will
delay the end-of-execution of the instances ofτi. It is
worth noting that this delay is not dependent on the
relative priority ordering among these higher priority
instances and their quantum values,

2. lower priority instances, whatever their policy, will
not interfer with the execution of instances ofτi and
thus won’t delay their end-of-execution.

These two properties ensure that the following lemma,
which is well-known in the FPP case, holds.

Lemma 1 [3] The worst-case response time of an in-
stance ofτi only depends on the set of same priority tasks,
the values of their quantum and the set of higher priority
tasks. The relative priority order among higher priority
tasks and the values of their quantum has no influence.

However, despite lemma 1 holding, scheduling under
RR leads to scheduling anomalies. Indeed, scheduling un-
der Posix is often counter-intuitive. For instance, it has
been shown in [4], that early end-of-executions can lead
to missed deadlines in configurations that would be feasi-
ble with WCETs. Similarly, removing a task with a higher
priority thanτj may lead to increased response times for
τi (see figures 1 and 2 in [6]).

Here, we highlight that increasing the quantum size of
a task can increase its response time. Figures 1 and 2
present the scheduling of task setT = {τ1, τ2} where
τ1 = (C1 = 2, T1 = 5) and τ2 = (4, 10). All the
tasks belong to the same layer and the chosen quantum
assignments areΨ

′

= {ψ1 = 2, ψ2 = 2} (figure 1) and
Ψ = {ψ1 = 2, ψ2 = 3} (figure 2) .

As it can be seen on figures 1 and 2, surprisingly the
response time ofτ2 is 6 with a quantum of2 and8 with
3. However, with the schedulability analysis used in this
study, property 1 holds and will be used to restrain the
search space in section 3. A proof is given in appendix A.

Property 1 Let τi be a task in a RR layer, increasing
(resp. reducing) its quantum value, while reducing (resp.

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

τ1, ψ1 = 2

τ2, ψ2 = 2

0 5 10

t

Figure 1. Scheduling of task set T = {τ1, τ2}
with Round-Robin and quantum assign-
ment Ψ

′

= {ψ1 = 2, ψ2 = 2}.

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

�
�
�

�
�
�

0 5 10

t

τ1, ψ1 = 2

τ2, ψ2 = 3

Figure 2. Scheduling of task set T = {τ1, τ2}
with Round-Robin and quantum assign-
ment Ψ1 = {ψ1 = 2, ψ2 = 3}.

increasing) the quantum value of the other tasks of its
RR layer, diminishes (resp. increases) the response time
bound ofτi computed with the chosen schedulability anal-
ysis.

To be optimal, the Audsley algorithm requires that the
schedulability test fulfills some properties (see §3.3). In
particular, removing a task with a higher priority must not
lead to increased response times. In the case of Posix
1003.1b, this imposes constraints on the schedulability
test which must fulfill property 2.

Property 2 Let τi be a task in RR or FPP layer, reduc-
ing its set of higher and same priority tasks, while keep-
ing the quantum allocation unchanged within its Round-
Robin layer (ifτi is scheduled under RR), diminishes or
leaves unchanged the response time bound ofτi computed
with the chosen schedulability analysis.

It has been shown in [6] that the conservative response
time bound computed with [9] ensures that property 2
holds. The proof, given in [6] in the context of a unique
sysrem-wide quantum value, is still valid when different
values for the quanta are possible. As it will be shown
in section 3, a schedulability test which ensures that prop-
erty 2 is verified, allows to use an extension of the Audsley
algorithm and preserves its optimality with regards to the
ability of the test to distinguish between feasible and non-
feasible solutions (i.e., what is called the power of the test
in the following).

144

3. Optimal assignment algorithm with task-
specific quanta

We present here an optimal priority, scheduling pol-
icy and quanta assignment for Posix 1003.1b systems
when the feasibility is assessed with schedulability analy-
sis which verifies property 2 described in §2.5. This algo-
rithm heavily relies on both the Audsley algorithm and the
algorithm previously proposed for system-wide quantum
values (calledAudsley-RR-FPPin [6]). Here we extend
previous works to the case where quanta can be chosen
on a task-per-task basis, the corresponding algorithm is
named theAudsley-RR-FPP∗. With the assumption made
in section 2, the policy is implied by the number of tasks
having the same priority level: should only one task be as-
signed priority level i then its policy is FPP (i.e. a RR layer
of cardinality 1 is strictly equivalent to an FPP layer, see
§2.1), otherwise the policy is necessarily RR. The prob-
lem is thus reduced to assigning priorities and quanta to
tasks in a RR layer.

3.1.Audsley-RR-FPP∗ algorithm
In the same way as the original Audsley algorithm

(abridged by AA in the following), the idea is to start
assigning the priorities from the lowest priorityn to the
highest priority1 (line 3 in algorithm 1). The difference
with AA, is that, at each priority level, the algorithm is not
looking for a single task but for a set of tasks (line5). For
each such set of tasks, our algorithm examines all possible
quantum assignments until it finds one suitable one.

Underlying idea. The underlying idea of the algorithm
is to move , when needed, the maximum amount of work-
load to the lower priority levels and to schedule the tasks
under RR. When an instanceτi,j is assigned the same pri-
ority as τk,h and both are scheduled under RR,τi,j can
delay τk,h less than ifτi,j would be scheduled with a
higher priority. The same argument holds for the delay
induced byτk,h to τi,j . Thus, as illustrated with an exam-
ple in [10], where a task set that is not feasible under FPP
alone, becomes feasible with RR. Of course, in the general
case, combining the use of both policies is the most effi-
cient and, as it will be shown, leads to an optimal priority
and policy assignment.

Step of the algorithm. For each priority level i
(line 3), theAudsley-RR-FPP*algorithm attempts to find
a schedulable subsetTi in subsetR (line 5) whereR is
made of all the tasks which have not been yet assigned
a priority, a policy and a quantum. The algorithm tries
all possible subsets ofR, one by one, and all possible
quantum assignments for each subset until a schedulable
configuration is obtained or all configurations have been
considered. In the latter case, the system is not schedula-
ble (lines 7-8). Otherwise, we have found a schedulable
subset, denoted byTi, which, in the RR case, possesses
quantum assignment{ψk}τk∈Ti

(lines 7 and 8). Precisely,

Input : task setT = {τ1, τ2..., τn}
Result: schedulable priority, scheduling policy and

quantum assignmentPk = (P ,Ψk)
Data: i: priority level to assign

R: task-set with no assigned priority
P : partial priority and policy assignment
ΨP : partial quantum allocation

R = T ;1

P = ∅;2

for i = n to 1 do3

try to assign priority i:4

search a schedulable subset of tasksTi under5

quantum allocation{ψk}τk∈Ti
in R

if no subsetTi is schedulable at priorityi then6

failure, return partial7

assignement:
return (P ,ΨP);8

else9

let Ti a schedulable subset at priorityi with10

quantum allocation{ψk}τk∈Ti
;

assign priority, policy and11

quantum:
if #Ti = 1 then12

P = P ∪ {(τk, i, sched_fifo)}τk∈Ti
;13

else14

P = P ∪ {(τk, i, sched_rr)}τk∈Ti
;15

ΨP = ΨP ∪ {ψk}τk∈Ti
;16

end17

remove Ti from R:18

R = R\Ti;19

end20

if R = ∅ then return (P ,ΨP);21

end22

Algorithm 1 : Audsley-RR-FPP∗ algorithm with task-
specific quantum.

145

a

b c

d e

f g h i

τ1

τ2

τ3

=i : priority i

>i : priority greater than i

>i

>i>i

>i

=i

=i

=i =i

=i

depth 1

depth 0

depth 3

depth 4

Figure 3. Search tree constructed in the search of
a feasible subset ofR = {τ1, τ2, τ3} at priority i.
For instance, node b models the partial priority as-
signment whereτ1 is assigned priority i while node
c means thatτ1 is assigned a greater priority.

Ti is schedulable when all tasks ofTi are feasible at pri-
ority i while all tasks without assignment (i.e., tasks in
R\Ti) have a priority greater thani. At each step, at least
one task is assigned a priority and a policy (lines 11 to
17). Note that, when RR is used at least once, less thann

priority levels are needed (early exit on line 21).

Looking for the set of schedulable tasksTi. There are
2#R possible subsetsTi of R that can be assigned prior-
ity level i (line 5). Since the quantum can take‖ψ‖ =

ψmax − ψmin + 1 different values, there are‖ψ‖#Ti dif-
ferent quantum assignments for each subsetTi. First, we
explain the basic exhaustive tree-search used to set prior-
ities. Then, we explain how we use a similar search to
choose the quantum assignment for each possible setTi.
A method that speeds-up the search by pruning away sub-
trees that cannot contain a solution is provided in §3.2.

A binary tree structure reflects the priority choices and
the search for the schedulable subset is performed by ex-
ploring the tree. In the following, we callpriority-search-
tree the search tree modeling the priority choices. As an
illustration, figure 3 shows the priority-search-tree corre-
sponding to the setR = {τ1, τ2, τ3}. Each edge is labeled
either with “= i” (i.e., priority equal toi) or “> i” (i.e.,
priority greater thani). A label “= i” (resp. “> i”) on
the edge between vertices of depthk andk + 1 means
that the(k + 1)th task ofR belongs to the layer of prior-
ity i (resp. belongs to a layer of priority greater thani).
Thus, a vertex of depthk models the choices performed
for the k first tasks ofR. For instance, on figure 3, the
vertex e implies that tasksτ1 belongs to layer of priorityi
while taskτ2 does not. Each leaf is a complete assignment
for priority level i, for instance leaf g corresponds to set
Ti = {τ1, τ2}.

The search is performed according to a depth-first strat-
egy. The algorithm considers the first child of a vertex that

appears and goes deeper and deeper until a leaf is reached,
i.e., until the setTi is fully defined. When a leaf is reached,
the schedulability ofTi is assessed. IfTi is feasible, the
algorithm returns, otherwise, it backtracks till the first ver-
tex such that not all its child vertices have been explored.

To assess the schedulability ofTi, all possible quan-
tum assignments are successively considered. In the
same manner as for the priority allocation, a tree -called
quantum-search-tree- reflects the choices for quantum
values. A depth-first strategy is used as well to explore
the search space. In this case, a node has‖ψ‖ children
where each child models a different quantum value. Here,
we label the edge between vertices of depthk andk + 1
with the quantum value of the(k + 1)th task ofTi. Thus,
a vertex of depthk models the choices performed for the
k first tasks ofTi.

3.2. Complexity and improvements
Size of the search space.Assigningn tasks to differ-
ent non-empty layers is like subdividing a set ofn ele-
ments into non-empty subsets. Letk be the number of
layers. The number of possible assignments is equal, by
definition, to the the Stirling number of the second kind
(see [1], page 824):

1

k!

k∑
i=0

(−1)(k−i)
(
k

i

)
in,

where
„
k

i

«
is the binomial coefficient, i.e., the number

of ways of picking an unordered subset ofi elements in a
set ofk elements.

The complexity depends on the number of tasks sched-
uled under RR since their quantum values have to be cho-
sen. When there arek layers, at leastn− k + 1 tasks are
in an RR layer (i.e.,n − k + 1 tasks in a single RR layer
and one task in each of the remainingk − 1 FPP layers)
and up tomax(n, 2(n − k)) (i.e., tasks are “evenly” dis-
tributed among RR layers). Since the quantum can take
‖ψ‖ = ψmax − ψmin + 1 different values, there are be-
tween‖ψ‖ n−k+1 and‖ψ‖max(n,2(n−k)) different quan-
tum assignments for a configuration ofk layers.

In addition, n tasks can be subdivided intok =
1, 2, ..., n many layers and there arek! different possible
priority orderings among thek priority layers. Thus, a
lower bound for the search space of the problem of as-
signing priority, policy and quantum for a set ofn tasks
is

n∑
k=1

k∑
i=0

(−1)(k−i) ·

(
k

i

)
· in · ‖ψ‖

n−k+1 .

In a similar way, we derive an upper bound by replacing
‖ψ‖

n−k+1 with ‖ψ‖
max(n,2(n−k)).

For instance, as can be seen on figure 4, the size of
the search space comprises about4 · 1010 scheduling con-
figurations for a set of10 tasks. The search space grows

146

 1

 1e+10

 1e+20

 1e+30

 1e+40

 1e+50

 1e+60

 1e+70

 1e+80

 1e+90

 5 10 15 20 25 30 35 40 45 50

Number of tasks (n)

Size of the problem (lower bound)
Audsley-RR-FPP task-specific quanta

Audsley-RR-FPP system-wide quantum

Figure 4. Complexity of the problem for a num-
ber of tasks varying from5 to 50 when the quantum
value can be chosen in the interval[1, 5].

more than exponentially, thus an exhaustive search is not
possible in practice in a wide range of real-time problems.

Audsley-RR-FPP∗. Our algorithm looks at each priority
level i for a subsetTi in R which is schedulable at prior-
ity i (line 5). Since at least one task is assigned to each
priority level, the number of tasks belonging toR when
dealing with priority leveli is lower than or equal toi. In
addition, we know that there are‖ψ‖k different quantum
assignments for a subset ofk tasks. Thus, at each priority

level i, the algorithm examines
∑

i

j=1

(
i

j

)
· ‖ψ‖j =

(‖ψ‖ + 1)i − 1 assignments in the worst-case. Thus, for
priority level from 1 to n, the algorithm considers in the
worst-case a number of assignments given by:

n∑
i=1

(‖ψ‖ + 1)i − 1 =
1 − (‖ψ‖ + 1)n+1

1 − (‖ψ‖ + 1)
− (n+ 1)

This complexity for a varying number of tasks is shown on
figure 4, for instance, for a set of10 tasks withψmin = 1
and ψmax = 5 it is approximately equal to72 · 106.
Figure 4 shows also the size of the search space and,
for comparison, the worst-case complexity of the solution
proposed in [6] in the case where the quantum size is a
system-wide constant. Although we achieve a great com-
plexity reduction with regards to an exhaustive search, the
complexity remains exponential in the number of tasks.
Thus, in practice, our proposal is not suited for large-size
task sets that would, for instance, be better handled by
heuristics guiding the search towards promising parts of
the search space. This is left as future work.

Complexity reduction. As seen before, theAudsley-
RR-FPP∗ performs an exhaustive search for each priority
level. To a certain extent, it is possible to reduce the num-
ber of sets that are to be considered. Indeed, the property 3

given in this paragraph shows that it is possible to identify
priority and policy assignments that are not schedulable
whatever the quantum allocation. Thanks to property 2
and property 3, one can identify and prune away branches
of the priority-search-tree which necessarily lead to sub-
setsTi that are not schedulable whatever the quantum as-
signments. Furthermore, with property 3, one can reduce
in a similar manner the number of quantum assignments
to consider for a particular subsetTi in a quantum-search-
tree.

With the basic algorithm explains in §3.1, feasibility of
a priority allocation is assessed at the leafs when all tasks
have been given a priority by testing all quantum assign-
ments. The idea is here to evaluate feasibility at interme-
diate vertices as well, by assigning a priority lower than
i to the tasks for which no priority choice has been made
yet. Under that configuration, if a taskτi which is as-
signed the priorityi is not schedulable whatever the quan-
tum assignment, there is no need to consider the children
of this vertex. Indeed, from property 2, since the priority
assignment of the children of this node will increase the
set of same or higher priority tasks, the response time of
τi cannot decrease. Thus, all child vertices corresponds
to priority assignments that are not schedulable. Now, it
remains to identify priority and policy assignments that
are not schedulable whatever the quantum allocation. The
following property, proven in appendix A.3, can be stated.

Property 3 LetS be a schedulability test for which prop-
erty 2 holds. LetT be a task set andP be a global priority
and policy assignment. Letτi be a task with the maximum
quantum valueψmax in an RR layer. Let the quantum val-
ues of all other tasks in the RR layer be set to the minimum
ψmin. If the response time bound ofτi, computed withS,
is greater than its relative deadline, then, whatever the
quantum assignment underP , τi will remain unschedula-
ble withS.

Thus, at each vertex of the priority search tree, a priority
assignmentP is not feasible whatever the quantum assign-
ment, if a taskτk which has a priorityi is not feasible with
the quantum allocation given in property 3.

Similarly, we can cut branches when exploring the
quantum-search-tree of a setTi. The idea is again to eval-
uate feasibility at intermediate vertices. Since an interme-
diate vertex models a partial quantum assignment for a set
Ti, we assign the lowest quantum value to each task inTi
which has no quantum assigned yet. In that case, if a task
τk for which the quantum has already been set at this ver-
tex is not schedulable, then there is no need to consider the
children of this vertex. Indeed, given property 1, the re-
sponse time ofτk can only increase when the the children
of this vertex are considered.

The finding of this paragraph allows a very significant
decrease in the average number of configurations tested
by theAudsley-RR-FPP∗ algorithm. For instance, for task
sets constituted of 10 tasks, the algorithm examines on
average only about4000 configurations before coming up

147

with a feasible solution or concluding that the task set is
unfeasible while it would require about7 · 107 tests other-
wise.

3.3. Proof of optimality
Here we show that theAudsley-RR-FPP∗ algorithm is

optimal in the sense that if there is a priority, policy and
quantum assignment that can be identified as feasible by
the schedulability analysis, it will be found by the algo-
rithm. Let us first remind the following theorem which
has been proven in [2, 3, 5, 9] for various contexts of fixed
priority scheduling.

Theorem 1 [3] Let (P ,ΨP) be a schedulable configura-
tion up to priority i, i.e. tasks that have been assigned
the priorities fromn to i are schedulable. If there exists a
schedulable configuration(A,ΨA), then there is at least
one schedulable configuration(Q,ΨQ) having an identi-
cal configuration as(P ,ΨP) for priorities n to i.

From theorem 1, we can prove the optimality of
Audsley-RR-FPP∗. Indeed, ifAudsley-RR-FPP∗ happens
to fail at leveli, the priority, scheduling policy and quan-
tum assignment(P ,ΨP) provided byAudsley-RR-FPP∗

leads to a schedulable solution up to leveli + 1. Since
Audsley-RR-FPP∗ performs an exhaustive search to as-
sign leveli, there cannot be anyschedulableassignment
(Q,ΨQ) possessing the same assignment as(P ,ΨP) for
priority i + 1 to n. Thus, from theorem 1, there is no
schedulable assignment.

We give here an intuitive proof of theorem 1, which ba-
sically is valid under Posix thanks to lemma 1 and prop-
erty 2. It should be pointed out that theorem 1, and thus
the optimality result ofAudsley-RR-FPP∗, does not hold
where property 2 is not verified by the schedulability test.

Theorem 1 holds if a schedulable configuration
(A,ΨA) can be transformed into a schedulable configu-
ration (Q,ΨQ) for which the configuration is the same
as (P ,ΨP) for priority i to n. This transformation can
be done iteratively by changing the configuration of cer-
tain tasks in(A,ΨA) to the configuration they have in
(P ,ΨP). The procedure is the following: for priority
levelk fromn to i, assign in(A,ΨA) the priorityk+n−i
to the tasks of priorityk in (P ,ΨP) (i.e., the setT P

k
)

and set their quantum value to their valuesψP
i

in ΨP

(∀τj ∈ T P
k

, pA
j

= pP
j

+ n − i, schedA
j

= schedP
j

and ψΨA

j
= ψΨP

j
). Since at each step, tasks inT P

k

have the same quantum assignment, the same set of higher
and equal priority tasks under the current configuration
(A,ΨA) as under(P ,ΨP), they remain schedulable un-
der (A,ΨA) by lemma 1. From property 2, the other
tasks (T \ T P

k
) meet their deadline too since the quan-

tum assignment and the set of higher and same priority
task is reduced or stay unchanged under current configura-
tion compared to the initial configuration(A,ΨA). Note
that in the proof the priority range has been artificially ex-
tended by addingn − i lower priority levels in order to

avoid the case where a higher priority tasks is moved to a
non-empty layer since property 2 does not cover this situ-
ation.

4. Experimental results

Here our aim is to quantify the extent to which using
task-specific quanta enables us to improve the schedula-
bility of the system by comparison 1) with FPP and 2)
with system-wide quanta.

4.1. Experimental setup.

In the following experiments, we only consider task
sets that are unschedulable with FPP alone. Since we
choose to consider periodic tasks with deadlines equal to
periods (Di = Ti), we use the Rate Monotonic priority
assignment, which is optimal in that context. The global
loadU (i.e.,

∑
n

i=1
Ci

Ti
) has to be necessarily greater than

n · (21/n−1) (from [8]) in order to be able to exhibit non-
feasible task sets. In the following, we choose a quantum
value of 1 for the system-wide quantum or, when task-
specific quanta is considered, a quantum value which can
be chosen in the interval[1, 5]. The actual parameters of
an experiment are defined by the tuple(n,U). The uti-
lization rate (Ci

Ti
) of each taskτi is uniformly distributed

in the interval
[
U

n
· 0.9, U

n
· 1.1

]
wheren is the number of

tasks. The computation timeCi is randomly chosen with
an uniform law in the interval[1, 30] and the periodTi is
upper bounded by500. The results shown on figure 5 have
been obtained with 200 task sets randomly generated with
the aforementioned parameters.

4.2. Schedulability improvement over FPP and system-
wide quanta

Figure 5 shows the percentage of task sets that are
not schedulable with FPP alone and become schedulable
when using theAudsley-RR-FPP∗(task-specific quanta)
andAudsley-RR-FPP(system-wide quanta - see [6]) algo-
rithms that are both optimal in their context. One observes
that the improvement with task-specific quanta is very im-
portant, at least 3 times better than with a system-wide
quantum. When the load is lower than84%, a solution is
found in almost all cases, the percentage of successes re-
maining greater than50% up to a load equal to88%. As
it was to be expected, when the load gets higher, feasible
scheduling solution tends to rarefy.

Our experiments show that the combined used of RR
and FPP with process-specific quanta allows to schedule
a large number of task sets which are neither schedulable
with FPP nor with a system-wide quantum. It is worth not-
ing that context switch latencies were neglected while RR
induces more context switches than FPP. This fact weak-
ens to a certain extent our conclusions. A future work is
to find the feasible quantum allocation that minimizes the
global number of context switches.

148

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.82 0.84 0.86 0.88 0.9 0.92 0.94

%
 o

f s
ch

ed
ul

ab
le

 ta
sk

 s
et

s

Load

Audsley-RR-FPP task-specific quanta
Audsley-RR-FPP system-wide quantum

Figure 5. Percentage of task sets unschedulable
with DM which become schedulable under Posix
using the Audsley-RR-FPP∗(task-specific quanta)
andAudsley-RR-FPP(system-wide quanta - see [6])
algorithms. The CPU load ranges from0.82 to 0.94.
The number of tasks is equal to10.

5. Conclusion

In this paper, we propose a priority, policy and quan-
tum assignment algorithm for Posix 1003.1b compliant
OS that we named theAudsley-RR-FPP∗. We have shown
this algorithm to be optimal in the sense that if there is
a feasible schedule using FPP and RR that can be identi-
fied as such by the schedulability test, it will be found by
the algorithm. A result yields by the experiments is that
the combined used of FPP and RR with process-specific
quanta enables to significantly improve schedulability by
comparison with FPP alone and with system-wide quanta.
This is particularly interesting in the context of embedded
systems where the cost pressure is high, which lead us to
exploit the computational resources at their fullest.

In terms of worst-case complexity, the algorithm
greatly improves upon an exhaustive exploration of the
search space but is still exponential in the number of tasks
in the worst-case. Therefore, it is not suited to large task
sets and future work is needed to develop techniques able
to handle such systems. A future work is to take into ac-
count context switches and come up with a way of assign-
ing quantum values in such a manner as to minimize the
context-switch overhead.

References

[1] M. Abramowitz and I.A. Stegun. Handbook of
Mathematical Functions. Dover Publications (ISBN
0-486-61272-4), 1970.

[2] N.C. Audsley. Optimal priority assignment and fea-
sibility of static priority tasks with arbitrary start
times. Report YO1 5DD, Dept. of Computer Sci-
ence, University of York, England, 1991.

[3] N.C. Audsley. On priority assignment in fixed pri-
ority scheduling. Inf. Process. Lett., 79(1):39–44,
2001.

[4] R. Brito and N. Navet. Low-power round-robin
scheduling. InProc. of the 12th international con-
ference on real-time systems (RTS 2004), 2004.

[5] L. George, N. Rivierre, and M. Spuri. Pre-
emptive and non-preemptive real-time uniprocessor
scheduling. Technical Report RR-2966, INRIA,
1996. Available athttp://www.inria.fr/
rrrt/rr-2966.html .

[6] M. Grenier and N. Navet. Scheduling configuration
on Posix 1003.1b systems. Technical report, INRIA,
to appear, 2007.

[7] (ISO/IEC) 9945-1:2004 and IEEE Std 1003.1, 2004
Edition. Information technology—portable operat-
ing system interface (POSIXR©)—part 1: Base defi-
nitions. IEEE Standards Press, 2004.

[8] C.L. Liu and J.W Layland. Scheduling algorithms
for multiprogramming in hard-real time environ-
nement.Journal of the ACM, 20(1):40–61, 1973.

[9] J. Migge, A. Jean-Marie, and N. Navet. Timing anal-
ysis of compound scheduling policies : Application
to Posix1003.1b.Journal of Scheduling, 6(5):457–
482, 2003.

[10] N. Navet and J. Migge. Fine tuning the schedul-
ing of tasks through a genetic algorithm: Applica-
tion to Posix1003.1b compliant OS.Proc. of IEEE
Proceedings Software, 150(1):13–24, 2003.

[11] K. Tindell. An extendible approach for analyzing
fixed priority hard real-time tasks. Technical Re-
port YCS-92-189, Department of Computer Science,
University of York, 1992.

A. Proof of properties 1 and 2

In this appendix, we prove that the schedulability anal-
ysis [9] ensures that properties 1 and 3 hold. The first
paragraph is devoted to the study of the execution end
ei,j of τi,j computed with [9] under two configurations
(P ,ΨP) and (P ,Ψ

′

P
) that only differ by their quantum

assignment. This result is used in subsequent proofs.

A.1. Execution end bound: basic properties
We compare bounds on the execution end ofτi under

the same priority and policy assignmentP with two differ-
ent quantum allocations. Letei,j ande

′

i,j
be respectively

the execution end bound ofτi under(P ,ΨP) and under
(P ,Ψ

′

P
). Sinceτi is in an RR layer,ei,j is computed with

equation 4 of §2.4:

ei,j = min{t > 0 | Ψi(t) + si,j = t} ,

149

where (equation 5 of §2.4)

Ψ
ΨP

i (t) = min

„‰
si,j

ψ
ΨP

i

ı
· (ψ

ΨP

i − ψ
ΨP

i
) + esi(t), s

∗

i (x)

«
,

whereψ
ΨP

i
− ψΨP

i
is the sum of the quanta of all other

tasks of the RR layer. Sincesi,j , s̃i(t) and s∗
i
(x) are

independent of the quantum assignment (see §2.4), it is
enough to compare the first term of themin() to decide
which task will have the smallest response time bound.
Two cases arise:

1.

⌈
si,j

ψ
ΨP
i

⌉
· (ψ

ΨP

i
− ψΨP

i
) >

⌈
si,j

ψ
Ψ

′

P
i

⌉
· (ψ

Ψ
′

P

i
− ψΨ

′

P

i
)

then we concludeei,j ≥ e
′

i,j
,

2. otherwise:⌈
si,j

ψΨP

i

⌉
· (ψ

ΨP

i
−ψΨP

i
) ≤

⌈
si,j

ψ
Ψ

′

P

i

⌉
· (ψ

Ψ
′

P

i
−ψΨ

′

P

i
) ,

andei,j ≤ e
′

i,j
.

Whens∗
i
(x) is the minimum, we haveei,j = e

′

i,j
.

From this finding we can deduce that for any other as-
signmentΨ

′

P
, if the two following requirements are met:

requirement 1: the quantumψΨ
′

P

i
of τi in Ψ

′

P
is lower

than or equal to its quantumψΨP

i
underΨP ,

requirement 2: the sum of the quanta of all other tasks of
the RR layerT P

i
underΨ

′

P
is greater than or equal to

the one underΨP , i.e.,ψ
Ψ

′

P

i
− ψ

Ψ
′

P

i
≥ ψ

ΨP

i
− ψΨP

i

whereψ
ΨP

i
=

∑
τk∈Ti

ψΨP

τk
is the sum of the quan-

tum of all tasks of the RR layerT P
i

under quantum
allocationΨP ,

then we have:⌈
si,j

ψ
Ψ

′

P
i

⌉
·(ψ

Ψ
′

P

i −ψΨ
′

P

i
) ≥

⌈
si,j

ψΨP

i

⌉
·(ψ

ΨP

i −ψΨP

i
) , (7)

and thus∀τi,j , ei,j ≤ e
′

i,j
which implies that the response

time bound ofτi under(P ,Ψ
′

P
) is greater than or equal to

the response time bound under(P ,ΨP).

A.2. Proof of property 1
Since the prerequisites of property 3 are exactly re-

quirements 1 and 2 of §A.1, the response time bound of
τi in property 3, is no less under(P ,Ψ

′

P
) than under

(P ,ΨP). Sinceτi is not schedulable under(P ,ΨP), it
cannot be schedulable under(P ,Ψ

′

P).

A.3. Proof of property 3
We show that the bound on the execution endei,j for a

task in an RR layer underP , is minimum underP when
the quantum ofτi is equal toψmax while the quanta of
the other tasks in the layer are set toψmin. Let ΨP be the
corresponding quantum assignment where⌈
si,j

ψΨP

i

⌉
· (ψ

ΨP

i −ψΨP

i
) =

⌈
si,j

ψmax

⌉
· (

∑
τk∈T P

pi
\{τi}

ψmin)

and one notes that whatever a different quantum assign-
mentΨ

′

P
:⌈

si,j

ψmax

⌉
·

∑
τk∈T P

pi
\{τi}

ψmin ≤

⌈
si,j

ψ
Ψ

′

P

i

⌉
· (ψ

Ψ
′

P

i
− ψΨ

′

P

i
)

since, by definition,ψmax ≥ ψΨ
′

P

i
andψmin ≤ ψΨ

′

P

k
.

From equation 7, the execution end boundei,j of τi,j
is thus minimum withΨP among the set of all possible
quantum assignments.

Notations
– T = {τ1, ..., τn}: a set ofn periodic tasks

– P : priority and policy assignment

– ΨP : a specific quantum allocation under assignment
P

– (P ,ΨP) : a priority, policy and a quantum assign-
ment

– T P
i

: subset of tasks assigned to priority leveli under
P

– T P

hp(i): subset of tasks assigned to a higher priority
thani underP

– T P

lp(i): subset of tasks assigned to a lower priority
thani underP

– ψΨP

i
: Round-Robin quantum for taskτi underΨP

– ψ
ΨP

i : sum of the quanta of all tasks in layerTi under
ΨP

– si(t) = Ci ·
⌈
t

Ti

⌉
: majorizing work arrival function

on an interval of lengtht for a periodic taskτi

– s̃i(t) =
∑

τk∈T P

hp(pi)

sk(t): the demand from higher

priority tasks underP

– si,j =
∑
j

i=1 Ci: the demand from previous in-
stances plus demand of current instanceτi,j of τi

– si(x) =
∑
τk∈T P

pi
\{τi}

sk(x) is the demand from all

other tasks thanτi at priority leveli under assignment
P .

150

An Extended Scheduling Protocol for the Enhancement of RTDBSs
Performances ∗

S. Semghouni*, B. Sadeg*, L. Amanton* and A. Berred**
Laboratoire L.I.T.I.S antenne du Havre*,

Laboratoire de Mathématiques Appliquées du Havre**
Université du Havre 25 rue Philippe Lebon BP 540

76058 Le Havre Cedex, FRANCE
{samy-rostom.semghouni, bruno.sadeg, laurent.amanton, alexandre.berred}@univ-lehavre.fr

Abstract

The performance criteria generally used in real-time
database systems (RTDBSs) are the transactions success
ratio and the system quality of service. The main schedul-
ing policy used for real-time transactions is earliest dead-
line first (EDF) where the shortest is the transaction dead-
line, the highest is its priority. With EDF, the successful
transactions are not necessarily the most important trans-
actions in the system. Moreover, it is well-known that EDF
is not efficient in overload conditions. In this paper, we in-
troduce the notion of transaction importance and present
a new priority assignment technique based on both trans-
actions importance and deadlines. This assignment pol-
icy leads to a new scheduling policy, called generalized
earliest deadline first (GEDF). In order to show the ben-
efits of using GEDF for managing real-time transactions,
we have designed an RTDBS simulator and carried out
Monte Carlo simulations.

1 Introduction
Real-time database systems (RTDBSs) must guarantee

the transactions ACID (Atomicity, Consistency, Isolation,
Durability) properties on one hand, and they must sched-
ule the transactions in order to meet their individual dead-
lines, on the other hand [14]. An RTDBS can be con-
sidered as a combination of a traditional database system
(DBS) and a real-time system (RTS).

Most performance studies in RTDBSs use EDF
scheduling policy which is based on a priority assignment
according to the deadlines, i.e. the earliest the transac-
tion deadline is, the highest the priority is. However, such
successful transactions are not necessarily the most im-
portant transactions in the system. Moreover, it is well-
known that EDF is not efficient to schedule transactions
(or tasks) in overload conditions, leading to the degrada-
tion of the system performances. This results from the
assignment of high priorities to transactions that finally

∗This work is supported by grant ACI-JC #1055

miss their deadlines. These high-priority transactions also
waste system resources and delay other transactions [21].
To overcome these disadvantages, the study dealt with
in [7] introduced an extension of EDF called adapted ear-
liest deadline (AED). AED is a priority assignment pol-
icy which stabilizes the overload performance of EDF
through an adaptive admission control mechanism in an
RTDBS environment. In this method, the incoming trans-
actions are assigned to either hit or miss group. Using a
feedback mechanism, the capacity of the hit group is ad-
justed dynamically to improve the performances. Trans-
actions in miss group only receive processing if the hit
group is empty. In [13], Pang et al. proposed an ex-
tension of AED, called adaptive earliest virtual deadline
(AEVD), to address the fairness issue in an overloaded
system. In AEVD, virtual deadlines are computed based
on both arrival times and deadlines. Since transactions
with longer execution times will arrive earlier relative to
their deadlines, AEVD can raise their priorities in a more
rapid pace as their durations in the system increase. Con-
sequently, longer transactions can exceed the priorities of
shorter transactions that have earlier deadlines but later ar-
rival times. The results of comparative performance study
of AED and AEVD reported in [13] have established that
AEVD provides better performances than AED. To re-
solve some weaknesses of AEVD, Datta et al. [4] have
introduced priority based scheduling policy, called adap-
tive access parameter (AAP) method where they use ex-
plicit admission control. An other study done in [5] deals
with the problem of repeatedly transactions processing in
an RTDBS. In this work, Dogdu gave a number of pri-
ority assignment techniques based on the execution his-
tories of real-time transactions that overcome the biased
scheduling in favor of the short transactions when using
EDF policy.

In this paper, we introduce a new approach based on
a weight technique: a weight is assigned to a transaction
according to the importance of its tasks. We also propose
a new priority assignment technique which uses both the
deadline and the transaction importance. This assignment

151

policy leads to a new scheduling policy, called General-
ized Earliest Deadline First (GEDF) developed to over-
come the weakness of EDF scheduling policy. GEDF may
be considered as a generalization of EDF due to its flex-
ibility and its adaptability to the system workload condi-
tions (in normal conditions, GEDF behaves like EDF). To
show the effectiveness of GEDF scheduling policy on RT-
DBS performances, we analyze the system performances
according to the transactions success ratio and quality of
service (QoS). To this purpose, Monte Carlo simulations
are conducted on the RTDBS simulator we have devel-
oped. This simulator is based on components generally
encountered in RTDBSs [10, 15, 14]. The results are com-
pared to EDF scheduling technique under various execu-
tion constraints and conditions, such as the transactions
arrival process, system load, conflicts level, concurrency
control policy and database size.

The remainder of this paper is organized as follows. In
Section 2, we describe the system model and some simula-
tor components. Then, we present our weighted approach
of transactions and the GEDF scheduling policy we pro-
pose. Section 3 is devoted to the Monte Carlo simulation
experiments and the results we obtained. We then present
the performance evaluation results of the GEDF schedul-
ing policy. Finally, in Section 4, we conclude the paper
and give some aspects of our future work.

2 Simulator and system model

We base our work on a system model dealt with in our
previous work [16, 17], where some other real-time char-
acteristics are added, e.g. temporal data, update trans-
actions and the implementation of the freshness man-
ager. We have also developed a new priority assign-
ment policy where the importance criterion is added and
on which is based the new scheduling approach, called
GEDF. Note that we do not use an admission control
mechanism (ACM) to reduce or to manage the submitted
transactions according to the system workload. In our ap-
plication, all transactions are accepted in the system. We
think that it is more profitable to study the behavior of
GEDF vs EDF without influence the system workload by
using an ACM. The general mechanism of the simulator
components is discussed briefly in subsection 2.6.

Due to decreasing of main memory cost and its rela-
tively high performance [2, 18], main memory databases
have been increasingly applied to real-time data manage-
ment such as stock trading, e-commerce, and voice/data
networking. In this work, we consider a main memory
database model. The RTDBS is materialized by the simu-
lator we developed and available on line 1. In the follow-
ing, we will focus on the components related to the data
and transactions model and the new scheduling technique.
Other components of the simulator are detailed in earlier
papers [16, 17].

1The simulator is available on-line at the following URL :
http://litis.univ-lehavre.fr/˜semghouni/

2.1 Data and transactions
The database is composed of independent data objects

classified into two classes: temporal data (TD) and non-
temporal data (NTD). The state of a temporal data ob-
ject may become invalid with the passage of time. As-
sociated with its state, there is an absolute validity inter-
val, denoted avi [20]. A Temporal data di is considered
temporally inconsistent or stale if the current time is later
than the timestamp of di (time of its last update) followed
by the length of the absolute validity interval of d i, i.e.
currenttime > timestampi + avii. Here, we do not
restrict the notion of temporal data to data provided by
physical sensors. Instead, we consider a broad meaning
of sensor data. Any item whose value reflects the time-
varying real world status is a temporal data item [14], for
example, information on the state of a deposit stock. A
data whose state does not become invalid with the passage
of time is a non-temporal data object [20].

We consider only firm real-time transactions and we
classify them into update and user transactions. Update
transactions are periodic and only write temporal data
which capture the continuously state changing environ-
ment. We assume that an update transaction is responsi-
ble for updating a single temporal data item in the system.
Each temporal data item is updated following a more-less
approach where the period of an update transaction is as-
signed to be more than half of the validity interval of the
temporal data [19].

We assume that user transactions can read or write non-
temporal data and can only read temporal data [9]. The
user transactions arrive in the system according to a Pois-
son process with an average rate λ. The number of op-
erations generated for each user transaction is uniformly
distributed in the user transaction size interval, denoted
UserSInerval. Data accessed by the operations of the
transaction are randomly generated and built according
to the level of data conflicts (see subsection 2.4). Trans-
actions execute ”read” operations on data with a proba-
bility ϕ and ”write” operations with a probability (1-ϕ).
For more details, see transaction characteristics in Table 1
page 5.

To distinguish the important transactions from the oth-
ers, transactions are weighted according to their impor-
tance. The importance criterion is called transaction sys-
tem priority, and is denoted by SPriority. In the follow-
ing, we will describe fully how this importance criterion
is assigned to each transaction.

2.2 Transactions system priorities (SPriority)
The transaction system priority (SPriority) is a param-

eter related to each transaction. It expresses the degree
of importance of the task(s) executed by a transaction and
defines its rank among all the transactions in the system.
This parameter is assigned to each transaction when it is
generated. The proposed GEDF scheduling policy (see
section 2.3) uses this parameter in addition to the deadline
to schedule transactions. We also consider the SPriority

152

http://litis.univ-lehavre.fr/~semghouni/

as one of the criteria used to evaluate the system quality
of service (see subsection 2.5).

In order to maintain temporal data consistency, i.e. to
ensure that data in the database reflect the state of the envi-
ronment, we consider that the rank of update transactions
is higher than that of user transactions. The update trans-
actions class is more important than that of the user trans-
actions because one of the main design goals of RTDBSs
is to both guarantee the temporal data freshness [14] and
maintain the database consistency. Consequently, we di-
vide the interval of SPriority values, i.e. [0, MaxV alue],
into two intervals: the first interval [0, N] is devoted to
the SPriority values of update transactions and the second,
]N, MaxV alue], is devoted to the SPriority values of user
transactions. The value of N is application-dependent and
is fixed by the system manager. In our model, we consider
that the zero value of SPriority, i.e. SPriority=0, corre-
sponds to the highest rank that a transaction can have in
the system. To assign the SPriority value to each transac-
tion, we use the following technique:

Transaction weight technique (WTec) We use two
weight functions according to the transaction class to as-
sign the SPriority value:

Update transactions class: We consider that tem-
poral data items which are updated frequently, i.e. which
have short update period, are data items that contain im-
portant information (for example, position of an aircraft).
We relate the importance of a temporal data item to its
update frequency because its absolute validity interval is
also short (more-less [19] approach), which makes its up-
date more critical.

Let MaxPeriod be the longest period among the peri-
ods of update transactions. The SPriority of an update
transaction T is computed according to the following for-
mula:

SPriorityupdate = N × PeriodT

MaxPeriod
(1)

User transactions class: The user transaction im-
portance SPriority uses criteria based on both the transac-
tion ”write” set operations and the transaction ”read” set
operations. A user transaction T is assigned a SPriority
value by the following formula:

SPriorityuser = MaxV alue−
γ × WeightT − (1 − γ) × DBAV alue (2)

where

• WeightT denotes the weight of the current user
transaction and is given by

WeightT = (
∑n

i=1 WreadTD +∑m
j=1 WwriteNTD

−∑l
k=1 WreadNTD) (3)where

− WreadTD , WwriteNTD and WreadNTD de-
note respectively the weight assigned to a read

operation of a temporal data, the weight as-
signed to a write operation of a non-temporal
data and the weight assigned to a read opera-
tion of a non-temporal data (see the transaction
characteristics in Table 1, in page 5).

− n, m, and l are the numbers of operations
(”Read” TD, ”Write” NTD and ”Read” NTD)
in each user transaction.

• γ ∈]0, 1] is a rational value assigned to the transac-
tion weight in the SPriority formula (see Table 1, in
page 5).

• DBAV alue is an uniform random variable whose
values are between 0 and (MaxV alue − N). We
recall that N is the value that divides the SPri-
ority interval [0, MaxV alue] according to transac-
tions class, i.e. SPriorityupdate ∈ [0, N] and
SPriorityuser ∈]N, MaxV alue].

• Maximum(γ × WeightT − (1 − γ) × DBAV alue) ≤
MaxV alue − N , because the user transactions
SPriority belongs to]N, MaxV alue].

Motivations: the choice of Formula 2 to assign the SPri-
ority value to a user transaction is motivated by the follow-
ing arguments:

• To favor the results obtained by transactions reading
temporal data, we consider that their results are gen-
erally more important than those obtained by transac-
tions which read non-temporal data. Thus, a transac-
tion which will read many temporal data is assigned
a higher rank than others (see Formula 3).

• To favor database freshness, we consider that write
operations are more important than read operations,
because their function is to refresh the database regu-
larly. Thus, a transaction which will write many data
items on the database is assigned a higher rank than
others (see Formula 3).

• To reduce data access conflicts in database, we con-
sider that transactions that execute many read oper-
ations on the database are transactions that can in-
duce many data access conflicts when the database
is in update state. Optimistic conflict resolution ap-
proach (OCC-Wait-50) creates long wait durations
for conflicts resolution, whereas pessimistic conflict
resolution approach (2PL-HP) induces many restarts
and aborts. In both situations, the system is over-
loaded and its performances are degraded. In order
to avoid those weaknesses, the rank of a transaction
which reads many non-temporal data is decreased in
the system (see Formula 3).

• The database administrator can influence a transac-
tion priority by modifying its importance in the sys-
tem. This interaction is modelized in Formula 2 by

153

DBAV alue. For example, it is used to give high pri-
ority to an urgent transaction or to give high priorities
to transactions that need high services.

2.3 Transaction scheduler (TS)
In RTDBSs, transactions can be periodic with syn-

chronous release times, periodic with asynchronous re-
lease times or aperiodic. EDF protocol is considered as
the best policy among RTS scheduling policies that are
adapted to RTDBSs to schedule transactions. EDF can fit
any workload of periodic or non-periodic real-time trans-
action [11]. EDF effectiveness to schedule synchronous
and asynchronous tasks was dealt with in [12, 3].

With EDF scheduling policy, transactions are sched-
uled according to their deadlines. However, the deadline
criterion is not sufficient to express task(s) importance of a
transaction in the system. Although EDF has been shown
to improve the average success ratio of the transactions, it
discriminates against longer transactions under overload
conditions [7, 13].

In order to optimize the system quality of service and
to schedule transactions according to both the importance
criterion, i.e. SPriority, and the deadlines, we propose
an adapted scheduling policy, called generalized earliest
deadline first (GEDF), which is described in the following
subsection.

2.3.1 GEDF Scheduling policy

GEDF is a dynamic scheduling policy where transactions
are processed in an order determined by their priorities,
i.e. the next transaction to run is the transaction with the
highest priority in the active queue. The priority is as-
signed according to both the deadline which expresses
the criticality of time and the SPriority (see subsection
2.2) which expresses the importance of the transaction.
We consider that the zero value of the Priority, i.e.
Priority = 0, corresponds to the highest priority in the
system. Transaction T is assigned a priority by the for-
mula:

Priority(T) = (1−a)×Deadline(T)+a×SPriority(T) (4)

where 0 ≤ a ≤ 1, (see Table 1) is the weight given to
the SPriority in the priority formula and is application-
dependent. Note that if two transactions have the same
priority, we use timestamp of the transaction for data con-
flicts resolution.

2.3.2 GEDF contributions

• Update transactions are assigned high priorities with
GEDF, which guarantee both the temporal data fresh-
ness and the database consistency (see subsection
3.2).

• Important transactions are assigned high priorities.
This gives them more chances to be scheduled and
executed before their deadlines.

• Each transaction executes a group of operations
(Read/Write). The operation group of a transaction
can be seen as more or less important than opera-
tions groups of other transactions. EDF policy can
not express this importance. Whereas, with GEDF
policy, we can express both the criticality of time
and the transactions importance in the priority as-
signment policy.

• By varying the parameter a, GEDF can be adapted
to the system load in order to optimize its perfor-
mances. This assertion will be explained deeply in
subsection 3.4.

• GEDF can be seen as an extension of EDF schedul-
ing policy. In fact, it is sufficient to initialize the
SPriority of transactions with the same value or to
initialize the weight parameter in priority formula to
zero value, i.e. a = 0, then GEDF becomes an EDF
scheduling policy. This property is used to preserve
the EDF qualities, while avoiding its weakness (see
subsection 3.4).

2.4 Conflicts level
Data conflicts result from the behavior of the transac-

tions in the database. We assume that some data are more
important than others and they are frequently requested
by user transactions. In order to reproduce this behavior
in the transaction action (read or write), we assign each
data item a drawing probability in the following manner.

Let r1 < r2 < . . . < rk < . . . < rn, denote the
ranking of the data items D1, D2, . . ., Dk, . . ., Dn re-
spectively. We use a ranking function defined as follows:
ri = i + 1, where i is the index of data item Di.

The probability of drawing the data item D i is given by

ProbDi =
ri

R
,

where R =
∑n

i=1 ri, is the sum of all ranks. Thus, data
with high probabilities will be more drawn than those with
low probabilities.

We select the data item Dk according to the
above probabilities, i.e. we generate a uniform
random variable U in]0, 1[and select Dk if
U ∈]

∑k−1
i=1 ProbDi ,

∑k
i=1 ProbDi], by convention

k = 1 if U ∈]0, P robD1
].

2.5 System performance metrics
2.5.1 Transaction success ratio (SRatio)

To assess the system performances, we consider transac-
tion success ratio as the main metric. The success ratio is
given by:

SRatioType =
CommitTType

SubmittedTType
,

where CommitT indicates the number of transactions
committed by their deadlines, SubmittedT indicates all

154

Database characteristics

Notation Definition Values

λ User transaction arrival rate. 0.6 to 2.4.
Time Duration of one experiment. 1000 clock cycles.
Dsize Number of data in the DB. 1000.
TD-size Number of temporal data in the DB. 15% × Dsize, i.e. 150 data.
Min avi, Max avi Minimal and maximal avi. Min avi=5 clock cycles, Max avi=100 clock cycles.

Transaction characteristics

Notation Definition Values

ϕ Probability to execute a ”Read” or a ”Write” operation. ϕ(Read) = 2/3, ϕ(Write) = 1 − ϕ(Read)
UserSInerval User transaction size interval. [5, 20] combined operations.
Updatesize Number of operations in an update transaction. 1 write operation.
D−UpT Deadline of update transaction (more-less approach). D−UpT = 1

3
× Avi.

P−UpT Period of update transaction (more-less approach). P−UpT = 2

3
× Avi.

Slack Function Initialization of α and β. α = 4 and β = 0.9.
SPriority Intervals of SPriority. SPriorityUpdate ∈ [0, 16] and SPriorityUser ∈]16, 80].
γ Initialization of γ. γ = 4/5.
WreadTD Reading weight of one temporal data. WreadT D = 1.
WwriteNTD Writing weight of one non-temporal data. WwriteNTD = 2.
WreadNTD Reading weight of one non-temporal data. WreadNTD = 1.

System characteristics

Notation Definition Values

Quantum Execution capacity in one clock cycle. 20 Tasks/clock cycle
Task Indivisible action. one Read or Write operation.
ReadTime Consumption of a read operation. 1 quantum unit.
WriteTime Consumption of a write operation. 2 quantum units.
a Initialization of the parameter a in (4) when using GEDF. a = 0, 1

2
, 1

3
, 1

4
, 1

5
, 1

6
, 1

7
or 1

8
.

R Initialization of R in QoS function. R = 1

20

SP Scheduling policy. ”EDF”, ”GEDF”.
CC Concurrency Control protocol. ”2PL-HP” or ”OCC-Wait-50”.

Table 1. Simulation parameters.

submitted transactions to the system in the sampling pe-
riod and Type indicates the type of transactions class, i.e.
user or update.

2.5.2 System Quality of Service (QoS)

The QoS can be seen as a global metric which mea-
sures the amount of service provided by the system to the
users. In this part, we define two parameters of the sys-
tem QoS: (a) the success ratios of committed user and up-
date transactions; (b) and the satisfaction degree (denoted:
SatDegree) of the system on the important transactions,
i.e. maximization of the commit of important transactions
among the committed transactions.

As in the case of SRatio, the SatDegree is also special-
ized according to the class of transactions and is measured
as follows:

SatDegreeType =

∑CommitTT ype

i=1 Exp(−R× SPriorityi)∑SubmittedTT ype

l=1 Exp(−R× SPriorityl)
,

where R is a scale parameter and Type indicates the
type of transactions class, i.e. either user or update. The
construction of SatDegree coefficient satisfies two facts:

• it takes values between 0 and 1, and

• it increases from 0 to 1 according to the number of
the committed transactions with smaller SPriority.

It follows that in order to maximize the sys-
tem QoS, we have to maximize the quadruplet
(SRatiouser , SatDegreeuser , SRatioupdate, SatDegreeupdate).

2.6 General mechanism of the simulator
User transactions are submitted to the system follow-

ing a Poisson process with an average rate λ into the ac-
tive queue. The deadline controller (DC) supervises the
transactions deadlines, and informs the transaction sched-
uler (TS) if a transaction misses its deadline in order to
abort it. The freshness manager (FM) exploits the ab-
solute validity interval (avi) to check the freshness of a
data item before a user transaction accesses it and blocks
all user transactions reading stale temporal data. Transac-
tions data conflicts are resolved by the Concurrency con-
troller (CC) according to transactions priorities. CC in-
forms TS in the following cases: (a) when a transaction
is finished (committed) and its results are validated in the
database, (b) when a transaction is blocked waiting for a
conflict resolution, (c) when a transaction is restarted, fol-
lowing the commit of other transactions, (d) when a trans-
action is rejected because its restart is impossible, i.e. its
best execution time is higher than its deadline minus the
current time (BETT > DT − currenttime), (e) or when
a transaction is transfered from the blocked queue to the
active queue, i.e. its data conflicts are resolved.

3 Simulations and results
3.1 Simuations parameters

To assess the performances of GEDF scheduling pol-
icy in comparison to EDF scheduling policy, we carried
out Monte Carlo simulations. This allows us to study the
transactions success ratio behavior and the system quality
of service. Given the system parameters of Table 1, we re-
peat the experiment 1000 times in each simulation in order
to obtain a sample of 1000 values for the performances,

155

i.e. SRatio and QoS. Each point shown in Figures 1, 2 and
5 (success ratio) and Figures 3 and 6 (quality of service)
represents the computed average of performance results
deduced from each simulation sample.

The workload of the system is varied according to both
the database size and the arrival rate λ of user transac-
tions. When λ = 0.6, the number of user transactions ar-
riving to the system during one experiment is about 600.
When λ = 2.4, this number is about 2400. The database
workload is related to the number of temporal data (TD)
in the database and increases substantially when TD in-
creases. In our simulations, the number of temporal data
represents 15% of the database size, which leads to 7000
to 12000 update transactions in one experiment.

The absolute validity interval (avi) of each temporal
data is randomly generated from the interval [Min avi,
Max avi], i.e. [5,100]. Min avi is fixed to 5 clock cycles
and Max avi is fixed to 100 clock cycles in order to have
enough workload of temporal data (minimum 15 updates
and maximum 335 updates in the experiment duration).
Each update transaction is assigned a period and a dead-
line according to the avi of the temporal data it accesses
(for more details, see more-less approach [19]).

The parameters α and β of the slack function SF
(see [16, 17]) are assigned the values 4 and 0.9 in or-
der to obtain an average behavior of transactions load in
the system. The probability to execute a read operation
is assigned a value of 2

3 , and a write operation proba-
bility is 1

3 . We assume that a write operation requires
two quantum units for execution and a read operation re-
quires one quantum unit. The parameter γ is assigned
the value 4

5 = 0.8 in order to minimize the effect of the
DBAV alue, i.e. database administrator interaction, in the
SPriority (Formula 2). In order to show the influence of
the SPriority weight on the GEDF behavior and on the
system performances, we varied the value of the param-
eter a in Formula 4 page 4. The assigned values used in
simulations are a = 0, 1

2 , 1
3 , 1

4 , 1
5 , 1

6 , 1
7 or 1

8 . This variation
allows to deduce the appropriate assigned value to the pa-
rameter a according to the system workload (see subsec-
tion 3.4).

For the simulations we have implemented two main
concurrency controllers: 2PL-HP, a pessimistic protocol,
where a low priority transaction is aborted and restarted
upon a conflict to avoid priority inversion and deadlock
problems [1], and OCC-Wait-50, an optimistic proto-
col [6, 8], which incorporates a wait control mechanism
in the classical OCC. This mechanism monitors transac-
tion conflicts states and dynamically decides when, and
for how long, a low priority transaction should wait for its
conflicting higher priority transactions to complete.

In the following subsection, we introduce the discus-
sions of simulation results while comparing EDF and
GEDF using the defined weight technique to assign SPri-
ority of transactions. We also introduce a discussion on
GEDF flexibility and how it is possible to exploit this flex-
ibility in order to improve the system performances. Due

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

me
an(

SR
atio

)

λ

EDF when Dsize =1000

(a) Success ratio of update transactions when using EDF.

 0.86
 0.88
 0.9

 0.92
 0.94
 0.96
 0.98

 1

 0.6 0.9 1.2 1.5 1.8 2.1 2.4

me
an

(S
Ra

tio
)

λ

GEDF-WTec when a=1/2 and Dsize =1000

 0.86
 0.88
 0.9

 0.92
 0.94
 0.96
 0.98

 1

me
an

(S
Ra

tio
)

λ

GEDF-WTec when a=1/5 and Dsize =1000

 0.86
 0.88
 0.9

 0.92
 0.94
 0.96
 0.98

 1

me
an

(S
Ra

tio
)

λ

GEDF-WTec when a=1/8 and Dsize =1000

(b) Success ratio of update transactions when using GEDF with
a =

1
8

, a =
1
5

and a =
1
2

.

Figure 1. Influence of scheduling policy on
update transactions with 2PL-HP protocol.

to the lack of space, we discuss in the following only the
influence of scheduling policy when using 2PL-HP proto-
col, and the system QoS when using OCC-Wait-50 proto-
col. We can argue that the simulations results revealed that
the two protocols have a similar behavior on the system
performances when using either EDF or GEDF schedul-
ing policy.

3.2 Influence of the scheduling policy
In order to analyze the influence of the scheduling pol-

icy on the success ratio performances, we compare the re-
sults obtained under EDF and GEDF when using 2PL-HP
protocol and when varying the system workload. Figures
1 and 2 illustrate graphically this comparison.

The best performances for update transactions are ob-
tained with GEDF scheduling policy (Figure 1(b)): the
success ratio is maximal, i.e. 100%. We can see also in
Figure 1(b) that for all variations of a > 0, i.e. SPriority
weight, we obtain the same performances on the update
success ratio results for all system workload conditions.
We can conclude that when increasing the user transac-
tions number, there is no effect on the update transactions
performances. This result may be explained by the higher
priority given to update transactions which ensures their
processing before user transactions. When we look at the
performances with EDF scheduling policy (Figure 1(a)),
we notice a progressive decreasing of the success ratio
when the workload progressively becomes heavy.

With EDF, there is no difference between the two
classes of transactions, since only the deadline is taken
into account. Thus, user transactions can be scheduled
prior to update transactions if their deadlines are immi-
nent, which affects and decreases the success ratio of
update transactions and degrades the temporal data con-

156

sistency in the database. This affects considerably the
success ratio of user transactions, especially when the
system workload is heavy. In the following, we com-
ment the user transactions performances on three inter-
vals: λ ∈ [0.6, 1.2[(light workload to average workload),
λ ∈ [1.2, 1.5[(average workload) and λ ∈]1.5, 2.4] (high
workload).

When we consider the values of λ in the inter-
val [0.6, 1.2[(see Figure 2(a)), we notice that when
the system is not overloaded, EDF gives better perfor-
mances on user transactions SRatio than GEDF with
all variations of the parameter a. Indeed, when using
GEDF scheduling policy, the lower priority transactions
must wait for the commit of the higher priority transac-
tions to be executed even if their deadlines are imminent.
This has a negative effect when the system workload is
light, which reduces the chances of lower priority trans-
actions to commit, i.e. the user transaction success ratio
decreases.

When the value of λ is in the interval [1.2, 1.5[, i.e. av-
erage workload (see Figure 2(b)), we can see that GEDF
provides better results than EDF according to the varia-
tions of the SPriority weight parameter. The reversible
points corresponding to those situations can be seen re-
spectively in Figure 2(b): λ � 1.2 for GEDF with a = 1

8 ,
λ � 1.25 for GEDF with a = 1

7 , λ � 1.28 for GEDF with
a = 1

6 , λ � 1.32 for GEDF with a = 1
5 , λ � 1.38 for

GEDF with a = 1
4 , λ � 1.45 for GEDF with a = 1

3 , and
λ � 1.48 for GEDF with a = 1

2 . We will see in subsec-
tion 3.4 how the reversible points can be used to enhance
the system performances in this interval.

When the system workload is heavy, i.e. λ ∈]1.5, 2.4],
the situation is reversed completely in favor of GEDF
that provides better performances than EDF (for exam-
ple SRatio(GEDF (a = 1

2)) � SRatio(EDF) + 10%
when λ = 2.4) with all values assigned to the parame-
ter a. We also deduce that when the workload increases,
the improvement of the system performances is corre-
lated with the increasing of the value assigned to the pa-
rameter a. The results obtained by GEDF can be ex-
plained by the fact that the temporal data consistency
is more safeguarded with GEDF than with EDF pol-
icy (see the success ratio of update transactions in Fig-
ure 1(b)). With GEDF, the waiting time of fresh data
is reduced thanks to the success ratio of update trans-
actions, which is maximal, i.e. 100%. This gives to
the user transactions reading temporal data the maximum
chances to meet their deadlines, decreasing then the sys-
tem load. Moreover, only the important transactions are
scheduled in the system. When the system workload
is heavy, GEDF scheduling policy reduces the useless
aborts and restarts, that are inherent to EDF scheduling
policy, i.e. transactions that are aborted and restarted
by other transactions which finally miss their deadlines.

3.3 System Quality of Service (QoS)
In the following, we discuss and compare the sys-

tem quality of service (QoS) registered under EDF and
GEDF when using OCC-Wait-50 protocol. Figures 3(a)
and 3(b) illustrate graphically this comparison. When
we look at the QoS given on update transactions (Fig-
ure 3(a)), we deduce that all variants of GEDF give the
optimal performances2 on SRatio and SatDegree, i.e
(SRatioupdate, SatDegreeupdate) = (1, 1). We can
conclude that GEDF scheduling policy is better than EDF
and gives high QoS on update transactions in all sys-
tem workload conditions. Thus GEDF scheduling policy
maintains the temporal data consistency in all workload
conditions.

When we consider QoS on user transactions (Fig-
ure 3(b)), the values of (SRatiouser, SatDegreeuser)
given by GEDF scheduling policy are related to the vari-
ation of the parameter a, i.e. the SPriority weight. In
the following, we comment the QoS of user transactions
in three intervals λ ∈ [0.6, 1.1[, λ ∈ [1.1, 1.5[and
λ ∈ [1.5, 2.4] where we illustrate respectively the three
system situations: light workload, average workload, and
high workload.

When λ is in the interval [0.6, 1.1[, EDF
gives the best QoS on user transactions, i.e.
QoSEDF (SRatiouser, SatDegreeuser) >
QoSGEDF (SRatiouser, SatDegreeuser) with all
variations of the parameter a. This can be explained by
the high SRatio registered with EDF when the system
workload is light (as detailed in subsection 3.2) which
gives high SatDegree on the committed user transactions.

When λ is in the interval [1.1, 1.5[, we note that EDF
SRatio is higher than GEDF SRatio before the reversible
points deduced in subsection 3.2. The situation is reversed
in favor of GEDF with SatDegree according to the value
assigned to the parameter a. The reversible points can be
seen respectively in Figure 3(b): λ = 1.1 for GEDF with
a = 1

8 , λ = 1.15 for GEDF with a = 1
5 , and λ = 1.3

for GEDF with a = 1
2 . These cases indicate that the num-

ber of committing important transactions with GEDF is
higher than that of EDF. When we combine the results
with the reversible points deduced in subsection 3.2 we
can argue that GEDF gives a better QoS than EDF. We
can see these cases, for example, in Figure 3(b), in the in-
tervals λ ∈ [1.25, 1.5[when a = 1

8 , λ ∈ [1.38, 1.5[when
a = 1

5 , and λ ∈ [1.48, 1.5[when a = 1
2 . With GEDF, the

importance criterion (SPriority) of a transaction influences
its scheduling order. This gives the important transactions
the best chances to commit before their deadlines.

When λ ≥ 1.5, GEDF variants give
the best QoS on user transactions, i.e.
QoSGEDF (SRatiouser, SatDegreeuser) > QoSEDF

(SRatiouser, SatDegreeuser) (see Figure 3(b)).
This can be explained by the best capacity of GEDF

2In Figure 3(a), the SRatio and SatDegree of update transactions
when using GEDF is maximal, i.e. 100% in all conditions and for all
a > 0.

157

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

m
e
a
n
(
S

R
a
ti
o
)

λ

Influence of scheduling techniques on user transactions SRatio with 2PL-HP

GEDF-WTec when a=1/2 and Dsize =1000
GEDF-WTec when a=1/3 and Dsize =1000
GEDF-WTec when a=1/4 and Dsize =1000
GEDF-WTec when a=1/5 and Dsize =1000
GEDF-WTec when a=1/6 and Dsize =1000
GEDF-WTec when a=1/7 and Dsize =1000
GEDF-WTec when a=1/8 and Dsize =1000
EDF when Dsize =1000

(a) Comparison of success ratio of user transactions between GEDF
and EDF scheduler.

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 1.2 1.4 1.6 1.8 2

m
e
a
n
(
S

R
a
ti
o
)

λ

GEDF-WTec when a=1/2 and Dsize =1000
GEDF-WTec when a=1/3 and Dsize =1000
GEDF-WTec when a=1/4 and Dsize =1000
GEDF-WTec when a=1/5 and Dsize =1000
GEDF-WTec when a=1/6 and Dsize =1000
GEDF-WTec when a=1/7 and Dsize =1000
GEDF-WTec when a=1/8 and Dsize =1000
EDF when Dsize =1000

(b) Zoom in the square zone of Figure 2(a).

Figure 2. Scheduling policy influence on user transactions with 2PL-HP protocol.

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0.6 0.9 1.2 1.5 1.8 2.1 2.4

m
e
a
n
(
S

R
a
ti
o
)

λ

GEDF-WTec when a=1/2 and Dsize =1000

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0.6 0.9 1.2 1.5 1.8 2.1 2.4

m
e
a
n
(
S

R
a
ti
o
)

λ

GEDF-WTec when a=1/2 and Dsize =1000
GEDF-WTec when a=1/5 and Dsize =1000

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0.6 0.9 1.2 1.5 1.8 2.1 2.4

m
e
a
n
(
S

R
a
ti
o
)

λ

GEDF-WTec when a=1/2 and Dsize =1000
GEDF-WTec when a=1/5 and Dsize =1000
GEDF-WTec when a=1/8 and Dsize =1000

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0.6 0.9 1.2 1.5 1.8 2.1 2.4

m
e
a
n
(
S

R
a
ti
o
)

λ

GEDF-WTec when a=1/2 and Dsize =1000
GEDF-WTec when a=1/5 and Dsize =1000
GEDF-WTec when a=1/8 and Dsize =1000
EDF when Dsize =1000

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

m
e
a
n
(
S

a
tD

e
g
r
e
e
)

λ

GEDF-WTec when a=1/2 and Dsize =1000

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

m
e
a
n
(
S

a
tD

e
g
r
e
e
)

λ

GEDF-WTec when a=1/2 and Dsize =1000
GEDF-WTec when a=1/5 and Dsize =1000

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

m
e
a
n
(
S

a
tD

e
g
r
e
e
)

λ

GEDF-WTec when a=1/2 and Dsize =1000
GEDF-WTec when a=1/5 and Dsize =1000
GEDF-WTec when a=1/8 and Dsize =1000

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

m
e
a
n
(
S

a
tD

e
g
r
e
e
)

λ

GEDF-WTec when a=1/2 and Dsize =1000
GEDF-WTec when a=1/5 and Dsize =1000
GEDF-WTec when a=1/8 and Dsize =1000
EDF when Dsize =1000

(a) System QoS on update transactions with OCC-Wait-50

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.6 0.9 1.2 1.5 1.8 2.1 2.4

m
e
a
n
(
S

R
a
ti
o
)

λ

GEDF-WTec when a=1/2 and Dsize =1000

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.6 0.9 1.2 1.5 1.8 2.1 2.4

m
e
a
n
(
S

R
a
ti
o
)

λ

GEDF-WTec when a=1/2 and Dsize =1000
GEDF-WTec when a=1/5 and Dsize =1000

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.6 0.9 1.2 1.5 1.8 2.1 2.4

m
e
a
n
(
S

R
a
ti
o
)

λ

GEDF-WTec when a=1/2 and Dsize =1000
GEDF-WTec when a=1/5 and Dsize =1000
GEDF-WTec when a=1/8 and Dsize =1000

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.6 0.9 1.2 1.5 1.8 2.1 2.4

m
e
a
n
(
S

R
a
ti
o
)

λ

GEDF-WTec when a=1/2 and Dsize =1000
GEDF-WTec when a=1/5 and Dsize =1000
GEDF-WTec when a=1/8 and Dsize =1000
EDF when Dsize =1000

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

m
e
a
n
(
S

a
tD

e
g
r
e
e
)

λ

GEDF-WTec when a=1/2 and Dsize =1000

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

m
e
a
n
(
S

a
tD

e
g
r
e
e
)

λ

GEDF-WTec when a=1/2 and Dsize =1000
GEDF-WTec when a=1/5 and Dsize =1000

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

m
e
a
n
(
S

a
tD

e
g
r
e
e
)

λ

GEDF-WTec when a=1/2 and Dsize =1000
GEDF-WTec when a=1/5 and Dsize =1000
GEDF-WTec when a=1/8 and Dsize =1000

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

m
e
a
n
(
S

a
tD

e
g
r
e
e
)

λ

GEDF-WTec when a=1/2 and Dsize =1000
GEDF-WTec when a=1/5 and Dsize =1000
GEDF-WTec when a=1/8 and Dsize =1000
EDF when Dsize =1000

(b) System QoS on user transactions with OCC-Wait-50

Figure 3. Comparison of system QoS between EDF and GEDF scheduling policies.

158

-0.05
 0

 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4

T
h

e
 w

e
ig

h
t

v
a

lu
e

s

λ

The weight assignment according to the system load when using GEDF

a1=0 the SPriority weight
a2 =1/8 the SPriority weight
a3 =1/5 the SPriority weight
a4 =1/4 the SPriority weight
a5 =1/2 the SPriority weight
1-a1 =1 the Deadline weight
1-a2 =7/8 the Deadline weight
1-a3 =4/5 the Deadline weight
1-a4 =3/4 the Deadline weight
1-a5 =1/2 the Deadline weight

Figure 4. The weight assignment to the
SPriority and Deadline according to the
system load when using GEDF.

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
m

e
a
n
(
S

R
a
t
io

)

λ

Comparaison EDF /GEDF-WTec update T SRatio performance when varying ’a’ and using 2PL-HP

GEDF-WTec when varring ’a’ parameter
EDF when Dsize =1000

(a) The influence of the flexibility of
GEDF on update transactions with
2PL-HP protocol.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

m
e
a
n
(
S

R
a
t
io

)

λ

Comparaison EDF / GEDF-WTec user T SRatio performance when varying ’a’ and using 2PL-HP

GEDF-WTec when varring ’a’ parameter
EDF when Dsize =1000

(b) The influence of the flexibility
of GEDF on user transactions with
2PL-HP protocol.

Figure 5. Comparison between EDF and flexible GEDF
transactions SRatio performances.

to schedule transactions when the workload is heavy,
which ensures a better SRatio (see subsection 3.2).
We can also explain this result by the GEDF capacity
to succeed in the commit of important transactions
than EDF.

3.4 GEDF flexibility according to the system
workload

In this subsection, we show the GEDF flexibility and
its capacity to allow the system manager to interact and to
adapt to different system workload situations. To this pur-
pose, we exploit the GEDF variants to enhance the system
performances.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.6 0.9 1.2 1.5 1.8 2.1 2.4

m
e

a
n

(S
R

a
ti
o

)

λ

GEDF-WTec when varring parameter ’a’

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.6 0.9 1.2 1.5 1.8 2.1 2.4

m
e

a
n

(S
R

a
ti
o

)

λ

GEDF-WTec when varring parameter ’a’
EDF when Dsize =1000

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

m
e

a
n

(S
a

tD
e

g
re

e
)

λ

GEDF-WTec when varring parameter ’a’

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

m
e

a
n

(S
a

tD
e

g
re

e
)

λ

GEDF-WTec when varring parameter ’a’
EDF when Dsize =1000

Figure 6. Comparison between the regis-
tered QoS when using EDF/flexible GEDF
with 2PL-HP.

Our objective is to obtain the optimal output of the sys-
tem on user transaction SRatio and QoS. To this purpose,
we have deduced by simulations the adequate values of the
parameter a according to the system workload intervals.
Figure 4 shows the weight values assigned to the SPriority
and deadline which we use in GEDF priority assignment
formula according to the system workload intervals. In
Figure 4, we can see for example when λ is between 0.6
and 1.2, the assigned value to a is 0 and when λ is between
1.5 and 1.7 the assigned value to a is 1

5 . The intervals of
the parameter a values are deduced by simulation in order
to have the best results with GEDF.

A comparison of success ratio obtained by GEDF
scheduling policy when varying the parameter a according
to system load (see Figure 4) and EDF scheduling policy
are summarized in Figure 5. The curves in Figure 5(b)
show the effectiveness of the GEDF scheduling policy to
provide a good output of the system, i.e. we obtain the
best success ratio of user transactions for all experimental
conditions, unlike with EDF. When λ < 1.2, the parame-
ter a is assigned zero value, i.e. GEDF becomes an EDF
scheduling policy and allows to exploit the EDF character-
istics when the system is not overloaded. When λ ≥ 1.2
and according to the workload intervals, we use the ade-
quate values for the parameter a. This allows GEDF to
give the best performances on user transactions success
ratio. In addition, we can see the influence of the param-
eter a on update transactions (SRatio). When a = 0, the
SRatio decreases up to λ = 1.2 and when a > 0, the
SRatio becomes optimal, i.e. 100% (see Figure 5(a)).

The related QoS results obtained on the user transac-
tions when exploiting the GEDF flexibility in compari-

159

son to the EDF scheduling policy are summarized in Fig-
ure 6. We can argue that GEDF provides better QoS on
user transactions in all system conditions workload, and
it optimizes not only the SRatio but also the satisfaction
degree, i.e. SatDegree, on the user transactions in all
workload conditions (note that SatDegree(GEDF) �
SatDegree(EDF) + 15%, when λ = 2.4).

4 Conclusion

In this paper, we have proposed a weighted approach
which expresses the transactions tasks importance and a
new scheduling policy (GEDF) to improve the system per-
formances in firm RTDBS. The GEDF scheduling policy
uses the deadline and the importance criterion to schedule
transactions. The impact of the GEDF scheduling policy
on RTDBS performances, i.e. transaction success ratio
and system QoS, is studied under different system work-
load situations and when using different concurrency con-
trol protocols. The study is done in comparison with EDF
scheduling policy performances. We have also discussed
the GEDF scheduling policy results and have shown its
flexibility according to the system workload and its ef-
fectiveness to improve the transactions success ratio and
system QoS in firm RTDBS.

In our future work, we plan to deduce the function that
expresses the value of the parameter a in Formula 4 ac-
cording to the system workload in order to give GEDF
scheduling policy a better flexibility. We also project to
extend our study to other scheduling policies and con-
currency control protocols to compare their performances
with the results obtained in this paper.

References

[1] R. Abbott and H. Garcia-Molina. Scheduling real-time
transactions: A performance evaluation. ACM Trans.
Database Syst., 17(3):513–560, September 1992.

[2] B. Adelberg, H. Garcia-Molina, and B. Kao. Applying
update streams in soft real-time database system. In Pro-
ceedings of the ACM SIGMOD International Conference
on Management of Data, pages 245–256, 1995.

[3] E. Coffman. Introduction to deterministic scheduling the-
ory. Computer and Job-Shop Scheduling Theory, Wiley
and Sons, New York, 1976.

[4] A. Datta, S. Mukherjee, P. Konana, I. Viguier, and A. Ba-
jaj. Multiclass transaction scheduling and overload man-
agement in firm real-time database systems. Technical re-
port TR-11, Time Center., March 1996.

[5] E. Dogdu. Utilization of execution histories in schedul-
ing real-time database transactions. Data and Knowledge
Engineering, 57(2):148–178, May 2006.

[6] R. Haritsa, M. Carey, and M. Livny. Dynamic real-time
optimistic concurrency control. In 11th IEEE Real-Time
Systems Symposium (RTSS), pages 94–103, 1990.

[7] R. Haritsa, M. Carey, and M. Livny. Earliest deadline
scheduling for real-time database systems. In Proceedings
of Real-Time Systems Symposium (RTSS), pages 232–243,
1991.

[8] R. Haritsa, M. Carey, and M. Livny. Data access schedul-
ing in firm real-time database systems. Real-Time Systems
journal, 4(3):203–241, 1992.

[9] K. Kang, S. Son, and J. Stankovic. Managing deadline
miss ratio and sensor data freshness in real-time databases.
IEEE Transaction on Knowledge and Data Engineering,
16(10):1200–1216, 2004.

[10] Y. Kim and H. Son. Supporting predictability in real-time
database systems. In Proceeding of the 2nd IEEE Real-
Time Technology and Applications Symposium (RTAS),
pages 38–48, 1996.

[11] T. Kuo and K. Lam. Real-time database systems: An
overview of system characteristics and issues. In Real-
Time Database Systems, pages 3–8, 2001.

[12] C. Liu and J. Layland. Scheduling algorithms for multi-
programming in a hard real-time environment. Journal of
the ACM, (20):46–61, 1973.

[13] H. Pang, M. Livny, and M. Carey. Transaction scheduling
in multiclass real-time database systems. In IEEE Real-
Time Systems Symposium (RTSS), pages 23–34, 1992.

[14] K. Ramamritham, H. Son, and L. Dipippo. Real-time
databases and data services. Real-Time Systems Journal,
28:179–215, 2004.

[15] K. Ramamritham, M. Xiong, R. Sivasankaran,
J. Stankovic, and D. Towsley. Integrating temporal,
real-time and active databases. ACM SIGMOD Record.
Special Issue on RTDBS, 25(1):8–12, March 1996.

[16] S. Semghouni, B. Sadeg, A. Berred, and L. Amanton. Sta-
tistical model for real-time DBMS performances. In Pro-
ceedings of International Mediterranean Modeling Mul-
ticonference I3M’05, Conceptual Modeling and Simula-
tion Conference (CMS), Marseilles, France, October 20-
22, 2005.

[17] S. Semghouni, B. Sadeg, A. Berred, and L. Amanton.
Probability density function of firm real-time transactions
success ratio. In Proceedings of the 8th Brazilian Work-
shop on Real-Time Systems (WTR2006), Curitiba, Brazil,
June 2, 2006.

[18] T.-T. Team. In-memory data management for consumer
transactions The Times-Ten approach. In Proceedings of
ACM SIGMOD International Conference on Management
of Data, pages 528–529, USA, June 1-3 1999.

[19] M. Xiong and K. Ramamritham. Deriving deadlines and
periods for real-time update transactions. IEEE Transac-
tions on Computers, 53(1):567–583, May 2004.

[20] M. Xiong, R. Sivasankaran, J. Stankovic, K. Ramam-
ritham, and D. Towsley. Scheduling Access to Temporal
Data in Real-Time Databases. Real-Time Database Sys-
tems: Issues and Applications, Sang H. Son, Kwei-Jay
Lin and Azer Bestavros ed, Kluwer Academic Publishers,
1997.

[21] P. Yu, K. Wu, K. Lin, and S. Son. On real-time databases:
Concurrency control and scheduling. In Proceedings of
the IEEE, Special Issue on Real-Time Systems., pages
82(1):140–157, 1994.

160

 RTNS’07 – Session 5

 Scheduling and control

161

162

Comparative Assessment and Evaluation of Jitter Control Methods

Giorgio Buttazzo
Scuola Superiore S. Anna

Pisa, Italy
giorgio@sssup.it

Anton Cervin
Lund University
Lund, Sweden

anton@control.lth.se

Abstract

Most control systems involve the execution of periodic
activities, which are automatically activated by the operat-
ing system at the specified rates. When the application con-
sists of many concurrent tasks, each control activity may ex-
perience delay and jitter, which depend on several factors,
including the scheduling algorithm running in the kernel,
the overall workload, the task parameters, and the task in-
teractions. If not properly taken into account, delays and
jitter may degrade the performance of the system and even
jeopardize its stability.

In this paper, we evaluate three methodologies for reduc-
ing the jitter in control tasks: the first one consists of forc-
ing the execution of inputs and outputs at the period bound-
aries, so trading jitter with delay; the second method re-
duces jitter and delay by assigning tasks shorter deadlines;
whereas, the third method relies on non preemptive execu-
tion. We compare these techniques by illustrating examples,
pointing out advantages and disadvantages, and evaluat-
ing their effects in control applications by simulation. It is
found that the deadline advancement method gives the bet-
ter control performance for most configurations.

1 Introduction

Real-time control applications typically involve the exe-
cution of periodic activities to perform data sampling, sen-
sory processing, control, action planning, and actuation.
Although not strictly necessary, periodic execution simpli-
fies the design of control algorithms and allows using stan-
dard control theory to guarantee system stability and per-
formance requirements. In a computer controlled system,
periodic activities are enforced by the operating system,
which automatically activates each control task at the spec-
ified rate.

Nevertheless, when the system involves the execution of
many concurrent tasks, each activity may experience de-
lay and jitter, which depend on several factors, including
the scheduling algorithm running in the kernel, the overall
workload, the task parameters, and the task interactions. If

not properly taken into account, delay and jitter may de-
grade the performance of the system and even jeopardize its
stability [18, 20, 12].

The problem of jitter in real-time control applications
has received increased attention during the last decade and
several techniques have been proposed to cope with it. Nils-
son [24] analyzed the stability and performance of real-time
control systems with random delays and derived an optimal,
jitter-compensating controller. Mart´ı et al. [23] proposed a
compensation technique for controllers based on the pole
placement design method. Di Natale and Stankovic [13]
proposed the use of simulated annealing to find the optimal
configuration of task offsets that minimizes jitter, accord-
ing to some user defined cost function. Cervinet al. [10]
presented a method for finding an upper bound of the input-
output jitter of each task by estimating the worst-case and
the best-case response time under EDF scheduling [22], but
no method is provided to reduce the jitter by shortening task
deadlines. Rather, the concept ofjitter margin is introduced
to simplify the analysis of control systems and guarantee
their stability when certain conditions on jitter are satisfied.

Another way of reducing jitter and delay is to limit the
execution interval of each task by setting a suitable relative
deadline. Working on this line, Baruah at al. [5] proposed
two methods for assigning shorter relative deadlines to tasks
and guaranteeing the schedulability of the task set. Shinet
al. [25] presented a method for computing the minimum
deadline of a newly arrived task, assuming the existing task
set is feasibly schedulable by EDF. Buttazzo and Sensini
[8] also presented an on-line algorithm to compute the min-
imum deadline to be assigned to a new incoming task in
order to guarantee feasibility under EDF.

Another common practice to reduce jitter in control ap-
plications is to separate each control task into three distinct
subtasks performing data input, processing, and control out-
put [11]. The input-output jitter is reduced by postpon-
ing the input-output subtasks to some later point in time,
so trading jitter with delay. While it has been shown that
task splitting in general may improve the schedulability of
a task set [16], the method also introduces a number of
problems that have not been deeply investigated in the real-

163

time literature. Finally, another possible technique to re-
duce scheduling-induced jitter is to execute the application
in a non preemptive fashion.

In general, none of the techniques above can reduce
the jitter all the way down to zero. There will always
be some variability in the execution time of the (sub)tasks
themselves, and there might be additional jitter caused by
poor timer resolution, tick scheduling, non-preemptable
kernel calls, etc. In this paper, however, we will focus
on scheduling-induced jitter, and we will consider stan-
dard control algorithms that can be assumed to have near-
constant computation times.

Although the techniques above have often been used
in control applications, a comprehensive assessment and
a comparative evaluation of their effect on control perfor-
mance is still missing. In this paper, we provide a sys-
tematic description of these techniques, illustrating exam-
ples and pointing out possible problems introduced by each
method. Then, we discuss a number of simulation experi-
ments aimed at evaluating the effect of these approaches in
control applications.

The rest of the paper is organized as follows. Section 2
presents the system model and the basic assumptions. Sec-
tion 3 provides a definition of jitter and identifies the possi-
ble causes. Section 4 introduces the three approaches con-
sidered in this work for jitter reduction and discusses pros
and cons of the methods. Section 5 describes some experi-
mental results carried out to evaluate the three approaches.
Section 6 states our conclusions and future work.

2 Terminology and Assumptions

We consider a set� = {τ1,τ2, . . . ,τn} of periodic tasks
that have to be executed on a uniprocessor system. Each
periodic taskτ i consists of an infinite sequence of task in-
stances, or jobs, having the same worst-case execution time
(WCET), the same relative deadline, and the same interar-
rival period. The following notation is used throughout the
paper:

τi,k denotes thek-th job of taskτ i, with k ∈� .
Ci denotes the worst-case execution time (WCET) of task

τi, that is, the WCET of each job ofτ i.
Ti denotes the period of taskτ i, or worst-case minimum

inter-arrival time.
Di denotes the relative deadline of taskτ i, that is, the max-

imum finishing time allowed for any job, relative to its
activation time.

ri,k denotes the release time of jobτ i,k. If the first job is
released at timeri,1 = Φi, also referred to as the task
phase or the offset, the generick-th job is released at
time ri,k = Φi +(k−1)Ti.

si,k denotes the start time of jobτ i,k.
fi,k denotes the finishing time of jobτ i,k.

Ri,k denotes the response time of jobτ i,k, that is, the differ-
ence of its finishing time and its release time (Ri,k =
fi,k − ri,k).

INLi,k denotes the input latency of a control jobτ i,k, that
is, the interval between the release of the task and the
reading of the input signal. If the input is performed at
the beginning of the job, thenINLi,k = si,k − ri,k.

IOLi,k denotes the input-output latency of a control jobτ i,k,
that is, the interval between the reading of the input
and the writing of the output. If the input is performed
at the beginning of the job and the output at the end,
thenIOLi,k = fi,k − si,k.

Ui denotes the utilization of taskτ i, that is, the fraction of
CPU time used byτi (Ui = Ci/Ti).

U denotes the total utilization of the task set, that is, the
sum of all tasks utilizations (Ui = ∑n

i=1Ui).

We assume all tasks are fully preemptive, although some of
them can be executed in a non preemptive fashion. More-
over, we allow relative deadlines to be less than or equal to
periods.

3 Jitter characterization

Due to the presence of other concurrent tasks that com-
pete for the processor, a task may evolve in different ways
from instance to instance; that is, the instructions that com-
pose a job can be executed at different times, relative to
the release time, within different jobs. The maximum time
variation (relative to the release time) in the occurrence of
a particular event in different instances of a task defines the
jitter for that event. The jitter of an event of a taskτ i is
said to berelative if the variation refers to two consecutive
instances ofτi, andabsolute if it is computed as the maxi-
mum variation with respect to all the instances.

For example, the response time jitter (RTJ) of a task is
the maximum time variation between the response times of
the various jobs. IfRi,k denotes the response time of thekth

job of taskτ i, then the relative response time jitter of taskτ i

is defined as

RTJrel
i = max

k
|Ri,k+1−Ri,k| (1)

whereas the absolute response time jitter of taskτ i is defined
as

RTJabs
i = max

k
Ri,k −min

k
Ri,k. (2)

Of particular interest for control applications are the time
instants at which inputs are read and outputs are written. An
overview of control task timing is given in Figure 1. The
time interval between the release of the task and the reading
of the input signalyi(t) is called the input latency and is
denoted by INLi,k. The interval between the reading of the

164

yi(t)

ui(t)

ri,k−1 ri,k ri,k+1

INL i,k−1 IOLi,k−1 INL i,k IOLi,k INL i,k+1IOLi,k+1

si,k−1 fi,k−1 si,k fi,k si,k+1 fi,k+1

Ri,k−1 Ri,k Ri,k+1

τi

t

t

Figure 1. Control task timing.

input and the writing of the output is called the input-output
latency and is denoted by IOLi,k.

In the figure, it is assumed that the input signalyi(t) is
sampled at the start timesi,k, and that the control signalui(t)
is updated at the finishing timef i,k. Under this assumption,
the response-time jitter is equivalent to the output jitter.

Similarly, the input jitter (INJ) of a task is the maximum
time variation of the instants at which the input is performed
in the various jobs. Thus, the relative input jitter of taskτ i

can be defined as

INJrel
i = max

k
|INL i,k+1− INL i,k| (3)

whereas the absolute input jitter of taskτ i is defined as

INJabs
i = max

k
INL i,k −min

k
INL i,k. (4)

Another type of jitter of interest in control applications
is the input-output jitter (IOJ), that is, the maximum time
variation of the interval between the reading of the input and
the writing of the output. The relative input-output jitter of
taskτi is defined as

IOJrel
i = max

k
|IOLi,k+1− IOLi,k| (5)

whereas the absolute input-output jitter of taskτ i is defined
as

IOJabs
i = max

k
IOLi,k −min

k
IOLi,k. (6)

The jitter experienced by a task depends on several fac-
tors, including the scheduling algorithm running in the ker-
nel, the overall workload, the task parameters, and the task
interactions through shared resources.

The example shown in Figure 2 illustrates how the jitter
is affected by the scheduling algorithm. The task set con-
sists of three periodic tasks with computation timesC1 = 2,
C2 = 3, C3 = 2, and periodsT1 = 6, T2 = 8, T3 = 12. No-
tice that, if the task set is scheduled by the Rate Monotonic
(RM) algorithm (Figure 2a), the three tasks experience a
response time jitter (both relative and absolute) equal to 0,

2, and 8, respectively. Under the Earliest Deadline First
(EDF) algorithm (Figure 2b), the same tasks experience a
response time jitter (both relative and absolute) equal to 1,
2, and 3, respectively. Also the input-output jitter changes
with the scheduling algorithm; in fact, under RM, the three
tasks have an input-output jitter (both relative and absolute)
equal to 0, 2, 5, respectively, whereas under EDF the input-
output jitter is zero for all the tasks. In general, EDF sig-
nificantly reduces the jitter experienced by tasks with long
period by slightly increasing the one of tasks with shorter
period. A more detailed evaluation of these two scheduling
algorithms for different scenarios can be found in [9].

Using the same example shown in Figure 2, it is easy
to see that, if taskτ3 has a shorter computation time (e.g.,
C3 = 1), the response time jitter experienced byτ 3 under
RM decreases from 8 to 3, while the input-output jitter
becomes 0. Hence, the jitter is heavily dependent on the
workload, especially for fixed priority assignments. Also
note the dependency on the task set parameters. In fact, by
slightly increasing the periodT3, under EDF, the first job
of τ3 would be preempted by the second job ofτ 1, so the
jitter of τ3 would increase significantly. It is also clear that
the task offsets have an influence on the jitter. Finally, more
complex interferences may occur in the presence of shared
resources, which can introduce additional blocking times
that may increase the jitter.

4 Jitter control methods

We now introduce three common techniques typically
adopted to reduce jitter in real-time control systems. They
are described in the following sections.

4.1 Reducing jitter by task splitting

The first approach exploits the fact that most control ac-
tivities have a common structure, including an input phase,
where sensory data acquisition is performed, a processing
phase, where the control law is computed, and an output

165

1

τ 2

τ 3

τ 1

τ 2

τ 3

τ

RTJ

RTJ

RTJ1

2

3

= 2

= 1

= 3

IOJ

IOJ

IOJ1

2

3

= 0

= 0

= 0

IOJ

IOJ

IOJ1

2

3

= 0

= 2

= 5

RTJ

RTJ

RTJ1

2

3

= 2

= 0

= 8

(a)

(b)

0 2 4 6 8 12 14 16 1810 20 22 24

6 12 18

8 16

0 2 4 6 8 12 14 16 1810 20 22 24

6 12 18

8 16

Figure 2. Jitter under RM (a) and EDF (b).

P

i
Pi2i2I i4IOi3Oi1Pi1 Oi2 I i3

Pi3

iI i

τ

Oi

���
���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

task structure

Figure 3. Task input and output can be forced to
occur at period boundaries.

phase, where the proper control actions are sent to the con-
trolled plant. Hence, each control taskτ i is divided into
three subtasks: input, processing, and output. The compu-
tation times of these three subtasks will be denoted asIi, Pi,
andOi, respectively, and the total computation time is given
byCi = Ii + Pi + Oi.

The key idea behind this method is to force the input
subtask to be executed at the beginning of the period and
the output subtask to be executed at the end, as illustrated
in Figure 3.

The input and output subtasks can be forced to execute
at desired time instants by treating them as interrupt rou-
tines activated by dedicated timers. The processing sub-
task, instead, is handled as a normal periodic task, subject
to preemption according to the scheduling algorithm. This
method will be referred to asReducing Jitter by Task Split-
ting (RJTS). To avoid using two distinct timers, the output
part of thek-th job can be executed at the beginning of the
next period, that is just before the execution of the input part
of the (k +1)-th job.

Figure 4 shows how the task set illustrated in Figure 2
would be handled by using the RJTS technique. Note that
the output part of each job is always executed at the begin-
ning of the next period, just before the input part of the next

1

τ 2

τ 3

τ
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

���
���
���

���
���
���processinginput output

0 2 4 6 8 12 14 16 1810 20 22 24

6 12 18

8 16

Figure 4. A task set executed according to the
RJTS method.

job. As it can be seen from the example, treating the input-
output parts as interrupt handling routines can significantly
reduce the jitter for all tasks. The advantages of this method
are the following:

• The fixed input-output delay greatly simplifies both the
controller design and the assertion of system stability.
The case of a one-sample delay is especially simple to
handle in the control analysis [1]. In contrast, analyz-
ing stability under jitter is much more difficult and re-
quires either knowledge of the statistical distributions
of the delays [24] or leads to potentially conservative
results [19].

• In theory, the task splitting method can be applied to all
the tasks and under any workload, whenever the task
splitting overhead can be considered negligible.

However, there are other concerns that must be taken into
account when applying this technique:

166

• The jitter reduction is obtained by inserting extra de-
lay in the task execution. In fact, when applying this
method, input and output parts are always separated
by exactly a period, while normally the average delay
could be smaller. The effect of having a higher delay
in the control loop has to be carefully analyzed, since
it could be more negative than the effect of jitter.

• Executing the input/output parts as high priority in-
terrupt routines causes extra interference on the pro-
cessing parts of the control tasks. Such an interfer-
ence needs to be taken into account in the guaran-
tee test. Feasibility analysis becomes more complex,
but can still be performed using appropriate methods,
like the one proposed by Jeffay and Stone [17], or by
Facchinettiet al. [14].

• The extra interference caused by the input/output parts
running as high priority interrupt routines decreases
the schedulability of the system. As a consequence,
tasks must run at lower rates with respect to the nor-
mal case.

• The input and output parts of different tasks may com-
pete for the processor among themselves, hence they
need to be scheduled with a policy that, in general,
could be different than that used for the control tasks
(e.g., it could be preemptive or non preemptive). As a
consequence, a two-level scheduler is required in the
real-time kernel to support such a mechanism. Fig-
ure 5 shows an example in which the input and out-
put parts of different tasks overlap in time and require
a scheduling policy. In the example, input and out-
put parts always preempt processing parts, but among
themselves they are scheduled with a priority equal
to the task priority they belong. More specifically, if
P1, . . . ,Pn are the priorities assigned to then control
tasks (whereP1 ≥ P2 ≥ . . . ≥ Pn), each corresponding
input and output part of taskτ i can be assigned a pri-
ority P∗

i = P0 + Pi, whereP0 is a priority level higher
thanP1.

• Finally, the implementation of the RJTS method re-
quires an extra effort to the user, who has to program a
timer for each task to trigger the input and output parts
at the period boundaries.

4.2 Reducing jitter by advancing dead-
lines

Another common approach that can be applied to reduce
jitter is to shorten the task relative deadlines. In fact, if a
task τi is guaranteed to be executed with a relative dead-
line Di, clearly its input-output jitter, as well as its response
time jitter, cannot be greater thanDi −Ci. This method will

��
��
��

��
��
��

1

τ 2

τ 3

τ 4

��
��
��
��

��
��
��
��

���
���
���

���
���
���

�
�
�

�
�
�

τ

����
����
����

����
����
����

��
��
��
��

��
��
��
��

��
��
��

��
��
�� processing partinput−output part

Figure 5. Input and output subtasks need to be
scheduled when they overlap in time.

1

τ 2

τ 3

τ

0 2 4 6 8 12 14 16 1810 20 22 24

6 12 18

8 16

Figure 6. A task set executed according to the
RJAD method.

be referred to asReducing Jitter by Advancing Deadlines
(RJAD). Following this approach, Baruahet al. [5] pro-
posed two methods for assigning shorter relative deadlines
to tasks and guaranteeing the schedulability of the task set.

Figure 6 illustrates an example in which the three tasks
shown in Figure 2 are required to execute with a jitter no
higher that 3, 0, and 10, so their deadlines are set toD i =
Ci + Jitter, that is to 5, 3, and 12, respectively.

The RJAD method has the following advantages with re-
spect to the RJTS approach:

• The method does not require any special support from
the operating system, since jitter constraints are simply
mapped into deadline constraints.

• No extra effort is required to the user to program ded-
icated timers. Once jitter constraints are mapped into
deadlines, the kernel scheduler can do the job.

• There are no interrupt routines creating extra interfer-
ence in the schedule, so the guarantee test can be per-
formed with the classical response time analysis [21, 2]
or more efficient techniques [6], under fixed priorities,
or with the processor demand criterion [4], under EDF.

• Advancing deadlines, jitter and delay are both reduced,
implying better achievable control performance.

However, there are also the following disadvantages with
respect to the RJTS approach:

167

• The major problem of this method is that it cannot re-
duce the jitter of all the tasks, but only a few tasks can
be selected to run with zero (or very low) jitter. A bet-
ter result could be achieved by exploiting task release
offsets, but the analysis becomes of exponential com-
plexity.

• Advancing task deadlines, the system schedulability
could be reduced. As a consequence, as in the RJTS
method, tasks could be required to run at lower rates
with respect to the normal case.

4.3 Reducing jitter by non preemption

A third method for reducing the input-output jitter of a
task is simply to execute it in a non preemptive fashion. This
method will be referred to asReducing Jitter by Non Pre-
emption (RJNP). For example, if the task set illustrated in
Figure 2 is executed using non preemptive rate-monotonic
scheduling, the resulting schedule would be, for this partic-
ular case, the same as that one generated by EDF, depicted
in Figure 2b.

The RJNP method has the following advantages:

• Using a non preemptive scheduling discipline, the
input-output jitter becomes very small for all the tasks
(assuming that the task execution times are constant),
since the interval between the input and output parts is
always equal to the task computation time. This makes
it easy to compensate for the delay in the control de-
sign.

• Another advantage of this method is that the input-
output delay is also reduced to the minimum, which
is also equal to the task computation time. This prob-
ably gives the largest performance improvement, since
control loops are typically more sensitive towards de-
lay than jitter.

• Non preemptive execution allows using stack sharing
techniques [3] to save memory space in small embed-
ded systems with stringent memory constraints [15].

On the other hand, the RJNP approach introduces the
following problems:

• A general disadvantage of the non preemptive disci-
pline is that it reduces schedulability. In fact, a non
preemptive section of code introduces an additional
blocking factor in higher priority tasks that can be
taken into account with the same guarantee methods
used for resource sharing protocols.

• There is no least upper bound on the processor utiliza-
tion below which the schedulability of any task set can

be guaranteed. This can easily be shown by consider-
ing a set of two periodic tasks,τ1 andτ2, with priori-
tiesP1 > P2 and utilizationUi = ε, arbitrarily small. If
C2 > T1, C1 = εT1, andT2 = C2/ε, the task set is un-
schedulable, although having an arbitrarily small uti-
lization.

• Achieving non preemptive execution for all user
tasks is easy in standard operating systems (a single
semaphore can be used), but making only one or a few
tasks non preemptible requires a larger programming
effort.

In order to evaluate the impact of the different ap-
proaches on control performance, the three methods have
been compared by simulation under different scenarios. The
results of the simulations are illustrated and discussed in the
next section.

5 Experimental Results

5.1 Simulation Set-Up

We consider a system withn = 7 periodic tasks that are
scheduled under EDF1 [22]. The tasks are distinguished
in two categories: a subset of control tasks, whose jitter and
delay must be bounded, and a subset of hard real-time tasks,
with no jitter and delay requirements, except for schedula-
bility. The number of control tasks is changed in the exper-
iments as a simulation parameter.

The performance of the various jitter reduction methods
is evaluated by monitoring the execution of a control task,
τ1, with period T1 = 50 ms and constant execution time
C1 = 5 ms. The input and output operations are assumed
to takeI1 = O1 = 0.5 ms, leavingP1 = 4 ms for the pro-
cessing part. Notice thatτ1 is not necessarily the task with
the shortest deadline. In fact, the other six tasks,τ 2–τ7,
are generated with random attributes, with fixed execution
timesCi uniformly distributed in [1, 10] ms, and utilizations
Ui chosen according to a 6-dimensional uniform distribu-
tion to reach the desired total utilization (algorithmUUni-

Fast in [7]). Task periods are then given byTi = Ci/Ui. Rel-
ative deadlines are set equal to periods (Di = Ti) for all hard
real-time tasks, whereas they can be reduced by the RJAD
method for the control tasks. The offsetΦi of each task is
uniformly distributed in [0,Ti].

The following parameters are varied in the simulation
experiments:

• The total utilizationU is varied between 0.2 to 0.9 in
steps of 0.1. We also include the caseU = 0.99.

1For lack of space we decided to perform the experiments only under
EDF, which guarantees full processor utilization in the fully preemptive
case, but similar simulations can be carried out under any fixed priority
assignment.

168

• The number of control tasks is varied between 1 and 7.
For each control task,I1 = O1 = 0.5 ms is assumed for
the input and output phases.

• The implementation of the control tasks is varied de-
pending on the specific technique used to reduce the
jitter.

(We have assumed fixed execution times in an attempt to
keep down the number of simulation parameters. In future
work, we would like to study the effects of stochastic exe-
cution times as well.)

To better evaluate the enhancements achievable with the
three methods discussed in Section 4, we also monitor the
results when no special treatment is applied on control
tasks. Thus, we consider the following four methods:

Standard Task Model (STM). Each task, including the
control tasks, is assigned a relative deadline equal to
the period.

Reducing Jitter by Task Splitting (RJTS) The output
and input operations of the control tasks are imple-
mented in non-preemptible timer interrupt routines.
An extra overhead of 0.5 ms was assumed for this
implementation, making the non-preemptible section
1.5 ms. This can potentially cause hard real-time tasks
to miss their deadlines.

Reducing Jitter by Advancing Deadlines (RJAD) The
deadlines of the control tasks are advanced according
to Method 2 of Baruahet al. [5].

Reducing Jitter by Non Preemptive Execution (RJNP).
Control tasks are implemented as non-preemptible
tasks, whereas hard tasks can be normally preempted.
This can potentially cause hard real-time tasks to miss
their deadlines.

For each parameter configuration,N = 500 random task
sets are generated, and the system is simulated for 50 s (cor-
responding to 1000 invocations ofτ 1). The absolute input
jitter (INJ), the absolute input-output jitter (IOJ), and the
average input-output latency (IOL) forτ 1 are recorded for
each experiment. To evaluate the effect of each method on
task schedulability, we also recorded the percentage of un-
feasible task sets, i.e., the number of task sets where one or
more hard real-time tasks miss a deadline. When a deadline
is missed, the simulation for the current task set is aborted
and the performance is not counted.

Two sets of experiments were carried out: one to evalu-
ate the effects of the methods on the timing behavior, and
one to see their impact on the control performance. For the
INJ, IOJ, and IOL results, standard deviations for the av-
erage values were computed and they were never greater
than 0.35 ms for any configuration. For the control cost
evaluation, the standard deviation was less than 0.2%, not
counting cases where the control loop went unstable.

0.2 0.4 0.6 0.8 1
0

10

20

30

40

U

IN
J

(m
s)

1/7 Control Tasks

STM
RJTS
RJAD
RJNP

0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

U

IO
J

(m
s)

0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

U

IO
L

(m
s)

0.2 0.4 0.6 0.8 1
0

10

20

30

40

U

%
 U

nf
ea

si
bl

e

Figure 7. Jitter results with one control task and
six hard real-time tasks.

5.2 Jitter Results

We first tested the jitter reduction methods with one con-
trol task and six hard real-time tasks. The results are re-
ported in Figure 7. Note that RJAD is very successful in
reducing both the input jitter (INJ) and the input-output jit-
ter (IOJ) while minimizing the input-output latency (IOL)
for all load cases. RJTS also performs very well in reduc-
ing both INJ and IOJ for any utilization, but gives a very
long IOL, as expected. Finally, RJNP is able to reduce the
IOJ and the IOL to a minimum, but actually increases the
INJ slightly compared to the standard task model. RJNP
is also the most invasive method in terms of schedulability
(bottom-right graph), causing hard real-time tasks to miss
deadlines for utilizations higher than 0.5.

Figure 8 illustrates the results achieved with four con-
trol tasks and three hard real-time tasks. In this case, RJAD
does not work quite as good anymore, because four control
tasks to advance their deadlines. RJNP keeps the IOJ and
the IOL and a minimum, while the INJ increases. Moreover,
it causes even more deadlines to be missed with respect to
the previous case. Note that some deadlines are also missed
with RJTS at high utilizations, due to the non-preemptible
interrupt routines needed for executing the input-output
parts at the end of the periods. For the same reason, some
jitter is now also experienced by RJTS (upper graphs).

A final simulation experiment has been performed with
seven control tasks and the results are shown in Figure 9.
In this case, a very high sampling jitter occurs under RJNP
(upper-left graph), whereas RJAD shows virtually no im-
provement at all with respect to the standard task model
(STM, upper graphs). Also RJTS experiences more jitter
than before, due to the higher number of interrupts. No-
tice that no deadlines are missed (bottom-right graph) since
there are no hard tasks anymore.

169

0.2 0.4 0.6 0.8 1
0

10

20

30

40

U

IN
J

(m
s)

4/7 Control Tasks

STM
RJTS
RJAD
RJNP

0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

U

IO
J

(m
s)

0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

U

IO
L

(m
s)

0.2 0.4 0.6 0.8 1
0

10

20

30

40

U

%
 U

nf
ea

si
bl

e

Figure 8. Jitter results with four control tasks and
three hard real-time tasks.

5.3 Control Performance Results

The actual control performance degradation resulting
from scheduling-induced delay and jitter depends very
much on the control application. In general, however, con-
trollers with a high sampling rate (compared to, e.g., the
cross-over frequency) are less sensitive to delay and jitter.

In this section, we study two benchmark control prob-
lems: one assuming fast sampling and the other assuming
slow sampling. In each case, it is assumed that taskτ1 im-
plements a Linear Quadratic Gaussian (LQG) controller [1]
to regulate a given plant. The sampling period is hence
T1 = 50 ms in both cases. Associated with each plant is
a quadratic cost functionV that is used both for the LQG
control design and for the performance evaluation of the
control loop. The two plants and their cost functions are
given below:

Plant 1:

dx
dt

=

[
0 1
9 0

]
x+

[
1
0

]
u+

[
1
0

]
v

y =
[
0 1

]
x+

√
0.1e

V = E lim
T→∞

1
T

∫ T

0

(
xT
[
0 0
0 10

]
x+ u2

)
dt

Plant 2:

dx
dt

=

[
0 1
−3 −4

]
x+

[
0
1

]
u+

[
35
−61

]
v

y =
[
2 1

]
x+ e

V = E lim
T→∞

1
T

∫ T

0

(
xT
[

2800 80
√

35
80

√
35 80

]
x+ u2

)
dt

0.2 0.4 0.6 0.8 1
0

10

20

30

40

7/7 Control Tasks

U

IN
J

(m
s)

STM
RJTS
RJAD
RJNP

0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

U

IO
J

(m
s)

0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

U

IO
L

(m
s)

0.2 0.4 0.6 0.8 1
0

10

20

30

40

U

%
 U

nf
ea

si
bl

e

Figure 9. Jitter results with seven control tasks.

Here,x is the plant state vector,u is the control signal,y
is the measurement signal,v is a continuous-time zero-mean
white noise process with unit intensity, ande is a discrete-
time zero-mean white noise process with unit variance. Fur-
ther,v ande are assumed to be independent.

Plant 1 is a linear model of an inverted pendulum (an
unstable plant) with a natural frequency of 3 rad/s. Assum-
ing a constant input-output delay of 5 ms, the cost func-
tion produces an LQG controller that achieves a cross-over
frequency of 5.2 rad/s and a phase margin of 31◦. This
can be seen as a typical, quite robust control design with
a high enough sampling rate. The jitter margin [10] is com-
puted to 82 ms, which is larger than the sampling period
and indicates that the control loop cannot be destabilized by
scheduling-induced jitter.

Plant 2 (a stable plant) and its associated cost function
represent a pathological case where the LQG design method
gives a controller that is very sensitive to delay and jitter
[24]. Assuming a delay of 5 ms, the resulting cross-over
frequency is 20.6 rad/s while the phase margin is only 17◦.
The jitter margin is found to be only 10 ms, indicating that
latency and jitter from the scheduling might destabilize the
control loop.

Assuming the same simulation set-up as in the jitter eval-
uation, for each parameter configuration,N = 500 random
task sets were generated and the control performance of task
τ1 was recorded for 50 s. For STM, RJAD, and RJNP, the
controller was designed assuming a constant delay of 5 ms,
while for RJTS, the delay was assumed to be 50 ms. The
whole procedure was repeated for each of the two plants,
the results being reported in Figure 10. In the figure, the
costs have been normalized such that the performance un-
der minimum delay and jitter is 1.

For Plant 1, it can be noted that RJTS performs uni-
formly worse than the other implementations, including

170

0.2 0.4 0.6 0.8 1

1

1.2

1.4

1.6

U

1/7 Control Tasks

C
os

t

STM
RJTS
RJAD
RJNP

0.2 0.4 0.6 0.8 1

1

1.2

1.4

1.6

U

C
os

t

4/7 Control Tasks

0.2 0.4 0.6 0.8 1

1

1.2

1.4

1.6

U

C
os

t

7/7 Control Tasks

0.2 0.4 0.6 0.8 1

1

1.2

1.4

1.6

U

C
os

t

0.2 0.4 0.6 0.8 1

1

1.2

1.4

1.6

U
C

os
t

0.2 0.4 0.6 0.8 1

1

1.2

1.4

1.6

U

C
os

t

Plant 1

Plant 2

Figure 10. Control performance evaluation for two different plants.

STM. This is due to the long input-output latency, which,
despite the exact delay compensation, destroys the perfor-
mance. As the number of control tasks and the load in-
crease, the performance of STM, RJAD, and RJNP degrades
only slightly, RJNP performing the best in the case of multi-
ple controllers, while RJAD works the best for a single con-
troller. Also notice the performance break-down of RJTS
for 7 control tasks and high loads, where the extra schedul-
ing overhead causes taskτ1 to miss its outputs.

For Plant 2, the issue of jitter is more critical. While
RJTS gives a constant performance degradation (except for
the case of seven control tasks and high load) the other im-
plementations exhibit degradations that seem to relate to the
total amount of jitter (INJ+ IOJ) reported in Figures 7–9.
As a consequence, RJAD has an edge over RJNP for almost
all system configurations. Note that, for sufficiently high
utilizations, some implementations actually cause the con-
trol loop to go unstable (the cost approaches infinity) for
high loads.

In summary, RJAD gives the better control performance
for most system configurations. At the same time, it does
not cause any deadlines to be missed. RJTS is the “safest”
implementation, in that it gives a more or less constant per-
formance degradation, even for an unrobust control design,
many control tasks, and a high CPU load.

6 Conclusions

In this paper we studied three scheduling techniques
for reducing delay and jitter in real-time control systems
consisting of a set of concurrent periodic tasks. The first
method (RJTS) reduces jitter by splitting a task in three
subtasks (input, processing and output) and forces the ex-
ecution of input and output parts at the period boundaries.
The second method (RJAD) reduces jitter and delay by

assigning the tasks a shorter deadline. The third method
(RJNP) simply relies on non preemptive execution to elim-
inate input-output jitter and delay.

Advantages and disadvantages of the three approaches
have been discussed and a number of simulation experi-
ments have been carried out to compare these techniques
and illustrate their effect on control system performance. In
the simulation results, it was seen that RJTS and RJNP can
compromise the schedulability of the system if this issue is
not taken into account at design time. RJAD performed very
well for a single control task and reasonably well for mul-
tiple control tasks. RJTS was able to reduce both the input
jitter and the input-output jitter to a minimum but produced
a long input-output latency.

In conclusion, for a robust control design (with sufficient
phase and delay margins), the performance degradation due
to jitter is very small, even for the standard task model. For a
single control task, the RJAD method can reduce this degra-
dation all the way down to zero in most cases. On the other
hand, a constant one-sample delay gives a very large penalty
in comparison. Hence, it is clear that the RJTS method
should be avoided for robust control systems.

For unrobust control systems with very small phase and
delay margins, RJTS could be considered to be a “safe”
choice of implementation. For many system configurations,
however, even STM performs better than RJTS. One has
to go to quite extreme situations to find examples where
RJTS actually gives better control performance than STM.
In these situations, the computing capacity is probably
severely under-dimensioned, and it is questionable whether
any implementation can actually meet the control perfor-
mance requirements.

Finally, in terms of control performance, the RJNP
method sometimes performs better and sometimes worse
than RJAD in the various configurations. However, one

171

should keep in mind, that RJNP may cause hard tasks to
miss their deadlines and requires a more difficult off-line
analysis.

As a future work, we plan to provide support for these
techniques in the Shark operating system, in order to eval-
uate the effectiveness of these approaches on real control
applications. Also, we would like to explore the trade-off
between jitter and delay for a wider class of plants and con-
trollers.

References

[1] K. J. Åström and B. Wittenmark,Computer-Controlled Sys-
tems: Theory and Design. Third edition. Prentice-Hall, 1997.

[2] N. C. Audsley, A. Burns, M. Richardson, K. W. Tindell,
and A. J. Wellings, “Applying New Scheduling Theory to
Static Priority Pre-emptive Scheduling,”Software Engineer-
ing Journal, Vol. 8, No. 5, pp. 284–292, September 1993.

[3] T. P. Baker, “Stack-Based Scheduling of Real-Time Pro-
cesses,”Real-Time Systems Vol. 3, No. 1, pp. 67–100, 1991.

[4] S. K. Baruah, R. R. Howell, and L. E. Rosier, “Algorithms
and Complexity Concerning the Preemptive Scheduling of
Periodic Real-Time Tasks on One Processor,”Real-Time Sys-
tems, 2, 1990.

[5] S. Baruah, G. Buttazzo, S. Gorinsky, and G. Lipari,
“Scheduling Periodic Task Systems to Minimize Output Jit-
ter,” in Proceedings of the 6th IEEE International Confer-
ence on Real-Time Computing Systems and Applications,
Hong Kong, December 1999.

[6] E. Bini and G. Buttazzo, “Schedulability Analysis of Peri-
odic Fixed Priority Systems,”IEEE Transactions on Com-
puters, Vol. 53, No. 11, pp. 1462–1473, November 2004.

[7] E. Bini and G. Buttazzo, “Biasing Effects in Schedulability
Measures,” inProceedings of the 16th Euromicro Conference
on Real-Time Systems, Catania, Italy, July 2004.

[8] G. Buttazzo and F. Sensini, “Optimal Deadline Assignment
for Scheduling Soft Aperiodic Task in Hard Real-Time En-
vironments,”IEEE Transactions on Computers, Vol. 48, No.
10, October 1999.

[9] G. Buttazzo, ”Rate Monotonic vs. EDF: Judgment Day”,
Real-Time Systems, Vol. 28, pp. 1-22, 2005.

[10] A. Cervin, B. Lincoln, J. Eker, K.-E. Arzen, and G. But-
tazzo, “The Jitter Margin and Its Application in the Design
of Real-Time Control Systems,” inProceedings of the 10th
International Conference on Real-Time and Embedded Com-
puting Systems and Applications, Gothenburg, Sweden, Au-
gust 2004.

[11] A. Crespo, I. Ripoll and P. Albertos, “Reducing delays in RT
control: the control action interval,” inProceedings of the
14th IFAC World Congress, pp. 257–262, 1999.

[12] C. Davidson, “Random sampling and random delays in opti-
mal control,” PhD Dissertation 21429, Department of Opti-
mization and Systems Theory, Royal Institute of Technology,
Sweden, 1973.

[13] M. Di Natale and J. Stankovic, “Scheduling Distributed
Real-Time Tasks with Minimum Jitter,”IEEE Transactions
on Computers, Vol. 49, No. 4, pp. 303–316, 2000.

[14] T. Facchinetti, G. Buttazzo, M. Marinoni, G. Guidi, “Non-
Preemptive Interrupt Scheduling for Safe Reuse of Legacy
Drivers in Real-Time Systems,” inProceedings of the 17th
Euromicro Conference on Real-Time Systems, Palma de Mal-
lorca, Spain, July 2005.

[15] P. Gai, G. Lipari, and M. di Natale, “Minimizing Mem-
ory Utilization of Real-Time Task Sets in Single and Multi-
Processor Systems-on-a-chip,” inProceedings of the 22th
IEEE Real-Time Systems Symposium, London, UK, Decem-
ber 2001.

[16] R. Gerber and S. Hong, “Semantics-Based Compiler Trans-
formations for Enhanced Schedulability,” inProceedings of
the 14th IEEE Real-Time Systems Symposium, December
1993.

[17] K. Jeffay and D. L. Stone, “Accounting for Interrupt Han-
dling Costs in Dynamic Priority Task Systems,” inProceed-
ings of the IEEE Real-Time Systems Symposium, Raleigh-
Durham, NC, USA, pp. 212–221, December 1993.

[18] R. E. Kalman and J. E. Bertram, “A unified approach to
the theory of sampling systems,”J. Franklin Inst., Vol. 267,
pp. 405–436, 1959.

[19] C.-Y. Kao and B. Lincoln, “Simple Stability Criteria for
Systems with Time-Varying Delays,”Automatica, 40:8, pp.
1429–1434, August 2004.

[20] H. J. Kushner and L. Tobias, “On the stability of randomly
sampled systems,”IEEE Transactions on Automatic Control,
Vol 14, No 4, pp. 319–324, 1969.

[21] J. P. Lehoczky, L. Sha, and Y. Ding, “The Rate-Monotonic
Scheduling Algorithm: Exact Characterization and Average
Case Behavior,” inProceedings of the 10th IEEE Real-Time
Systems Symposium, Santa Monica, CA, USA, pp. 166–171,
December 1989.

[22] C. L. Liu and J. W. Layland, “Scheduling algorithms
for Multipprogramming in Hard Real-Time traffic environ-
ment,”Journal of the Association for Computing Machinery,
Vol. 20, No. 1, January 1973.

[23] P. Martı́, G. Fohler, K. Ramamritham, and J.M. Fuertes, “Jit-
ter Compensation for Real-time Control Systems,” inPro-
ceedings of the 22nd IEEE Real-Time System Symposium,
London, UK, December 2001.

[24] J. Nilsson, B. Bernhardsson and B. Wittenmark, “Stochastic
Analysis and Control of Real-Time Systems with Random
Time Delays,”Automatica, 34:1, pp. 57–64, 1998.

[25] Q. Zheng and K. G. Shin, “On the Ability of Establishing
Real-Time Chennals in Point-to-Point Packet-Switched Net-
works,” IEEE Transactions on Communications, Vol. 42, No.
2/3/4, Feb./March/Apr. 1994.

172

Reducing Delay and Jitter in Software Control Systems

Hoai Hoang
Centre for Research on Embedded Systems

Halmstad University

Halmstad, Sweden

Hoai.Hoang@ide.hh.se

Giorgio Buttazzo
Real-Time Systems Laboratory

Scuola Superiore Sant’Anna

Pisa, Italy

giorgio@sssup.it

Abstract

Software control systems may be subject to high interfer-
ence caused by concurrency and resource sharing. Reduc-
ing delay and jitter in such systems is crucial for guaran-
teeing high performance and predictability. In this paper,
we present a general approach for reducing delay and jitter
by acting on task relative deadlines. The method allows the
user to specify a deadline reduction factor for each task to
better exploit the available slack according to specific jitter
sensitivity. Experimental results confirm the effectiveness
and the generality of the proposed approach with respect to
other methods available in the literature.

1 Introduction

Complex software systems are often implemented as a
number of concurrent tasks that interact with a given set
of resources (processor, memories, peripherals, etc.). Tasks
related to control activities are typically periodic, and are
activated with a specific rate derived by the system’s de-
signer. Other tasks related to specific input/output devices
(e.g., serial lines, data buses, networks) may be aperiodic
and can be activated by interrupts or by the occurrence of
particular events.

Although the activation rates of periodic tasks can be
precisely enforced by the operating system through proper
kernel mechanisms, the execution pattern of each task de-
pends on several factors, including the scheduling algorithm
running in the kernel, the overall system workload, the task
set parameters, the interaction with the shared resources,
and the interference introduced by interrupts. As a conse-
quence, control tasks may experience variable delays and
jitter that can degrade the system performance, if not prop-
erly handled.

The effects of delays and jitter on real-time control ap-
plications have been extensively studied in the literature
[10, 19] and several methods have been proposed to cope

with them. Marti el al. [18] presented a control technique
to compensate the effect of jitter with proper control actions
computed based on the temporal distance between succes-
sive samples. Cervin et al. [11] presented a method for find-
ing an upper bound of the input-output jitter of each task by
estimating the worst-case and the best-case response time
under EDF scheduling, but no method is provided to reduce
the jitter. Rather, the concept ofjitter margin is introduced
to simplify the analysis of control systems and guarantee
their stability when certain conditions on jitter are satisfied.

Other authors proposed suitable scheduling methods for
reducing the delay and jitter caused by complex intertask
interference. For example, Di Natale and Stankovic [12]
proposed the use of simulated annealing to find the optimal
configuration of task offsets that minimizes jitter, accord-
ing to some user defined cost function. Baruah et al. [4]
followed a different approach to reduce both delay and jit-
ter by reducing the relative deadline of a task, so limiting
the execution interval of each job. Two methods have been
illustrated for assigning shorter relative deadlines to tasks
while guaranteeing the schedulability of the task set: the
first method is based on task utilizations and runs in poly-
nomial time, whereas the second one (more effective) has a
pseudo-polynomial complexity since it is based on the pro-
cessor demand criterion [2].

Brandt et al. [6] also addressed the problem of reducing
the deadline of a periodic task, but their approach is based
on the processor utilization, hence it cannot be used to find
the shortest possible deadline.

Zheng et al. [20] presented a method for computing the
minimum deadline of a newly arrived task, assuming the
existing task set is feasibly schedulable by EDF; however,
their approach is tailored for distributed applications and
requires some off-line computation. When the utilization of
all the tasks in the task set is high, the number of off-line
computations are very large, that make this method become
not efficiently, high computational complexity.

Buttazzo and Sensini [7] also presented an on-line algo-
rithm to compute the minimum deadline to be assigned to

173

a new incoming task in order to guarantee feasibility un-
der EDF. However, their approach only applies to aperiodic
requests that have to be executed in a periodic environment.

Hoang et al. [16] and Balbastre et al. [5] independently
proposed a method for minimizing the relative deadline of
a single periodic task, while keeping the task set schedula-
ble by EDF. Although the approach can be applied sequen-
tially to other tasks in a given order, the deadline reduction
achievable on the first task is much higher than that achiev-
able on the other tasks in the sequence. To avoid this prob-
lem, in the same paper, Balbastre et al. also proposed a
method to perform a uniform scaling of all relative dead-
lines. The problem with a uniform reduction, however, is
that jitter and delay may not necessarily reduce as expected
(and for some task they could even increase).

To allow more flexibility in controlling the delay and jit-
ter in software controlled systems, in this paper we present
a general approach for reducing task deadlines according to
individual task requirements. The method allows the user
to specify a deadline reduction factor for each task, to bet-
ter exploit the available slack according to tasks actual re-
quirements. The deadline reduction factor can be specified
as a real number in [0,1], with the meaning that a value
equal to one allows the relative deadline to be reduced up
to the minimum possible value (corresponding to the task
computation time), whereas a value equal to zero means no
reduction.

As special cases, the method can minimize the deadline
of a single task (by setting its reduction factor to 1 and
the others to zero), or perform a uniform deadline rescal-
ing in the task set (by setting all reduction factors to 1). If
two tasks have the same delay/jitter requirements and need
to reduce their relative deadlines as much as possible, this
can simply be achieved by setting both reduction factors
to 1 and all the others to zero. Note that this could not
be achieved by applying a deadline minimization algorithm
[16, 5] to the tasks in a given order, because the first task
would steal all the available slack for itself, leaving small
space for the second.

The rest of the paper is organized as follows. Section
2 presents the system model and the terminology adopted
throughout the paper. Section 3 illustrates the addressed
problem with some concrete examples. Section 4 describes
the deadline reduction algorithm. Section 5 presents some
experimental results and compares the proposed method
with other deadline reduction approaches. Finally, Section
6 states our conclusions and future work.

2 Terminology and assumptions

We consider a set� � ���� ��� � � � � ��� of � periodic
tasks that have to be executed on a uniprocessor system un-
der the Earliest Deadline First (EDF) algorithm [17]. Each

task�� consists of an infinite sequence of jobs, or task in-
stances, having the same worst-case execution time and the
same relative deadline. All tasks are fully preemptive. The
following notation is used throughout the paper:

���� denotes the�-th job of task��, (where� � �� �� � � �),
that is the�-th instance of the task execution.

���� denotes the release time of job����, that is the time at
which the job is activated and becomes ready to exe-
cute.

���� denotes the start time of job���� , that is the time at
which the first instruction of���� is executed.

���� denotes the finishing time of job����, that is the time at
which the job completes its execution.

	� denotes the worst-case execution time of task��.

� denotes the period of task��, or the minimum inter-
arrival time between successive jobs.

�� denotes the relative deadline of task��, that is, the max-
imum finishing time (relative to its release time) al-
lowed for any job.

���� denotes the absolute deadline of job���� , that is the
maximum absolute time before which job� ��� must
complete (���� � ���� ���).

� denotes the utilization of task��, that is the fraction of
cpu time used by�� (
� � 	��
�).

 denotes the total utilization of the task set, that is, the
sum of all tasks utilizations (
 �

��

���
�).

���� denotes the response time of job���� , that is the inter-
val between its release time and its finishing time:

���� � ���� � ���� � (1)

������ denotes the input-output delay of job� ��� , that is
the interval between its start time and its finishing time:

������ � ���� � ����� (2)

�
�� denotes the response time jitter of a task, that is the
maximum variation in the response time of its jobs:

�
�� � ���
�
������ ���	

�
������ (3)

174

τ i
si,1 sfi,1

IODi,1 IODi,2

R Ri,2i,1

i,2 fi,2i,1 i,2rr

Figure 1. Example of a real-time task.

Figure 1 illustrates some of the parameters defined
above.

Moreover, each task�� is characterized by a maximum
relative deadline����

� (considered to be the nominal one)
and a minimum relative deadline����

� , specified by the
application designer. When not explicitly assigned, we as-
sume����

� �
� and����
� � 	�.

3 Problem statement

The method proposed in this work to reduce delay and
jitter in periodic tasks requires the application designer to
specify an additional task parameter, called thedeadline re-
duction factor, Æ�, which is a real number in [0,1]. A value
Æ� � � indicates that task�� is very sensitive to delay and
jitter, hence its relative deadline is allowed to be reduced
up to its minimum possible value (����

�). A valueÆ� �

indicates that task�� is not sensitive to delay and jitter, so
its relative deadline does not need to be modified. In gen-
eral, we assume that the sensitivity of�� to delay and jitter
is proportional toÆ�.

Once all deadline reduction factors have been specified
according to delay and jitter sensitivity, the problem we
want to solve is to shorten all deadlines as much as possible
to respect the proportions dictated by the reduction factors,
while keeping the task set feasible.

Note that task specific jitter coefficients have also been
defined by Baruah et al. [4] (they were denoted by� � and
called jitter tolerance factors). In that work, however, the
objective was to minimize the weighted jitter of the task
set, defined as

WtdJitter�� � � ���
�

�
�
��
��

�
�

rather than reducing deadlines proportionally to sensitivity,
as done in this paper.

To better motivate the proposed approach, we now il-
lustrate an example that shows the advantage of specifying
individual reduction factors.

3.1 A motivating example

Consider a set of three periodic tasks with periods
� �

,
� � �,
� � ��, and computation times	� � �, 	� �

�,	� � �. Suppose that�� and�� are control tasks sensitive
to delay and jitter, whereas�� is not and can be executed
anywhere within its period. Assuming�� � ����

� �
�
for each task, the schedule produced by EDF is shown in
Figure 2. The response time jitters of the tasks are�
�� �
�,�
�� � �, and�
�� � �.

Now observe that, for this task set, the uniform scaling
algorithm proposed by Balbastre et al. [5] does not pro-
duce any change in the schedule, so it cannot reduce any
jitter. For this particular case, in fact, the maximum com-
mon reduction factor that guarantees a feasible schedule is
1/3, meaning that for each task we can set�� � �����
�.
As shown in Figure 3, however, the schedule produced by
EDF with such deadlines is exactly the same as that shown
in Figure 2.

Also notice that minimizing the deadline of a single task
(using the algorithm proposed by Hoang et al. [16] or by
Balbastre et al. [5]) may not necessarily have the desired
effect on the other jitter sensitive tasks. For example, as
depicted in Figure 4, minimizing�� the jitter of�� becomes
zero, but the jitter of�� cannot be reduced below 2 (even if
�� is minimized after��).

In this case, a better solution to reduce the delay and jitter
of �� and�� is to reduce the deadlines of both tasks simulta-
neously, leaving�� unchanged. As an example, assuming
Æ� � Æ� � �, the maximum common reduction factor that
can be applied to both tasks to keep the task set feasible is
2/3, meaning that we can set�� �
���,�� �
���, and
�� �
�. Figure 5 shows the schedule produced by EDF
with such deadlines.

The next section describes the algorithm that computes
the new feasible deadlines according to the specified reduc-
tion factorsÆ�.

4 The algorithm

Before describing the algorithm, it is worth observing
that, for the feasibility constraint, the actual deadline reduc-
tion will be less than or equal to the one specified by the
reduction factor, that is

����
� ���

����
� �����

�

� Æ��

175

1

τ 2

τ 3

τ

0 2 4 6 8 12 14 16 1810 20 22 24

6 12 18

18

24

26 32 36343028

RTJ1 = 2

RTJ2 = 3

RTJ3 = 2

9 27

Figure 2. EDF schedule with relative deadlines equal to periods.

1

τ 2

τ 3

τ

18

0 2 4 6 8 12 14 16 1810 20 22 24

6 12

1

18

24

26 32 36343028

RTJ

RTJ

= 2

RTJ2 = 3

3 = 2

9 27

Figure 3. EDF schedule with uniformly scaled deadlines.

1

τ 2

τ 3

τ

0 2 4 6 8 12 14 16 1810 20 22 24

6 12 18

18

24

26 32 36343028

RTJ1 = 2

RTJ2 = 0

RTJ3 = 2

279

Figure 4. EDF schedule when only �� deadline is minimized.

1

τ 2

τ 3

τ

220 2 4 6 8 12 14 16 1810 20 2824

6 12 18

18

24

26 32 363430

= 1

RTJ1 = 0

RTJ2

RTJ3 = 3

279

Figure 5. EDF schedule when deadlines of both �� and �� are reduced.

176

However, to respect the proportions specified by the reduc-
tion factors, we must compute the new deadlines in such a
way that��� � � �� � � � � � (andÆ�, Æ� �� 0) we have

����
� ���

����
� �����

�

�Æ� �
����
� ���

����
� �����

�

�Æ� �

This means that

�� � �� � � � � �
����
� ���

����
� �����

�

�Æ� � �

where� is a constant less than or equal to one. Hence,
the problem consists in finding the greatest value of� that
keeps the task set feasible, where deadlines are computed as

�� � �
���
� � �Æ���

���
� �����

� � (4)

The highest value of� that guarantees feasibility can be
found by binary search.

The search algorithm assumes that the task set� is feasi-
ble for� �
 (that is, when all tasks are scheduled with the
maximum deadlines), and starts by trying feasibility with
� � � (that is, with all tasks having their minimum dead-
lines). If� is found feasible with� � �, then the algorithm
exits with the best solution, otherwise the binary search is
started.

The feasibility test as a function of� can be per-
formed using the function reported in Figure 6, where
all relative deadlines are first computed according to
Equation (4), and then the test is performed using the
Processor Demand Criterion [2, 3]. In particular, the
��������� ������ ������) function returns 1 if the task
set� is feasible, 0 otherwise.

Feasible(� � �)

for � �
 to �
�� � �

���
� � �Æ���

���
� �����

� �;
end for

F = Processordemandtest(�);

return (F);
end

Figure 6. Feasibility test as a function of �.

The binary search algorithm to find the highest value of
� is reported in Figure 7. Note that, besides the task set pa-
rameters, the algorithm requires a value�, needed to bound
the complexity of the search and stop the algorithm when

Best alpha(� � �)
���� � �;
���� �
;
� � ���� � ����;

if Feasible(� � ����) then return(����);

while �� � �� do
� � ����� � �������;

if Feasible(� , �) then ���� � �;
else ���� � �;

� � ���� � ����;
end while

return(����);

end

Figure 7. Binary search algorithm for finding
the highest � that guarantees feasibility.

1
2

3
16

ε = 1
16

F

1

0 1 7 1
32 48

α

Figure 8. Search values for � � ���
.

the search interval (� � ���� � ����) becomes smaller
than a given error.

For example, for the case illustrated in Figure 8, if� �
���
, the algorithm will try six values (1, 1/2, 1/4, 1/8, 3/16,
and 7/32) and stops by returning the last feasible value, that
is � � ���
. In general, the complexity of the algorithm
is logarithmic with respect to�, and the number of steps to
find the best� is given by

� � �� ���
�
��

For the given example,���
�
����
� � ��, so we have

� �
. Once the highest feasible� is found, the task dead-
lines are reduced according to Equation (4), which takes
into account the individual reduction factors.

177

5 Experimental results

This section describes a set of simulation experiments
that have been conducted to evaluate the effectiveness of
the proposed algorithm to reduce delay and jitter of spe-
cific tasks according to given reduction factors. For special
cases, the method is also compared with the algorithm that
uniformly scales all deadlines [5] and with the algorithm
that minimizes the relative deadline of a single task [16, 5].

We have investigated different application scenarios,
generated through synthetic task sets with random param-
eters within given ranges and distributions. To generate a
feasible task set of� periodic tasks with given utilization

	 �, we first generated� random utilizations uniformly
distributed in (0,1) and then normalized them to have

��
���

� �
	�

Then, we generated� computation times as random vari-
ables uniformly distributed in [���,	���] (with 	��� �
� and	��� � �
) and then calculated the period of each
task as

� �
	�

�
�

For each task��,����
� has been set equal to
� and����

�

has been set equal to	�.
For each generated task set� , we measured the maxi-

mum response time of each task (�� � ���
�
������) and

the maximum response time jitter (�
�� � ���
�
��
�����)

caused by EDF under three different deadline setting:

1. Plain: all tasks run with their maximum deadlines:
�� � �

���
� ;

2. Scaled: all deadlines are uniformly scaled by the same
factor according to the algorithm proposed by Balbas-
tre et al. [5];

3. New: task deadlines are computed by the proposed al-
gorithm according to given reduction factors.

In the first experiment, a simulation has been carried
out with a set of 10 periodic tasks, having fixed utilization

 �
��. The proposed algorithm has been applied to a
group of four tasks with the same reduction factor (Æ � � �),
while leaving the remaining tasks with their original dead-
lines (Æ� �
). In particular, the four tasks with the longest
periods (from�� to ���) have been selected for reduction.
The worst-case response time and the response time jitter
(RTJ) have been measured for each task and then averaged
over 1000 simulation runs. A value� � �
�� was used to
find the best�.

1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600
Delay comparison when applying New algorithm for tasks 7, 8, 9, 10

Task number

W
C

R
T

Plain
Scaled
New

U=0.9; C=(5−30); epsilon=10−4

Figure 9. Worst-case response times when
applying the proposed algorithm to task 7, 8,
9 and 10.

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

350

400

450

500
Jitter comparison when applying New algorithm for tasks 7, 8, 9, 10

Task number

R
T

J
(a

bs
)

Plain
Scaled
New

U=0.9; C=(5−30); epsilon=10−4

Figure 10. Response Time Jitter when apply-
ing the proposed algorithm to task 7, 8, 9 and
10.

Figures 9 and 10 respectively show the response time and
jitter achieved for each individual task in this experiment.
Note that, the!-axis shows the task identification number,
where tasks are ordered by increasing period, so that task
number 1 is the one with the shortest period. In particular,
Figure 11 reports the jitter experienced by each task under
the proposed algorithm, showing the 95% confidence inter-
val around each average value.

As expected, the results show that restricting deadline
reduction only to a subset of sensitive tasks allows better
control of delay and jitter.

178

0 1 2 3 4 5 6 7 8 9 10 11
0

20

40

60

80

100

120

140
U = 0.9; C = [5−30]; epsilon=10−4; 1000 simulations

Task number

R
T

J

Figure 11. Confidence intervals (95%) of the
jitter measures achieved in the first experi-
ment under the proposed algorithm.

1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600
Delay comparison when applying New algorithm for all tasks

Task number

W
C

R
T

Plain
Scaled
New

U=0.9; C=(5−30); epsilon=10−4

Figure 12. Worst-case response times when
applying the proposed algorithm uniformly to
all the tasks.

Also note that reducing all task deadlines by the same
scaling factor (as done by the Scaled algorithm) has not a
significant effect on jitter reduction with respect to the Plain
scenario (where all deadlines are equal to the periods), thus
justifying the need for adopting selective reduction factors.

A second experiment has been carried out to compare
our algorithm against the uniform scaling algorithm [5]
when all relative deadlines are uniformly scaled by the same
reduction factor (Æ� � � for � � �� � � � � �
). We have ap-
plied both methods on the same task set taken for the first
experiment, using the same value of� (�
��).

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

350

400

450

500
Jitter comparison when applying New algorithm for all tasks

Task number

R
T

J

Plain
Scaled
New

U=0.9; C=(5−30); epsilon=10−4

Figure 13. Response Time Jitter when apply-
ing the proposed algorithm uniformly to all
the tasks.

0 1 2 3 4 5 6 7 8 9 10 11
0

20

40

60

80

100

120

140

160

180

200

220

240
U = 0.9; C = [5−30]; epsilon=10−4; 1000 simulations

Task number

R
T

J

Figure 14. Confidence intervals (95%) of the
jitter measures achieved in the second exper-
iment under the proposed algorithm.

As shown in Figures 12 and 13, our algorithm performs
almost the same as the uniform scaling algorithm for tasks
with short periods, whereas it performs slightly better for
tasks with longer periods. All values plotted in the graphs
represent the average over 1000 simulations, and the 95%
confidential intervals on the average jitter achieved under
the proposed algorithm are shown in Figure 14.

Finally, the performance of the proposed method has
also been compared against the plain EDF scheduler and
the scaled method when the task set has a lower utilization
equal to
 �
�
.

179

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250
Delay comparison when applying New algorithm for tasks 7, 8, 9, 10

Task number

W
C

R
T

Plain
Scaled
New

U=0.6; C=(5−30); epsilon = 10−4

Figure 15. Worst-case Response Time when
applying the proposed algorithm to task 7, 8,
9 and 10 (
 �
�
).

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

140

160

180

200
Jitter comparison when applying New algorithm for tasks 7, 8, 9, 10

Task number

R
T

J

Plain
Scaled
New

U=0.6; C=(5−30); epsilon = 10−4

Figure 16. Response Time Jitter when apply-
ing the proposed algorithm to task 7, 8, 9 and
10 (
 �
�
).

Figures 15 and 16 show the response time and jitter of
each tasks when applying the new algorithm to tasks 7, 8,
9, 10 only, whereas Figures 17 and 18 show the response
time and jitter of the tasks when applying the new algorithm
uniformly to all the tasks.

All the experiments confirm that the proposed approach
is able to reduce both delay and control jitter of specific
control tasks according to desired scaling factors and under
different load conditions. With respect to the plain EDF and
uniform scaling algorithm, the proposed algorithm is more
effective when the task set has a high utilization.

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250
Delay comparison when applying New algorithm for all tasks

Task number

W
C

R
T

Plain
Scaled
New

U=0.6; C=(5−30); epsilon = 10−4

Figure 17. Worst-case Response Time when
applying the proposed algorithm uniformly to
all the tasks (
 �
�
).

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

140

160

180

200
Jitter comparison when applying New algorithm for all tasks

Task number

R
T

J

Plain
Scaled
New

U=0.6; C=(5−30); epsilon = 10−4

Figure 18. Response Time Jitter when apply-
ing the proposed algorithm uniformly to all
the tasks (
 �
�
).

6 Conclusions

In this paper we presented a method for reducing the rel-
ative deadlines of a set of periodic tasks according to given
reduction factors,Æ� � �
� ��, denoting task sensitivity to
jitter and delay. A valueÆ� � � denotes high sensitivity to
delay and jitter, indicating that the task relative deadline can
be reduced as much as possible, up to the minimum possi-
ble value which guarantees the task schedulability, whereas
a valueÆ� �
 denotes no sensitivity, indicating that the task
relative deadline does not need to be modified.

180

Note that shortening the relative deadline decreases the
admissible execution interval of a task, affecting both its
response time and jitter.

Moreover, the proposed approach generalizes two other
methods presented in the real-time literature for jitter reduc-
tion: the deadline minimization algorithm, independently
developed by Hoang et al. [16] and by Balbastre et al. [5],
and the uniform deadline scaling method, proposed by Bal-
bastre et al. in the same paper. In fact, using the proposed
approach, the relative deadline of a single periodic task��
can be minimized simply by settingÆ� � � and all other
reduction factors to zero. Similarly, a uniform reduction of
all task deadlines can simply be achieved by setting all re-
duction factors to 1.

Experimental results confirm the effectiveness of the
proposed approach, showing that deadline reductions are
more significant when acting only on a subset of selected
tasks.

As a future work, we plan to investigate the issue also
under fixed priorities. Here, the deadline reduction algo-
rithm cannot be trivially extended, because changing rela-
tive deadlines may also affect the priority order, and hence
the feasibility test.

Acknowledgement

This work has been partly funded by the CERES re-
search profile grant from The Knowledge Foundation.

References

[1] K. J. Astrom and B. Wittenmark,Computer Controller
Systems: Theory and Design, Prentice-Hall, 1984.

[2] S. K. Baruah, R. R. Howell, and L. E. Rosier, “Al-
gorithms and Complexity Concerning the Preemptive
Scheduling of Periodic Real-Time Tasks on One Pro-
cessor,”Real-Time Systems, 2, 1990.

[3] S. K. Baruah, A. K. Mok, and L. E. Rosier, “Preemp-
tively Scheduling Hard-Real-Time Sporadic Tasks on
One Processor,”Proc. of the 11th IEEE Real-Time Sys-
tems Symposium, Orlando, FL, USA, Dec. 1990.

[4] S. Baruah, G. Buttazzo, S. Gorinsky, and G. Lipari,
“Scheduling Periodic Task Systems to Minimize Out-
put Jitter,” Proc. of the 6th IEEE International Con-
ference on Real-Time Computing Systems and Appli-
cations, Hong Kong, Dec. 1999.

[5] P. Balbastre, I. Ripoll, and A. Crespo, “Optimal Dead-
line Assignment for Periodic Real-Time Tasks in Dy-
namic Priority Systems,”Proc. of the 18th Euromi-
cro Conference on Real-Time Systems (ECRTS 2004),
Dresden, Germany, July 5-7, 2006.

[6] S. A. Brandt, S. A. Banachowski, C. Lin, and T. Bis-
son: “Dynamic Integrated Scheduling of Hard Real-
Time, Soft Real-Time and Non-Real-Time Processes,”
Proc. of the 24th IEEE Real-Time Systems Symposium,
Cancun, Mexico, USA, December 2003.

[7] G. Buttazzo and F. Sensini, “Optimal Deadline As-
sigment for Scheduling Soft Aperiodic Task in Hard
Real-Time Environments,”IEEE Transactions on
Computers, Vol. 48, No. 10, Oct. 1999.

[8] G. Buttazzo, M. Velasco, P. Marti, and G. Fohler,
“Managing Quality-of-Control Performance Under
Overload Conditions,”Proc. of the 16th Euromicro
Conference on Real-Time Systems (ECRTS 2004) ,
Catania, Italy, July 2004.

[9] G. Buttazzo. Hard Real-Time Computing Systems:
Predictable Scheduling Algorithms and Applications
- Second Edition, Springer, 2005.

[10] A. Cervin, “Integrated Control and Real-Time
Scheduling,” Doctoral Dissertation, ISRN
LUTFD2/TFRT-1065-SE, Department of Auto-
matic Control, Lund, Sweden, April 2003.

[11] A. Cervin, B. Lincoln, J. Eker, K.-E. Arzn, and G. C.
Buttazzo, “The Jitter Margin and Its Application in the
Design of Real-Time Control Systems,”Proceedings
of the 10th International Conference on Real-Time
and Embedded Computing Systems and Applications
(RTCSA 2004), Gothenburg, Sweden, August 25-27,
2004.

[12] M. Di Natale and J. Stankovic, “Scheduling Dis-
tributed Real-Time Tasks with Minimum Jitter,” IEEE
Transactions on Computers, Vol. 49, No. 4, pp. 303-
316, 2000.

[13] J. A. Stankovic, M. Spuri, K. Ramamritham, G. C.
Buttazzo,Deadline Scheduling for Real-Time Systems
- EDF and Related Algorithms. Kluwer Academic
Publishers, 1998.

[14] D. Ferrari and D. C. Verma, “A Scheme for Real-Time
Channel Establishement in Wide-Area Networks,”
IEEE Journal of Selected Areas in Communications,
Vol. 8, No. 3, pp. 368-379, Apr. 1990.

[15] P. Gai, L. Abeni, M. Giorgi, and G. Buttazzo, “A
New Kernel Approach for Modular Real-Time sys-
tems Development,”Proc. of the 13th IEEE Euromicro
Conference on Real-Time Systems, Delft, Netherlands,
June 2001.

181

[16] H. Hoang, G. Buttazzo, M. Jonsson, and S. Karlsson,
“Computing the Minimum EDF Feasible Deadline in
Periodic Systems,”Proceedings of the 12th IEEE In-
ternational Conference on Embedded and Real-Time
Computing Systems and Applications, Sydney, Aus-
tralia, August 2006.

[17] C. L. Liu and J. W. Layland, “Scheduling algorithms
for Multipprogramming in Hard Real-Time traffic en-
vironment,”Journal of the Association for Computing
Machinery, Vol. 20, No. 1, Jan. 1973.

[18] P. Marti, G. Fohler, K. Ramamritham, and J.M.
Fuertes, “Jitter Compensation for Real-time Control
Systems,”Proc. of the 22rd IEEE Real-Time System
Symposium, London, UK, December 2001.

[19] P. Marti, “Analysis and Design of Real-Time Control
Systems with Varying Control Timing Constraints,”
PhD Thesis, Department of Automatic Control, Tech-
nical University of Catalonia, Barcelona, Spain, July
2002.

[20] Q. Zheng and K. G. Shin, “On the Ability of Estab-
lishing Real-Time Chennals in Point-to-Point Packet-
Switched Networks,”IEEE Transactions on Commu-
nications, Vol. 42, No. 2/3/4, Feb./March/Apr. 1994.

182

Task Handler Based on (m,k)-firm Constraint Model for Managing a Set of

Real-Time Controllers

Jia Ning, Song YeQiong, Simonot-Lion Françoise
LORIA – Nancy Université

Campus Scientifique – BP 239
54506 – Vandoeuvre lès Nancy France

{Ning.Jia,song,Francoise.Simonot}@loria.fr

Abstract

In this paper, we study how to schedule a set of

real-time tasks where each task implements a control law.

These tasks share a limited computing resource. The set

of tasks can switch on line from one given configuration

to another one depending on the working modes of the

global application. This means that some tasks may

appear while other ones may be no longer activated and

that the WCET of some tasks may be modified. We

propose a scheduling architecture for the handling of

such task instances. At each mode switching, the task

handler consider the new task parameters; then it

determines on line a (m,k)-constraint based scheduling

strategy to apply to each task; this strategy aims to

selectively discard task instances so that the

schedulability of tasks is guaranteed and the overall

control performance is maintained at a high level.

1. Introduction

Let us consider an application composed of n physical

sub-systems. Each sub-system is controlled by one
dedicated controller that is implemented as a real-time
task responsible for carrying out the control law
computation for this sub-system. Therefore, a centralized
implementation of all the controllers raises the problem
of the schedulability of these n tasks. The tasks are
generally considered as hard real-time tasks
characterized by a fixed activation period (defined by the
sampling period of the sub-system outputs) and a known
worst-case execution times. Each instance of each task
has to respect a deadline by which it is expected to
complete its computation. However, due to the timing
non-determinism of control application (non constant
execution time, activation of new tasks, etc), using only
worst-case execution time generally results in over
sizing the necessary computing resource, and the overall
control performance may not be optimal in the sense that
they do not make a full use of the computing resource.
Furthermore, many control systems are quite robust
against variations in execution parameters such as a

number of sample losses or a given variation in sampling
period. Therefore, a scheduling approach that uses the
current system configuration information to correctly
adjust control task parameters in order to achieve higher
resource utilization and better control performance is
desirable.

The key to successful design of such a scheduling
approach is the co-design of the controller and the
resource management process which has attracted
considerable attentions. In [15], an algorithm was
proposed that selects the sampling periods for a set of
control tasks so that the overall control performance was
optimized under the schedulability constraints. The
authors suppose that the cost function of each
sub-system can be approximated by an exponential
function. Due to the high computational cost of the
algorithm, the proposed approach can only be used
off-line. An exact off-line approach for sampling period
selection was developed in [4] by supposing that the cost
function is convex. To make on-line use of the proposed
approach, the cost function is then supposed to be
possibly approximated by a quadratic function so that the
high computational costs can be reduced. In [3], a
feedback-feedforward scheduling approach was
proposed to improve the reaction speed of the feedback
scheduling approach developed in [4] to a change in the
computing resource load. Again, a linear function is
proposed to approximate the cost function.
For all these above mentioned approaches, the cost

functions of sub-systems are supposed convex (their
theories also hold for the case where all the cost
functions are concave) or can be approximated by a
convex function. However, this assumption is restrict. In
practice, one can not guarantee that the cost functions of
sub-systems in the application are all convex, and since
the cost functions of some control systems are not
convex nor concave, they can not be well approximated
by a convex function. Although it was shown in [1] that
for some control systems, the cost function is quadratic
for small sampling intervals, but the restriction on the
choice of sampling period may lead to the
non-schedulability of some tasks and therefore to the

183

degradation of the overall control performance.
Furthermore, these approaches maintain the control
performance optimality and control task schedulability
by the regulation of the sampling periods of sub-systems.
However, changing the period of a task may necessitate a
change in the periods of related tasks as task periods are
often carefully selected for an efficient exchange of
information between relative tasks; in addition, the
change in sampling period alters dynamics of the
sub-system and leads to an unavoidable additional study
for the approaches based on the regulation of the
sampling periods.

controller_3 Plant_3controller_2 Plant_2

actuators

sensors

Plant1
τ
1

(controller1)

processor

Scheduler

Task handler

reconfiguration

information

reconfiguration

basic control loops

Supervision

scheduling

parameters

Figure 1. Overall system architecture

In this work, we consider a system architecture as
shown in Figure 1. We suppose that a supervision
function of all the controlled plants is implemented in a
separate computer. The purpose of this function is to
detect when the plants have to be controlled in a
different way, meaning the change of control algorithm;
it detects also when a plant is no more needed to be
controlled or if a plant becomes operational and requires
therefore the activation of a controller. Thanks to this
supervision, the task handler can be notified when such a
system configuration change leads to a new task set.
Several controllers are implanted as real-time tasks in
one processor, and each of them controls a physical plant.
The number of control tasks and their execution times
may change over time, for example when the overall
system enters in a new working mode. At a system
configuration change, the task handler is activated and it
receives the information about these two execution
parameters of control tasks from supervision component.
Based on these information, it determines a set of
scheduling parameters and transfer them to the scheduler.
The scheduler then selectively discards the instances of
control tasks according to these execution parameters so
that the schedulability of control tasks is guaranteed and
the overall performance of control application is
maintained at a high level.
Specifically, the scheduling parameters transferred to

scheduler are (m,k)-firm constraints [13][14], which
indicate that the deadlines of at least m among any k
consecutive instances of a control task must be met,

where m and k are two positive integers withm k≤ (the
case where m=k is equivalent to the ideal case, which is
noted by (k,k)-firm). Since the discarded instances will
not be executing the control law, this tends to degrade
the control performance. However, if a control system is
designed to accept a control performance degradation
until k-m deadlines misses among k consecutive task
instances (this can be justified by the observation that
most control systems can tolerate misses of the control
law updates to a certain extent), the system can then be
conceived according to the (m,k)-firm approach to offer
the varied levels of control performance between
(k,k)-firm (ideal case) and (m,k)-firm (worst case) with
as many intermediate levels as the possible values
between k and m. This results in a control system with
graceful degradation of control performance.
The control performance can be described by

different performance criterion that could be cost
function, state error, maximum overshoot, settling time,
etc. The proposed scheduling solution does not make any
assumption on the type and property of control
performance function. That is, it will hold whatever the
control performance functions of sub-systems are all
convex or can be approximated by a convex function.
Furthermore, since the original sampling periods of
control tasks will not be changed at a system
configuration change, no period adaptation of the related
tasks will be needed and the dynamics of sub-system
will not be altered.
Notice that in [17][18], a scheduling algorithm is

presented, which uses feedback information about the
current workload in processor to regulate the deadline
miss-ratio for a set of tasks disregarding the specific
purpose of these tasks. Our approach aims to control the
scheduling of a set of tasks while taking into account the
fact that these tasks execute specific control laws. For
short in [17][18], the QoS is an objective while in our
proposal both QoS and QoC (quality of control) are
targeted. Therefore our strategy is also based on the
performance of the plant control. The scheduling
objective is to explicitly maintain the overall control
performance at a high level rather than maintain the
deadline miss-ration at certain level.
The paper is organized as follows. A survey of related

work is contained in section 2. Section 3 gives the task
model of the control application and the schedulability
analysis of control tasks under (m,k)-firm constraint. A
formal description of the problem is presented in section
4. Section 5 gives the heuristic algorithm for computing
the sub-optimal (m,k)-firm constraint for each control
task. A numerical example of the proposed scheduling
approach is presented in section 6. Finally, we
summarize our work and show the perspectives.

184

2. State of the art: (m,k)-firm model and its
use for control application

The previous work falls into two categories. The first
one is the field of real-time scheduling based on
(m,k)-firm constraint model.
In [14], a scheduling approach is presented for the

general (m,k)-firm constraint model. A simple algorithm
is used to partition the instances of each task in the
system into two sets: mandatory and optional. All
mandatory instances are scheduled according to their
fixed priorities, while all optional instances are assigned
the low priority. It follows that if all mandatory instances
meet their deadlines, the (m,k)-firm constraint is satisfied.
A sufficient and necessary condition for determining the
schedulability of the mandatory instances is also given.
In [13], it’s proved that in general case, the problem of
determining the schedulability of a set of tasks under
(m,k)-firm constraint is NP-hard. In [6], we show that if
the task instances are partitioned using the approach in
[14], the distribution in the instance sequence of the
mandatory instances corresponds to a mechanical word
[11]. A series of mathematical tools for the schedulability
analysis are also given using the theories of mechanical
word.
The second area of previous work is the analysis of

impact of (m,k)-firm constraint model on the control
performance of a single control system. In [7], we
presented a formal analysis that derived, for a
one-dimensional control system, the m and k values that
guarantees the control system stability. We also proposed
an approach for deriving the controller minimizing the
variance of the process state in order to minimize the
deterioration in the control system behavior due to the
control low update misses. This work is extended in [5]
and in [8] to a multiple dimension control system. We
showed, in [5] how to determine the maximum value of
k for a control system so that one can get as many varied
levels of control performance as possible subject to the
stability of control system. In [8], we gave a general
method to derive the optimal LQ-controller under
(m,k)-firm constraint, and based on the works in [6], we
showed that for a single control task under a given
(m,k)-firm constraint, the control performance of the
corresponding control system is sub-optimal if the task
instances are partitioned and scheduled using the
scheduling approach in [14].

3. Task Model and Schedulability

In this section, we first give the task model of the
real-time control application under study. Then, a
sufficient condition for determining of schedulability of
tasks set is given.

3.1 Task Model
Let an application be composed of n periodic control

tasks, τ1 τ2 .. τn, arranged in decreased order of their
priorities. The following timing parameters are defined
for each task τi:

� Ti: the time interval between two consecutive
instances of τi, referred to as its period;

� Ci: the maximum time needed for completing the
execution of each instance of τi, referred to as its
execution time;

� Di: the deadline of each instance of τI; we consider
that the deadline is equal to the period of the task;

� mi and ki: the (m,k)-firm constraint for τi with mi ≤

ki; it means that at least the deadlines of mi out of ki
consecutive instances of the task must be met.

Furthermore, we assume that the algorithms of the
control laws are independent in the sense that they do not
share any resources except the processor; therefore the
control tasks are assumed to be preemptive.

3.2 Schedulability under (m,k)-firm Constraint
The problem of determining the schedulability of a

set of tasks under (m,k)-firm constraints has been proved
in [13] to be NP-hard; however, when the tasks are
scheduled using the algorithm proposed in [14], the
schedulability of tasks can be explicitly judged.
Furthermore, as stated formerly, if the instances of a
control task under a given (m,k)-firm constraint are
partitioned and scheduled by the scheduling approach in
[14], the control performance of the corresponding
control system is sub-optimal. Therefore we adopt in this
work the scheduling algorithm proposed in [14] for the
scheduling of the set of control tasks.
Concretely, the instances of each task are partitioned

into two sets: the mandatory instances and the optional
instances. The problem is to determine for given m and k
which instances in a sequence of instances are mandatory.
We propose in [6] to fit the distribution of mandatory
instances using theory of mechanical word. Under this
approach, an instance of τi, activated at time aTi, for a =
0,1,… is classified as mandatory if the following
condition is verified

i i

i i

am k
a

k m

  
=   

  

 (1)

and as optional, otherwise. For example, if τi is under
(3,5)-firm constraint, the condition (1) is verified for
a=0+αk, 1+αk and 3+αk (α∈N) and not verified for
a=2+αk and 4+αk. Therefore the instances activated at
0,1,3,5, etc are mandatory while those activated 2,4,7,
etc are optional. Notice that using the classification
equation (1), there are exactly m mandatory instances
and k-m optional instances among any k consecutive
instances, and the mandatory instances are uniformly
distributed in the instance sequence. The reader
interested in could refer to [6] for a more detail
information about the task instance classification theory.

185

The control tasks are scheduled using the fixed
priority policy. The mandatory instances of all the tasks
are assigned the rate-monotonic priorities [10]. That is,
the mandatory instances of τi are assigned a higher
priority than the mandatory instances of τj if Ti<Tj. The
optional instances are assigned the lowest priority.
A sufficient and necessary schedulability condition

for the above scheduling strategy is given in [14].
However, the condition contains a timing
non-deterministic term, this prevents it from a
application in our optimization routine presented below.
We therefore give a sufficient schedulability condition:

Theorem 1. Given a task set (τ1, τ2…τn) such that
T1<T2< ..<Tn. Let:

j i
ij

j j

m T
n

k T

  
=   

    

 (2)

If
1

1

i

i ij j i

j

C n C T
−

=

+ ≤∑ for all 1 ≤ i ≤ n, then the

(mi, ki)-firm constraint of each task τi is satisfied.

Proof. In [6], we proved that the task instance partition
algorithm results in the most mandatory instances from
[0, t] compared with those in any other interval of the
same length t. Therefore, to analyze the schedulability of
a set of tasks, it’s enough to study if the first instance of
each task respects its deadline. From [6], we know that
(2) gives the number of the mandatory instances of task

τj before instant Ti, therefore, if
1

1

/ 1
i

i j j i

j

C n C T
−

=

 
 + ≤
 
 

∑ ,

then the first instance of τi will complete prior to its
deadline. The theorem follows if the results holds for all
i. □
Note that the above schedulability condition is

sufficient and necessary if the period of a task is multiple
of the periods of all the lower priority tasks. In the other
case, it degenerates to a sufficient condition.

4. Problem Formulation and scheduling
architecture

Recall that we consider a real time control application
composed of several control tasks that share the same
processor. It’s assumed that the control tasks in the
application can switch between different modes. Going
from one mode to another mode can lead to consider
another task set configuration: the execution time can be
different for some tasks, control tasks can be shutdown
and new control tasks can be activated. We aim to
implement a task handler that, at each change in the task
set configuration, guarantees the schedulability of
control tasks and keeps the overall control performance
at a high level.
Based on the results in [5], we suppose that the value

of ki of each τi has been carefully chosen and is constant

for each mode. The value of mi is dynamically chosen in
[1 .. ki] on line. Specifically, for each control task τi, each
possible mi is associated with a level of control
performance vij. We assume that a larger vij corresponds
to a better control performance. As we do not make any
assumption on the control performance property, the
control performance is not necessarily improved when
the value of mi is increased [5]. Furthermore, theorem 1
shows that the increase of the value of mi may increase
the resource requirement. From task scheduling point of
view, there is no reason to select a larger value for mi
with lower control performance. Therefore, only the
values of mi which give a better control performance are
considered.
So, let us consider that mi can take li different values,

noted as mij for j∈ [1.. li] where li ≤ ki. These values are
arranged in increasing order, that is if j′ < j′′, then
mij′ < mij′′ and therefore vij′ < vij′′. The aim of the task
handler is to find, for each τi, a value mij for j∈ [1.. li] so
that the sum of vij for i∈ [1.. n] is maximized, and the
schedulability of control tasks is guaranteed. This is
formulated as the following optimization problem:

to determine the sequence 1 2, ,..,
ii i ilx x x for each task

τi, i=1,..,n

 that maximizes
1 1

iln

ij ij

i j

x v
= =

∑∑ (3)

 with { }
1

0,1 , 1, 1,.., , 1,..,
il

ij ij i

j

x x i n j l
=

∈ = = =∑

 and such that

1

1

1

, 1,.., ,

il

jp jpi
p i

i j i

j j j

x m
T

C C T i n
k T

−
=

=

 
  
 + ≤ = 
    
  

∑
∑ (4)

If the control performance is represented by the
control cost (LQ cost for example), then a smaller vij
gives a better control performance. The optimization
problem thus becomes a minimization problem.
However, it can be easily transformed as a maximization
problem by take the additive inverse of vij for each τi.

h

processor

Scheduler

Task handler

(m,k)-firm

constraints

τ
1

(controller1)
τ
n

(controller n)
τ
2

(controller2)
 …

List of activated tasks,
execution time Ci of
each task

vij for each
task τ

i
 and

(m
ij
, k

ij
)-firm

constraint

Figure 2. scheduling architecture

186

The scheduling architecture is given in Figure 2,
which is a close-up of figure 1. At a task set
configuration change, the task handler receives the
information about the number of tasks sharing the
processor and the actual execution time Ci of each task,
and deduces the new (mi,ki)-firm constraint for each
control task by resolving the optimization problem (3).
The scheduler then schedules the tasks according to
these (m,k)-firm constraints.
The control performance level vij corresponding to a

(mij,kij)-firm constraint for task τi can be determined
on-line or off-line. However, this determination is very
time-consuming for some control performance criterion
(e.g. the control performance criterion used in [8]). For
this reason, The control performance level vij are
calculated off-line and arranged in a table that is
consulted by the task handler when solving the problem
(3).

5. Performance Optimization

In this section, we first show that the optimization
problem (3) is a NP-hard problem, then, based on the
algorithm proposed in [9], a computationally cheaper
heuristic algorithm is proposed for finding a sub-optimal
solution.

5.1 Solution of the Optimization Problem
The optimization problem enounced in (3) is qualified

as the multiple-choice multi-dimension knapsack
problem (MMKP) which is defined as following:
Suppose there are n groups (stacks) of items. Group i

has li items. Item j of group i has value vij, and requires
resources given by vector rij=(rij1,rij2,..,rijm). The amounts
of available resources are given by R=(R1,R2,..,Rm). The
MMKP is to pick exactly one item from each group in
order to maximize the total value of the pick, subject to
the resource constraints. Formally, the MMKP is
expressed as follows:

1 1

maximize
iln

ij ij

i j

x v
= =

∑∑

such that

1 1

,
iln

ij ij k

i j

x r R
= =

≤∑∑ k = 1,..,m,

{ }
1

0,1 , 1, 1,.., , 1,..,
il

ij ij i

j

x x i n j l
=

∈ = = =∑

MMKP is one of the harder variants of the 0-1
knapsack problem [12][16]. The problem is proved to be
NP-hard problem. Hence algorithms for finding the exact
solution of MMDP are not suitable for application in real
time decision-making application.
A computationally cheaper heuristic algorithm (HEU)

for MMKP is presented in [9]. For our optimization
problem, the proposed algorithm is to find a feasible
solution at first, that is, select mij for each τi while

satisfying the constraints enounced in (4), and then
iteratively improve the solution by replacing, for each τi,
mij by a 'ij

m corresponding to a better performance

'ij
v while keeping the constraints (4) satisfied. If no such

solution can be found, the algorithm tries an iterative
improvement of the solution which first replaces mij for a
task τi which is not schedulable with the value mij
(constraint (4) violated), and then replace

'i j
m of 'i

τ for

all i≠i’ with
' 'i j

m corresponding to a worse

performance
' 'i j
v . The iteration finishes when no feasible

solution can be find. It’s shown in [9] that the algorithm
HEU is efficient (the solution given by the algorithm is
within 6% of the optimal value) and suitable for an
on-line use for real-time application (the computation
time is less than one millisecond if the number of tasks
does not exceed 30 on a 700 MHz Pentium III
processor).
As in our problem setup, the values mij and vij for j∈

[1.. li] are arranged in increasing order for each τi,
therefore in contrast with HEU in which an infeasible
solution may be selected at first and iterations are needed
to make it feasible, we modify HEU by always picking
the lowest value of mi of each τi at first (if the solution is
infeasible in this case, no other solution will be feasible).
Furthermore, the algorithm HEU tries to find, after the
first step, a better solution requiring less resource
consummation which, however, does not exist in our
model (augmentation of m increases the processor
utilization), therefore this property also help us to delete
a unprofitable researching procedure in HEU. These
modifications can reduce the execution time of the
algorithm. The modified algorithm is presented in
Algorithm 1.
In this algorithm, replacing mij by 'ij

m is called an

exchange. An exchange giving a better overall control
performance is called upgrade while an exchange
degrading the overall control performance is called
downgrade. An exchange is called feasible if the solution
after the exchange is feasible, otherwise it is called
infeasible.

Algorithm 1. Algorithm for finding the value of the

parameter m of (m,k)-firm constraint for all tasks

// Symbols and formalization:
// n : number of the tasks

// mi and ki: the (mi,ki)-firm constraint of task τi
// li : number of the possible values for mi
// mij: the j

th possible value of mi

//Ti: period of task τi; Ci : execution time of task τi
// 1 2 = (, ,..,)nρ ρ ρ ρ denotes the current solution, where τi

gives the index of the value of mi in [1..li]

// ρ|Z: solution vector after exchange Z from ρ
// L: current resource requirement vector

187

// U(ρ) : total control performance with the solution vector ρ,

with
1

()
i

n

i

i

U v ρρ
=

=∑

// X = (i,j) denotes an exchange where the mij is selected
instead of

iim ρ

1. Start with a feasible solution.

Set 1iρ = for all []1,..,i n∈ .

Compute
1

1
1 2

2
1

1
1

1

j

j

j j j

n
j n

n j

j j j

C

m T
C C

k T
L

m T
C C

k T

=

−

=

 
 

   
+    

     
=  
 
   
 +   
      

∑

∑

M

Find α such that
1,2,..

/ max i

i n i

L
L T

T
α α

=
= .

if / 1L Tα α ≤ , go to step 2, else exit the procedure with

“no feasible solution”.

2. Iterative improvement using feasible upgrades.

Define

()
1

, ,

i

n
i ijl l

i i l

l i i i i i

m mT T
C C L

k T k T
i j

L

ρ

α ρ
= +

       
−               ∆ =

∑

and

()
()

, ,
, ,

ii ijv v
p i j

i j

ρ
ρ

α ρ

−
∆ =

∆

Find feasible upgrade ' (,)X δ η= that maximizes

(), ,p i jρ∆ .

If X′ is found and (), , 0p i jρ∆ > , set r = (r|X’) and

repeat step 2.

3. Iterative improvement using upgrades followed by one

or more downgrade(s).

3.1

Define

()
1

, ,

ii ijl l
i i

n i i i i

l i
l l

m mT T
C C

k T k T
t i j

T L

ρ

ρ
= +

      
−      

      ∆ =
−

∑

and

()
()

' , ,
, ,

ii ijv v
p i j

t i j

ρ
ρ

ρ

−
∆ =

∆

Find an upgrade (', ')Y δ η= maximizing ()' , ,p i jρ∆ ,

set ()' Yρ ρ=

3.2

Define

()
1

' , ,

ii ijl l
i i

n i i i i

l i
l

m mT T
C C

k T k T
t i j

L

ρ

ρ
= +

      
−      

      ∆ =∑

and

()
()

'' , ,
' , ,

ii ijv v
p i j

t i j

ρ
ρ

ρ

−
∆ =

∆

Find a downgrade ' ('', '')Y δ η= maximizing

()'' ', ,p i jρ∆ such that () ()' 'U Y Uρ ρ> .

If Y′ is found and ()' 'Yρ is feasible, set ()' 'Yρ ρ=

and go to step 2.
If Y′ is found and ()' 'Yρ is not feasible, set

()' ' 'Yρ ρ= and go to step 3.2.

5.2 Complexity analysis of Algorithm 1
As stated [9], we suppose l1=…=ln for simplifying of

the complexity analysis. In the first step, the solution is
set directly to be ρ=(1,1,..,1) which allows to reduce the
computational complexity of the step 1 to O(n2) instead
of O(n2(l-1)2(n-1)) in HEU. In the other steps, the
modification that we proposed doesn’t change their
worst-case computational complexities in the original
algorithm that are O(n2(l-1)2(n-1)). As it is mentioned in
[9], the combined complexity of steps 1 and 2 gives the
computational behavior of the algorithm, the worst-case
computational complexity of the algorithm 1 is thus
O(n2(l-1)2(n-1)).

6. Numerical Example

In this section, we present a numerical example to
illustrate the proposed scheduling approach. We consider
a cart-control system whose objective is to control the
position of a cart along a rail according to a position
reference. We study the problem of simultaneously
controlling four cart systems, Cart1, Cart2, Cart3, Cart4.
To illustrate the benefit of our approach, both the
traditional scheduling approach and ours are evaluated.

6.1 Plants and Controllers

The continuous model of the cart system is given by:

0 1 0

11.4662 1.7434
0

cdx xdt udt dv

M M

   
   = + +−   
      

where M is the mass of the cart; vc is the process noise

with incremental covariance
1

3.24 -1.8
=
-1.8 1cR
 
 
 

. The

four cart systems, Cart1, Cart2, Cart3, Cart4 have
different masses: M1 = 1.5, M2 = 1.2, M3 = 0.9, M4 =

0.6, given in kg. In the following, the controller of Carti
is denoted Controlleri. Its sampling periods (second) is hi
(resp. 0.007, 0.0085, 0.01, 0.0115).

188

The control performance is measured using a
quadratic cost criterion:

()0

1
lim () () () ()

N
T T

N
J E x t Qx t u t Ru t dt

N→∞
= +∫ (5)

where

1 0

0 0
Q

 
=  
 

 and R=0.00006

The value of k for each cart system is chosen using
the approach proposed in [5] to guarantee the system
stability. In [5], we identified that the maximum value of
k calculated for Cart1 and Cart2 (masses 1.5kg and 1.2kg)
is greater than 10; nevertheless, in this paper, we
consider, for an easier demonstration, values of k that are
less than 10 and for which, the systems remain stable.
Furthermore, note that since the tasks are assigned the
rate-monotonic priority, the task with the largest period
has the lowest priority, its execution has no influence on
the other tasks. Therefore the task will be executed
without task instance drop, or in other words, it is
executed under (k,k)-firm constraint. So the value of k
for Cart4 has no use. Finally, the parameters k for the
other Cart1, Cart2 and Cart3 are: k = [5,8,10]. For each
cart system, the value of m may vary within [1..k].
The parameters of LQ-controller that minimizes the

quadratic cost criterion (5) and the minimum cost
obtained for each possible (m,k)-firm constraint are
calculated using the approach presented in [8]. When the
(m,k)-firm constraint is changed for a task during
running time, the controller parameters are replaced by
the ones corresponding to the new (m,k)-firm constraint.
To allow for fast changes between different (m,k)-firm
constraints, the parameters are calculated off-line for
each (m,k)-firm constraint and stored in a table.

6.2 Experiment Setup
The simulation model is created using

MATLAB/Simulink and the TrueTime toolbox [2].
The execution time of each control task is

approximately 3 ms, and that of the task handler varies
with the amount of tasks and the value of k for each tasks.
For this example, the execution time of task handler is
fixed as 2.5 ms. The task handler is assigned the highest
priority, and the priorities of control tasks are assigned
according to the rate-monotonic period assignment
policy.
During the simulation, the release time of a task is

always set to be the current release time plus the task
period. Therefore, for a task, if a instance misses its
deadlines, the release time of the following instance will
have a release time back in time.
The experiment is done for both traditional

scheduling approach which schedules the task instances
without taking into account the processor overload and
ours. At t = 0, Controller1 and Controller2 are on, while
Controller3 and Controller4 are off. At t=1, Controller4

switches on, and at t=2, Controller3 also switches on. At
starting of each controller, a position reference (0.5 cm
from current position) is entered to each controller.
The accumulated cost for Controlleri is used to

measure the performance of a controller, which is given
by:

0
() () () () ()

t
T T

iJ t x s Qx s u s Ru s ds= +∫ (6)

The cost (6) is calculated at each time instant. A good
control performance is therefore represented by a smooth
increase in cost.
Finally, for comparing the scheduling results obtained

with different scheduling approaches, the four plants are
subjected to identical sequence of process noise in the
two scheduling cases.

6.3 Simulation results
The simulation results in the two different scheduling

approach are presented and discussed below.

6.3.1 Traditional scheduling approach

The accumulated costs of each controller (J1, J2,
J3,J4) are shown in Figure 3. The close-up of schedule at
t=1 and t=2 are shown in Figure 4 and Figure 5.

Figure 3. Accumulated costs under
traditional scheduling

Figure 4. Close-up of schedule at t=1 under
traditional scheduling

189

Figure 5. Close-up of schedule at t=2 under
traditional scheduling

We will comment below the system evaluations
represented on these figures. In figures 4 and 5, the state
of each task is given. For each task, the state can take 3
values as represented in figure 6: Running statePreempted stateWaiting state t1 t3 t4 t6 tt2 t5

Figure 6. Task state representation

1. Running : being executed by the processor (e.g.
state between t2 and t3, t4 and t5);

2. Preempted : the execution is preempted by other
task (e.g. between t1 and t2, t5 and t6);

3. Waiting: the task waits for an activation : (e.g. state
before t1, between t3 and t4, after t6).

The arrows indicate the arrivals of task instances.
Arrows with a solid point represent arrivals of task
instances that miss their deadline.
During the observation, τ1 and τ2 are scheduled

without any deadline violation. The accumulated costs
increase steadily and the two systems perform well.
At t=1, τ4 starts to execute. Under the preemption due

to the execution of τ1 and τ2, the deadline of τ4 is
violated. However, the control performance is acceptable
before the activation of τ3 (at t=2) since the task
instances are executed although their deadlines are all
missed.
At t=2, τ3 is turned on. Together with τ1 and τ2, the

preemption due to these tasks makes the execution of τ4
impossible. As a result, the cart system Cart4 becomes
instable (see J4 in figure 3 for t > 2). Note that despite
the execution preemption due to τ1 and τ2, the
performance of Controller3 does not decrease rapidly as
for τ4 because the task instances are executed although
their deadlines are all missed.

6.3.2 Scheduling approach with (m,k)-firm constraint

regulation

The simulation results obtained with the proposed
approach are given in this subsection.

Figure 7. Accumulated costs under
proposed scheduling approach

The accumulated costs for the four controllers are
shown in Figure 7. The close-up of schedule at t=1 and
t=2 are shown in Figure 8 and Figure 9. The signification
of signs are the same as for the traditional scheduling
case. Furthermore, the grey arrows mean that the task
instances activated at the indicated instants are classified
as optional instances and therefore they are not executed.

Figure 8. Close-up of schedule at t=1 under
proposed scheduling approach

Figure 9. Close-up of schedule at t=2 under
proposed scheduling approach

190

At the system starting, only τ1, and τ2 are activated.
Their (m,k)-firm constraint are (k,k). Then, the system
configuration change is detected at t=1 and the task
handler is immediately activated. At t=1.025, the
(m,k)-firm constraint of τ2 are adjusted to (4,8)-firm
constraint, and that of τ1 is remained as (k,k). The
overload condition is therefore avoided. The same thing
is repeated at t=2, the (m,k)-firm constraints of the task
τ1, τ2, τ3 are adjusted to respectively (2,5), (4,8), and
(3,10)-firm constraint; τ4 is under (k, k)-firm constraint
(see end of section 6.1). Note that the task deadline
violations after the (m,k)-firm constraint adjustments in
the two figures are due to the transient overload,
however, the overload condition is removed rapidly.

Compared with the traditional scheduling approach,
the controllers perform much better. The Controller4 is
stable and the control costs for Controller3 and
Controller4 do not exceed 300 at t=5.

7. Conclusion

A scheduling architecture based on the (m,k)-firm
constraint model is proposed. When a change in system
configuration is detected, the task handler determines a
strategy for selectively discarding task instances for each
control task so that the schedulability of control tasks is
guaranteed and the overall control performance is
maintained at a high level.
Compared with formerly defined feedback scheduling

approaches for control tasks, the proposed solution does
not depend on the type and property of the control
performance. That is, whatever the functions describing
the control performance are convex, the proposed
approach can always keep the overall control
performance at high level while guarantying the
schedulability of control tasks. Furthermore, at a system
configuration change, the proposed solution avoids the
change in the periods of related tasks, and does not alter
the dynamics of the sub-system.

References

[1] Aström, K. J., “On the choice of sampling rates in

optimal linear systems”, Technical Report RJ-243, San

José Research Laboratory, IBM, San José, California.

[2] Cervin, A., Eker, J., Bernhardsson. B., and Årzén, K.-E.,

"Feedback feedforward scheduling of control tasks,"

Real-Time System., vol. 23, no. 1-2, pp. 25--53, 2002.

[3] Cervin, A., Henriksson, D., Lincoln, B., Eker, J., d Årzén,

K.-E., "How does control timing affect performance"

IEEE Control Systems Magazine, 23:3, pp. 16-30, June

2003

[4] Eker, J., Hagander, P., and Årzén, K.E., “A Feedback

Scheduler for Real-Time Controller Tasks”, Control

Engineering Practice, vol. 12, no.8, p. 1369-1378, 2000.

[5] Felicioni. F., Jia. N., Song. Y.Q and Simonot-Lion. F.,

“Impact of a (m,k)-firm data dropouts policy on the

quality of control”, 6th IEEE International Workshop on

Factory Communication Systems - WFCS’2006, Torino,

Italy, 2006.

[6] Jia, N., Hyon, E., Song, Y.Q., “Ordonnancement sous

contraintes (m,k)-firm et combinatoire des mots”, 13th

International Conference on Real-Time Systems,

RTS'2005, Paris, France, 2005.

[7] Jia, N., Song, Y.Q., and Lin, R.Z., “Analysis of

networked control system with packet drops governed by

(m,k)-firm constraint”. Proc of the 6th IFAC

international conference on fieldbus systems and their

applications (FeT'2005), Puebla Mexico, 2005.

[8] Jia, N., Song, Y.Q., and Simonot-Lion, F., “Optimal

LQ-controller design and data drop distribution under

(m,k)-firm constraint”, submitted to ECC’2007, available

as Technical report at LORIA.

[9] Khan, S., LI, K.F., Manning, E.G. and Akbar, M.

“Solving the knapsack problem for adaptive multimedia

systems”, Studia Informatica universalis, Vol. 2, No. 1,

pp. 157-178, 2002.

[10] Liu. C.L., and Layland. J.W., “Scheduling algorithm for

multi-programming in a hard real-time environment”,

J.ACM, vol. 20, pp.46-61, 1973.

[11] Lothaire., M. “Algebraic Combinatorics on Words”,

Cambridge University Press, 2002.

[12] Pisinger, D., “Algorithms for Knapsack Problems”, Ph.D.

thesis, DIKU, University of Copenhagen, Report 95/1,

1995.

[13] Quan, G., and Hu, X., “Enhanced Fixed-priority

Scheduling with (m,k)-firm Guarantee ”, Proc. Of 21st

IEEE Real-Time Systems Symposium, pp.79-88, Orlando,

Florida, USA, 2000.

[14] Ramanathan, P., “Overload management in Real-Time

control applications using (m,k)-firm guarantee “, IEEE

Transactions on Parallel and Distributed Systems, vol.

10, no. 6, pp. 549-559, 1999.

[15] Seto, D., Lehoczkyn, J. P., Sha, L. and Shin, K. G., “On

task schedulability in real-time control systems”,

Proceedings of the 17th IEEE Real-Time Systems

Symposium, pp. 13-21, Washington, DC, USA, 1996.

[16] Silvano Martello, Paolo Toth (1990). Knapsack
Problems: Algorithms and Computer Implementations.

John Wiley & Sons. ISBN 0-471-92420-2, 1990.

[17] Stankovic, J., Lu, C., Son, S. H., and Tao, G. “The case
for feedback control real-time scheduling” In

Proceedings of the 11th Euromicro Conference on

Real-Time Systems, pp. 11-20.

[18] Stankovic, J., He, Tian., Abdelzaher, Tarek F., Marley,

Mike., Tao, Gang., Son, Sang H and Lu Chenyang.

“Feedback Control Scheduling in Distributed Systems”.

In 22nd IEEE Real-Time Systems Symposium(RTSS

2001), December 2001.

191

192

 RTNS’07 – Session 6

 Networks and

distributed systems

193

194

Interface Design for Real-Time Smart Transducer Networks – Examining
COSMIC, LIN, and TTP/A as Case Study

Wilfried Elmenreich Hubert Piontek Jörg Kaiser
Institute of Computer Engineering Dep. of Embedded Systems/RT Systems Institut für Verteilte Systeme

Technische Universität Wien Universität Ulm Universität Magdeburg
Austria Germany Germany

wil@vmars.tuwien.ac.at hubert.piontek@uni-ulm.de kaiser@ivs.cs.uni-magdeburg.de

Abstract – This paper analyzes and discusses the interface
models of the three real-time smart transducer networks
COSMIC, LIN, and TTP/A.

The COSMIC architecture follows a publish/subscribe
model, where the producing smart devices broadcast their
event data on the basis of a push paradigm. Subscribers
receive data in form of a message-based interface.

LIN follows a strict pull principle where each message
from a device node is requested by a respective message
from a master. Applications have a message-based inter-
face in order to receive and transmit data.

The nodes in a TTP/A network derive its sending in-
stants from predefined instants in time. TTP/A maps com-
municated data into an Interface File System (IFS) that
forms a distributed shared memory.

1 Introduction

The availability of cheap microcontrollers and network
solutions has enabled distributed architectures with net-
worked smart transducer devices. The hardware for a
smart transducer consists of a physical sensor or actu-
ator, a microcontroller or FPGA with on-chip memory
and analog I/O, and a network interface. The software in
the microcontroller contains transducer-specific routines,
like de-noising, linearization, and feature extraction, and
a communication protocol establishing a standardized in-
terface to the smart transducer. This interface provides ac-
cess to the transducer values, like sensor measurements or
actuator set values, as well as configuration and manage-
ment data (calibration data, error logs, etc.). In order to
support an automatic (plug-and-play) or semi-automatic
configuration, a smart transducer may also host an elec-
tronic description, i. e., a machine-readable datasheet de-
scribing its features and interfaces.

Real-time and bandwidth requirements make the de-
sign of an interface to a smart transducer a difficult task.
This paper addresses the specific requirements and is-
sues of interface design for smart transducers and exam-
ines three architectures for real-time smart transducer net-
works, i. e., the Cooperating SMart devices (COSMIC)
middleware, the Local Interconnect Network (LIN), and
the Time-Triggered Communication Protocol for SAE

class A applications (TTP/A).
The paper is structured as follows: Section 2 states the

basic concepts and requirements for smart transducer in-
terface design. Section 3 describes communication model,
interface design and node description approach for the
COSMIC middleware. Accordingly, Section 4 and Sec-
tion 5 examine the LIN and TTP/A approach. Section 6
elaborates common features and differences of the three
approaches. The paper is concluded in Section 7.

2 Interface Concepts

A smart transducer interface can be decomposed into
several sub-interfaces with different purposes and require-
ments [1]: The real-time (RT) service interface is required
for transmitting transducer data such as measurements or
set values. The configuration and planning (CP) interface
provides access to protocol-specific functions like new
node identification, obtaining electronic datasheets, and
configuration of communication schedules. The CP inter-
face is not time-critical. The diagnostics and management
(DM) interface is used for accessing sensor and actuator-
specific functions like monitoring, calibration, etc. The
DM interface is not time-critical, however, some monitor-
ing applications require timestamping.

In the following we discuss real-time requirements,
flow control and interaction design patterns which are
mostly relevant for the RT service. The DM interface has
different requirements and should not interfere with the
RT service.

2.1 Real-Time Requirements
There are different kinds of real-time requirements for

a distributed system of smart transducers. As a common
feature, there is always a deadline that specifies a point in
time when a specific action has to be completed.

Performing some action locally with respect to real
time, like generating a particular Pulse Width Modulation
(PWM) signal or making a measurement every 100 ms is
relatively easy to achieve if drift of the local clock source
is sufficiently low to provide a useful time base.

Timestamping events can be used to temporally re-
late measurements to each other. In order to create

195

timestamps with a global validity, a synchronized global
time is required among the participating nodes. In most
cases, clock synchronization has to be done periodically
in order to compensate for the drift of the local clocks.
Once a global time is established, timestamping does not
pose real-time requirements on the communication sys-
tem, since timestamped events can be locally stored.

Bounded maximum reaction time requires the commu-
nication system to deliver messages within a specified
time interval. Standard feedback control algorithms also
require low message jitter in order to work correctly.

Globally synchronized actions require the synchro-
nized generation of action triggers in different nodes. This
can be achieved by a multi-cast message or assigning ac-
tions to an instant on the globally synchronized time scale.

Moreover, a real-time requirement can be hard,
i. e., deadlines must be held under all circumstances or
soft, the system is still of use if deadlines are violated in-
frequently.

Many architectures implement a subset of the de-
scribed features or provide different features with hard or
soft real-time behavior. For example the LAAS architec-
ture [2] for component-based mobile robots specifies local
hard-real-time such as a locally closed control loop or the
instrumentation of an ultrasonic sensor, while at higher
levels, e. g., for globally synchronized actions it provides
only soft real-time behavior.

2.2 Models of Flow Control
Communication between subsystems takes place in the

time domain and the value domain. In the value domain,
the message data is exchanged, while in the time domain
control information is transmitted [3].

The communication partner that generates the control
information influences the temporal control flow of the
other communication partner(s). If a communication is
controlled by the sender’s request we speak of a push
model, if communication is requested by the receiver, we
speak of a pull model.

For explanation, let us assume that two or more subsys-
tems need to exchange data over a network. Further, with-
out restrictions to generality, we assume message data to
be transmitted from a producer to one or more consumers.
Different from the very popular client-server communica-
tion pattern it is necessary to support a one-to-many or
many-to-many communication pattern in smart transducer
networks because in the common case, the sensor readings
of a transducer is needed in more than one place in con-
trol applications. Therefore, all of considered networks
support this property, however, in different ways. In order
to transfer data between the subsystems, they must agree
on the mechanism to use and the direction of the transfer.

Figure 1 a) shows the push method. The producer
is empowered to generate and send its message sponta-
neously at any time and is therefore independent of the
consumer. This loose coupling enables independence be-
tween the supplier and consumers of information [4], [5],

a)

Producer

b)

Consumer

Producer

c)

Data flow

Producer

Control flow Control flow

Control flow

Push

Data flow

Control flow

Pull

Data flow

Global Time

Time-Triggered Communication Consumer

Consumer

Figure 1. Push-, Pull-, and Time-Triggered
Communication

but makes it difficult to enforce temporal predictability
in a purely event driven model. Without the option to
enforce further temporal constraints, the communication
system and the receiving push consumer have to be pre-
pared for data messages at any time, which may result
in high resource costs and difficult scheduling. Popular
“push” mechanisms are messages, interrupts, or writing
to a memory element [6]. The push-style communication
is the basic mechanism of event-triggered systems.

In the pull model depicted in Figure 1 b) the consumer
governs the flow control. Whenever the consumer wants
to access the message information, the producer has to re-
spond to the consumer’s request.. This facilitates the task
for the pull consumer, but the pull supplier (producer)
must be watchful for incoming data requests. Popular
“pull” mechanisms are polling or reading from a memory
element [6]. Pull-style communication is the basic mech-
anism of client-server systems.

Figure 1 c) depicts a communication model where the
flow control is derived from an external trigger. This can
be another physical system or the derivation of the triggers
from the progress of physical time. In the latter case, the
control signals are known a priori, which requires prede-
fined scheduling and error detection in the control domain.

2.3 Interaction Design Patterns
We distinguish three basic interaction design patterns

for network communication.
In a master/slave relationship, at any time one node is

considered the master while the other nodes are consid-
ered to be slaves. The master is able to issue synchroniza-
tion events or to start communications. All slave nodes
depend on one master, while the master is independent of
a particular slave.

In a client/server relationship, a client issues a request

196

to a server, which has to answer the request. The client
and the server are thus tightly coupled via a pull model.

In a publish/subscribe relationship, a publisher gener-
ates data using the push model. A number of nodes may
subscribe to a particular publisher but there is no control
flow from subscriber to publisher. Depending on the im-
plementation, a publisher may broadcast its data immedi-
ately, transmit its data to an intermediary broker, or trans-
mit its data via point-to-point connections to a list of sub-
scribers. Thus, the number of subscribers may influence
the time it takes for a publisher to publish its data.

An architecture may hide the communication model
by implementing a distributed shared memory on top of
the communication. This way, an application uses the
same interface to access data locally or remote. How-
ever, a memory interface does not transport control data,
e. g., in order to launch a particular task upon reception
of an event. Such functionality can either be achieved via
polling, but that requires an adequate poll frequency and
comes with a noticeable overhead [7] or solved via addi-
tional features like interrupt generation after update of a
specific data field.

2.4 Diagnostics and Management
While the RT interface provides only access to a lim-

ited data set consisting of the actual needed transducer
data, for debugging or monitoring purposes, additional
data about the operation of the transducer is of interest.

Transmission of these data typically is not time-critical,
but must not interfere with the RT service leading to an un-
wanted probe-effect [8]. Furthermore, monitored RT data
should either have time stamps or it must be transmitted
before a (typically soft) deadline.

2.5 Configuration and Planning
Large smart transducer systems require support by au-

tomatic setup facilities in order to keep up with the com-
plexity of setting parameters correctly. Therefore, smart
transducer system should be supported by a tool archi-
tecture enabling a plug-and-play-like integration of new
nodes.

We consider different configuration and planning sce-
narios:

In the replacement scenario, a broken node is to be ex-
changed by a new one of the same type. Therefore, the
new node has to be detected and a backup of the config-
uration of the broken node has to be uploaded. However,
specific parameters like calibration data will have to be
created anew.

In the initial set-up scenario, a set of nodes is config-
ured in order to execute a particular communication. This
action requires a system specification, and, in most cases,
a human operator to perform tasks that cannot be solved
automatically.

In the extension scenario, a distributed application is
extended by extra nodes in order to improve the perfor-
mance and possibilities of the system. In this case the

system managing the configuration must have knowledge
how to integrate new transducers in order to upgrade the
system. An example of such an approach is outlined in [9].

For the purpose of node identification and documen-
tation, a node is assigned a machine-readable description
describing the node’s features. Example for such descrip-
tions are the Transducer Electronic Datasheets of IEEE
1451.2 [10] or the Device Profiles in CANopen [11].

3 COSMIC

3.1 COSMIC communication abstractions

COSMIC is middleware which is designed for small
embedded systems, supporting heterogeneous networks
and cross network communication. It provides a publish/-
subscribe abstraction over different addressing and rout-
ing mechanisms as well as it considers different latency
properties of the underlying networks. COSMIC pro-
vides typed event messages (EM) identified by an event
UID which identifies the content of a message rather than
a source or destination address. Further, EMs have at-
tributes which define a temporal validity of the EM. It
should be noted that the term ”event” does not refer to a
specific synchrony class but just denotes a typed message.
As indicated previously, in a real–time embedded envi-
ronment the pure push model creates problems because
the consumers of the information must be ready to receive
and process this information at any time. This may lead to
situations where some of the messages are lost. There-
fore, COSMIC introduces the notion of event channels
(EC) which allow specifying temporal constraints and de-
livery guarantees of individual communication channels
explicitly. COSMIC supports three event channel classes:
A hard real-time event channel (HRTEC) offers deliv-
ery guarantees based on a time-triggered scheme. EMs
pushed to a soft real-time event channel (SRTEC) are
scheduled according to the earliest deadline first (EDF)
algorithm. The respective deadline is determined by
the temporal validity information in the attribute field
of the EM. Because soft real-time EMs which have al-
ready missed their transmission deadline may cause fur-
ther deadline misses of other soft real-time EMs, they
are discarded and the respective local application is no-
tified. The application then can decide about re-sending
in a lower real-time class or just skip it. Finally, a non
real-time event channel (NRTEC) disseminates events that
have no timeliness requirements.

ECs are established prior to communication allowing
the middleware to reserve the necessary resources and
perform the binding to the underlying mechanisms of the
communication network.

The COSMIC architecture is not bound to a particular
network. An implementation based on Controller Area
Network (CAN) [12] is described in the next section.

197

t

latest ready
time

latest start
time deadline

msg msg msg

max. waiting
time

max. transmission
time

min. gap due to
clock offsets

reserved time slot
now

reserved time slot

Figure 2. Structure of a time slot

3.2 COSMIC–on–CAN architecture
Implementing the event model requires to map the ab-

stractions of that model (publisher, subscriber, event chan-
nel, event instance) to the elements provided by the in-
frastructure of the communication system. The respec-
tive functionality to perform these mapping in COSMIC
is encapsulated in the Event Channel Handler which re-
sides in every node. Given the constraints in bandwidth
and in message length on CAN, the implementation of
events and event channels has to exploit the underlying
CAN mechanisms. To save the rare space in the message
body [13] and to reduce the inherent CAN message over-
head, significant information is also encoded via the CAN
ID.

The implementation is based on the extended 29 bit
CAN ID of the CAN 2.0 B specification. The 29-Bit CAN
identifier (CAN-ID) is structured into three fields, i. e., an
8 bit priority field used to prioritize messages according to
HRTEC, SRTEC, and NRTEC, a 7 bit node- ID ensuring
unique identifiers and a 14-Bit event tag. The assignment
of an event UID to an event tag is performed dynamically
by the COSMIC middleware infrastructure. A description
of this infrastructure and the respective binding protocol
is described in [14].

3.3 Enforcing temporal constraints in COSMIC
HRTECs provide delivery guarantees and use reserved

time slots in a Time Division Multiple Access (TDMA)
scheme organized in periodic rounds. The intention of
the reservation-based scheme is to avoid collisions by sta-
tically planning the transmission schedule. Hence, any
conflict between HRTECs is avoided. COSMIC is imple-
ments clock synchronization based on the algorithm pro-
posed in [15].

Because a CAN message cannot be preempted a non
hard real-time message transmission may delay a hard
real-time message by the maximum length of one CAN
message in the worst case. Furthermore, transient trans-
mission faults may increase the time needed to transmit
a hard real-time message. Therefore, a hard real-time
slot is extended according to Fig. 2. The protocol relies
on the fault–handling mechanisms of the standard CAN
which has an impact on the fault classes which we can
handle. For a message with b bytes of data, the maximum
length of the message including header and bit–stuffing
is: Lengthmessage = 75+ bb ·9.6c1. Under the assumption
of f single transmission failures, the required minimum
time–slot length is: slot length = 2 · tmessage +(tmessage +

1The factor 9.6 is because of the bit stuffing mechanism

18) · f +3bittimes. Assuming a single message failure of
an 8 Byte message at 1 Mbit/sec (msg transmission time:
151µsec, fault detection and retransmission 18µsec) and a
gap between the slots of 50µsec, approx. 1900 slots/sec
can be allocated. If it is necessary to tolerate a permanent
controller failure, this number drops down to an approxi-
mate number of 350 slots/sec. Compared to a maximum
throughput of about 6500 maximum length messages per
second, the number of possible HRT slots is low. How-
ever, these numbers refer to the number of guaranteed
HRTECs not to the number of messages which actually
can be sent. Unlike in pure time-triggered systems, the
CAN priority mechanism can be used to transmit SRT or
NRT messages in cases where a HRT message has been
received a message successfully by all operational nodes2.
Thus, time redundancy only costs bandwidth if faults re-
ally occur, which may be relatively rare compared to the
overall traffic. The priority-based arbitration mechanism
is also exploited to schedule SRTECs and NRTECs. HRT
messages always reserve the highest priority. The relation
between the priorities of HRT, SRT and NRT messages
can be expressed by the relation: PHRT < PSRT < PNRT (a
lower numerical value represents a higher priority). The
assignment enforces that a message of a lower real–time
class never will interfere with one of a higher class dur-
ing bus arbitration. We assume the highest priority (0)
for HRT messages and a small number of fixed low pri-
orities for NRT messages. The remaining priority levels
are available for scheduling SRT messages. They have to
be mapped on a time scale to express the temporal dis-
tance of a deadline. The closer the deadline, the higher
the priority. Mapping deadlines to priorities will cause the
problem that static priorities cannot express the properties
of a deadline, i.e. a point in time. A priority correspond-
ing to a deadline can only reflect this deadline in a static
set of messages. When time proceeds and new messages
become ready, a fixed priority mechanism cannot imple-
ment the deadline order any more. It is necessary to in-
crease the priorities of a message when time approaches
the deadline, i.e. with decreasing laxity.

3.4 Device Descriptions
COSMIC devices are described in an XML-based lan-

guage called CODES (COSMIC embedded DEvice Spec-
ification) [18]. The descriptions are structured into three
parts. Part one, General Information contains the node’s
name, its type, its manufacturer, its unique identifier, its
networking facilities, its supported event channel types,
recycling information, and a clear text description of the
device. This part also contains version information about
the component. The second part contains all event defin-
itions, i. e., the description of all events produced or con-
sumed by the device.

2There are situations of inconsistent replicas and even inconsistent
omissions (according to [16], inconsistent omissions occur with a proba-
bility in the order of 10−9). Kaiser and Livani [17] describe a transparent
mechanism to handle these situations.

198

For each event is described by a plain text tag and a
unique identifier. The event’s definition includes a list of
attributes giving non-functional details about the event,
e. g., the event’s expiration time. Whenever an event is
disseminated, it is sent as a compact message. This mes-
sage’s data structure is specified in the event definition.
For each field in the data structure, its name, data type and
byte order are included in the description. This informa-
tion can be used by tools to automatically create decoder
for a compact message. Fields representing a measure-
ment are annotated by the corresponding physical dimen-
sion in a machine-readable format. Non-measurement
fields are described by lists or state machines. Each field
may contain also attributes, e. g., the valid data range.
The last part contains the declaration of all event chan-
nels and their properties. Each event channel definition
contains the subject UID linking it to the respective event
definition, the class of event channel, the direction of the
event channel as seen locally, and again a list of attributes,
e. g., the channel’s period.

While the greater part of the description contains sta-
tic information, some elements are not suitable for inte-
gration into a static description document, e.g. the pe-
riod of an event channel, which certainly will vary de-
pending on the application. To overcome this problem,
parameterization was introduced. Any non–static ele-
ment can be marked as a parameter in the static descrip-
tion. The element’s actual value is then defined and stored
external to the static description. Parameters are stored
in path–value–pairs, similar to well–known name–value–
pairs. Instead of naming the parameter, it’s XPath expres-
sion within the static description acts as the identifier. A
scheme for mapping this structure down to a binary pa-
rameter storage scheme suitable for small devices exists.
Whenever the description is used, the parameters are in-
cluded beforehand. The query service (see below) is a
suitable place that will handle this inclusion in running
systems. Having each parameter’s path expression eases
the integration into the description document.

CODES descriptions play a central role for COSMIC
components. The life of a COSMIC component starts with
the description document created during the component’s
design phase. It is used during the following implementa-
tion phase to generate parts of the component’s code [18].
Black–box tests of the component can be assisted, e.g.
tests for timing behavior or testing the compliance of dis-
seminated events with their description in terms of the
data structure, value ranges, or precision. The descrip-
tions are further useful throughout the component’s life–
cycle: During the integration phase into a larger system,
a number of compatibility checks can be performed auto-
matically. Schedules for the HRT communication can be
derived from the respective set of descriptions. While the
component is in use, the ready availability of its descrip-
tion forms the basis for dynamic use of formerly unknown
components. Currently, this requires a priori knowledge
or the interaction with a user. In the long run, the integra-

tion of semantic web technology is planned to enable true
autonomous dynamic cooperation of components. When-
ever a system is in need of maintenance, the availability
of the descriptions is beneficial, too. They provide a quick
overview of the system, i.e. what components are avail-
able, and how they are configured.

The descriptions are stored within the devices them-
selves. They can be retrieved and queried at run–time:
On system start–up, and whenever a new component is
added to a system, an automatic configuration is neces-
sary for the component to be able to participate in com-
munication. During this configuration, the components’
descriptions and parameters are uploaded to the node run-
ning the event channel broker. This node also runs a query
service which makes the descriptions accessible from out-
side the system. The parameters are included in the sta-
tic part of the description, yielding a single document de-
scribing the current configuration of the components. Re-
quests to the query service are given as XSLT transforma-
tions [19]. The transformations are applied to the CODES
descriptions on the node running the query service, thus
enabling even rather low–power nodes to make use of the
query service. XSLT transformations represent a suitable
technology not only for the query service, but throughout
the different application areas of the CODES descriptions.
They are e.g. also used for code generation.

4 LIN

4.1 System Architecture
Each message in LIN is encapsulated in a single mes-

sage cycle. The message cycle is initiated by the master
and contains two parts, the frame header sent by the mas-
ter and the frame response, which encompasses the actual
message and a checksum field. The frame header contains
a sync brake (allowing the slave to recognize the begin-
ning of a new message), a sync field with a regular bit
pattern for clock synchronization and an identifier field
defining the content type and length of the frame response
message. The identifier is encoded by 6 bit and 2 bits for
protection. Figure 3 depicts the frame layout of a LIN
message cycle.

The frame response contains up to 8 data bytes and a
checksum byte. Since an addressed slave does not know a
priori when it has to send a message, the response time of
a slave is specified within a time window of 140% of the
nominal length of the response frame. This gives the node
some time to react on the master’s message request, for
example to perform a measurement on demand, but intro-
duces a noticeable message jitter for the frame response.

DataByte

Sync break message of 2,4, or 8 data bytesSync field Msg. identifier

0x00

t

...0x55 id DataByte chk

Frame header (from master) Frame response (from master or slave)

Figure 3. LIN frame format

199

The interaction between master and slave is a plain
pull mechanism, since the slaves only react on the frame
header from the master. It is the master’s task to issue
the respective frame headers for each message according
to a scheduling table. From a data-centric perspective,
the communication is defined by messages that are sub-
scribed by particular slaves for reception or transmission.
The configuration of the network must ensure that each
message has exactly one producer.

In 2003, LIN was enhanced by extra features leading
to the LIN 2.0 specification. New features introduced in
LIN 2.0 are an enhanced checksum, sporadic and event-
triggered communication frames, improved network man-
agement (status, diagnostics) according to ISO 14230-3
/ ISO 14229-1 standards, automatic baud rate detection,
standardized LIN product ID for each node, and an up-
dated configuration language to reflect the changes.

In addition to the unconditional frames (frames sent
whenever scheduled according to the schedule table) pro-
vided by LIN 1.3, LIN 2.0 introduces event-triggered
frames and sporadic frames.

Similar to unconditional frames, event-triggered
frames begin with the master task transmitting a frame
header. However, corresponding slave tasks only trans-
mit their frame response if the corresponding signal has
changed since the last transmission. Unlike unconditional
frames, multiple slave tasks can provide the frame re-
sponse to a single event-triggered frame, assuming that
not all signals have actually changed. In the case of two
or more slave tasks writing the same frame response, the
master node has to detect the collision and resolve it by se-
quentially polling (i.e., sending unconditional frames) the
involved slave nodes. Event-triggered frames were intro-
duced to improve the handling of rare-event data changes
by reducing the bus traffic overhead involved with sequen-
tial polling.

Sporadic frames follow a similar approach. They use
a reserved slot in the scheduling table, however, the mas-
ter task only generates a frame header when necessary,
i. e., when involved signals have changed their values.
As this single slot is usually shared by multiple sporadic
frames (assuming that not all of them are sent simultane-
ously), conflicts can occur. These conflicts are resolved
using a priority-based approach: frames with higher pri-
ority overrule those with lower priority.

In addition to signal-bearing messages, LIN 2.0 pro-
vides diagnostic messages. These messages use 2 re-
served identifiers (0x3c, 0x3d). Diagnostic messages use
a new format in their frame response called PDU (Packet
Data Unit). There are two different PDU types: requests
(issued by the client node) and responses (issued by the
server node).

The LIN 2.0 configuration mode is used to set up LIN
2.0 slave nodes in a cluster. Configuration requests use
SID values between 0xb0 and 0xb4. There is a set of
mandatory requests that all LIN 2.0 nodes have to imple-
ment as well as a set of optional requests. Mandatory re-

V
0 7 11 13 17

0

64

128

192

255
Signal

V_battery {
 logical_value, 0, "under voltage";
 physical_value, 1, 63, 0.0625, 7.0, "Volt";
 physical_value, 64, 191, 0.0104, 11.0, "Volt";
 physical_value, 192, 253, 0.0625, 13.0, "Volt";
 logical_value, 254, "over voltage";
 logical_value, 255, "invalid";
}

Figure 4. Example for a LIN signal definition

quests are:

• Assign Frame Identifier: This request can be used to set
a valid (protected) identifier for the specified frame.

• Read By Identifier: This request can be used to ob-
tain supplier identity and other properties from the ad-
dressed slave node.

Optional requests are:

• Assign NAD: Assigns a new address to the specified
node. Can be used to resolve address conflicts.

• Conditional Change NAD: Allows master node to de-
tect unknown slave nodes.

• Data Dump: Supplier specific (should be used with
care).

4.2 Device Descriptions
Each LIN 2.0 [20] node is accompanied by a node ca-

pability file (NCF). The NCF contains:

• The node’s name.

• General compatibility properties, e.g. the supported
protocol version, bit rates, and the LIN product iden-
tification. This unique number is also stored in the mi-
crocontroller’s ROM and links the actual device with its
NCF. It consists of three parts: supplier ID (assigned
to each supplier by the LIN Consortium), function ID
(assigned to each node by supplier), and variant field
(modified whenever the product is changed but its func-
tion is unaltered)

• Diagnostic properties, e.g. the minimum time between
a master request frame and the following slave response
frame.

• Frame definitions. All frames that are published or sub-
scribed by the node are declared. The declaration in-
cludes the name of the frame, its direction, the message
ID to be used, and the length of the frame in bytes. Op-
tionally, the minimum period and the maximum period
can be specified. Each frame may carry a number of sig-
nals. Therefore, the frame’s declaration also includes
the associated signals’ definitions. Each signal has a
name, and the following properties associated with it:
Init value specifies the value used from power on until
the first message from the publisher arrives. Size speci-
fies the signal’s size in bits. Offset specifies the position
within the frame. Encoding specifies the signal’s rep-

200

Design

System Defining
Tool

System
Generator

Node Capabillity Files

LIN Description
File

Debugging/
Emulation

System
Assembly

Bus analyser
and emulatorMasterSlave 3Slave 1 Slave 2

LIN bus

Figure 5. Development phases in LIN

resentation. The presentation may be given as a combi-
nation of the four choices logical value, physical value,
BCD value, or ASCII value. Declarations of physical
values include a valid value range (minimum and max-
imum), a scaling factor, and an offset. Optionally, this
can be accompanied by a textual description, mostly to
document the value’s physical unit. An example is given
in figure 4.

• Status management: This section specifies which pub-
lished signals are to be monitored by the master in order
to check if the slave is operating as expected.

• The free text section allows the inclusion of any help
text, or more detailed, user–readable description.

The node capability file is a text file. the syntax is simple
and similar to C. Properties are assigned using name =
value; pairs. Subelements are grouped together using
curly braces, equivalent to blocks in C.

LIN clusters are configured during the design stage us-
ing the LIN Configuration Language. This language is
used to create a LIN description file (LDF). The LDF de-
scribes the complete LIN network. The development of a
LIN cluster is partitioned into three phases (see figure 5).
During the design phase, individual NCFs are combined
to create the LDF. This process is called System Definition.
For nodes to be newly created, NCFs can be created either
manually or via the help of a development tool. From the
LDF, communication schedules, and low–level drivers for
all nodes in the cluster can be generated (System Genera-
tion). Based on the LDF, the LIN cluster can be emulated
and debugged during the Debugging and Node Emulation
phase. In the System Assembly phase, the final system is
assembled physically, and put to service.

In addition to the LIN configuration language and LDF,
which are the most important tools to design a LIN clus-
ter, the LIN specification defines a (mandatory) interface
to software device drivers written in C. Also, many tools
exist that can parse a LDF and generate driver modules by
themselves. The LIN C API provides a signal based in-
teraction between the application and the LIN core (core
API).

5 TTP/A

5.1 Communication System Architecture
The information transfer between a smart transducer

and its communication partners is achieved by sharing in-
formation that is contained in an internal interface file sys-
tem (IFS), which is situated in each smart transducer. The
IFS provides a unique address scheme for transducer data,
configuration data, self-describing information, and inter-
nal state reports of a smart transducer [1]. It also serves as
decoupling element, providing a push interface for pro-
ducers writing to the IFS and a pull interface for con-
sumers reading from the IFS. Each transducer can contain
up to 64 files in its IFS. An IFS file is an indexed array
of up to 256 records. A record has a fixed length of four
bytes. Every record of an IFS file has a unique hierar-
chical address (which also serves as the global name of
the record) consisting of the concatenation of the cluster
name, the logical node name, the file name, and the record
name.

A time-triggered sensor bus will perform a periodical
time-triggered communication by sending data from IFS
addresses to the fieldbus and writing received data to IFS
addresses at predefined points in time. Thus, the IFS is the
source and sink for all communication activities. Further-
more, the IFS acts as a temporal firewall that decouples
the local transducer application from the communication
activities.

Communication is organized into rounds consisting of
several TDMA slots. A slot is the unit for transmission of
one byte of data. Data bytes are transmitted in a standard
UART format. Each communication round is started by
the master with a so-called fireworks byte. The fireworks
byte defines the type of the round and is a reference sig-
nal for clock synchronization. The protocol supports eight
different firework bytes encoded in a message of one byte
using a redundant bit code supporting error detection.

Generally, there are two types of rounds:
Multipartner round: This round consists of a

configuration-dependent number of slots and an assigned
sender node for each slot. The configuration of a round
is defined in a data structure called “RODL” (ROund De-
scriptor List). The RODL defines which node transmits in
a certain slot, the operation in each individual slot, and the
receiving nodes of a slot. RODLs must be configured in
the slave nodes prior to the execution of the corresponding
multipartner round. An example for a multipartner round
is depicted in Figure 6.

FB Slot 1 Slot 2 Slot 1FBSlot n...
After last slot in

round slaves wait
for next fireworks

Slot 0
from Master

(Fireworks Byte)

...
tTTP/A round Inter round gap

Each slot is assigned
a sender and some
receivers a priori

Figure 6. TTP/A Multipartner Round

201

Master/slave round: A master/slave round is a special
round with a fixed layout that establishes a connection be-
tween the master and a particular slave for accessing data
of the node’s IFS, e. g., the RODL information. In a mas-
ter/slave round the master addresses a data record using a
hierarchical IFS address and specifies an action like read-
ing of, writing on, or executing that record.

The multipartner (MP) round establishes a real-time
communication service with predefined access patterns.
Master/slave (MS) rounds are scheduled periodically be-
tween multipartner rounds, whereas the most commonly
used scheduling scheme consists of MP rounds alternat-
ing with MS rounds. The MS rounds allow maintenance
and monitoring activities during system operation with-
out a probe effect. The MS rounds enable random access
to the IFS of all nodes, which is required for establishing
two conceptual interfaces to each node, a configuration
and planning (CP) interface and a diagnosis and manage-
ment DM interface. These interfaces are used by remote
tools to configure node and cluster properties and to obtain
internal information from nodes for diagnosis.

5.2 Smart Transducer Descriptions
For a uniform representation of all system aspects, an

XML-based format is used [21]. A smart transducer de-
scriptions (STD) describe the node properties.

There are two types of STDs: Static STDs describe the
node properties of a particular field device family. Static
STDs contain node properties that are fixed at node cre-
ation time and act as a documentation of the nodes’ fea-
tures. In contrast, Dynamic STDs describe properties of
individual nodes, as they are used in a particular applica-
tion.

Instead of storing the STDs directly on a smart trans-
ducer, the node contains only a unique identifier consist-
ing of a series and a serial number, whereas the serial
number identifies the node type and the serial number dif-
ferentiates instances of the same node type. This unique
identifier is used to access the node’s datasheet on an ex-
ternal server. Thus, node implementations keep a small
footprint, while the size of the descriptions is not signifi-
cantly limited.

5.3 Cluster Configuration Description
The cluster configuration description (CCD) contains

descriptions of all relevant properties of a fieldbus clus-
ter. It acts as the central structure for holding the meta-
information of a cluster. With help of a software tool capa-
ble of accessing the devices in a smart transducer network
it is possible to configure a cluster with the information
stored in the CCD. A CCD consists of the following parts:

• Cluster description meta information: This block holds
information on the cluster description itself, such as the
maintainer, name of the description file, or the version
of the CCD format itself.

• Communication configuration information: This infor-
mation includes round sequence lists as well as round

descriptor lists, which represent the detailed specifi-
cation of the communication behavior of the cluster.
Other properties important for communication include
the UART specification and minimum/maximum signal
run times.

• Cluster node information: This block contains infor-
mation on the nodes in a cluster. These nodes are repre-
sented either by a list of dynamic STDs or by references
to static STDs.

6 Discussion

Table 1 lists the main features of the three transducer
networks with respect to the concepts describe in Sec-
tion 2. All three approaches provide a real-time service
with hard real-time message guarantees, but use differ-
ent interaction design patterns. COSMIC comes with
a publish-subscribe approach where nodes publish their
data using the push principle. LIN is a master-slave
network where each message is activated by the master.
TTP/A uses a master-slave configuration in order to es-
tablish a common time base and then follows a predefined
communication schedule based on the physical progres-
sion of time.

The basic scheduling mechanisms for hard real-time
messages by using a static TDMA scheme is the same
in all three approaches. The mechanisms for other
data is different – TTP/A provides a polling mechanism
via master-slave rounds, LIN 2.0 introduced event mes-
sages. COSMIC is the most flexible by providing EDF-
scheduled soft real-time messages as well as non real-time
messages. However, a full implementation of the SRTC
requires substantial software because of the dynamic pri-
orities and the more complex handling of discarded mes-
sages. Therefore, it has so far only be implemented on
more powerful hardware under RT-Linux. Additionally,
COSMIC relies on synchronized clocks while LIN and
TTP/A require less effort for the proper protocol opera-
tion.

The advantages of COSMIC’s publish-subscribe are a
loose coupling between producer and consumer which fa-
cilitates the configuration of a network. The type of the
channel to which EM of a certain type is pushed is de-
fined by the publisher. The subscription and the respec-
tive guarantees for delivery at the subscriber side, how-
ever, may be of the same or a lower real-time class. This
enables reception of a critical hard real-time message also
for applications which do not need the respective deliv-
ery guarantees, e.g. a navigation task which uses critical
messages from an obstacle avoidance system.

The pull principle in LIN makes a node’s implemen-
tation very simple, but causes an overhead on the net-
work due to the frequent message requests from the mas-
ter. Moreover, since the LIN slaves do not know the time
of a request a priori, it becomes difficult to time a mea-
surement adequately or to synchronize measurements.

The time-triggered approach of TTP/A comes with

202

Table 1. Feature comparison
LIN COSMIC TTP/A

Criticality Levels HRT, SRT HRT, SRT HRT
Flow control model pull push TT, pull
Interaction pattern master/slave publish/ subscribe TT, master/slave
Bounded transmission time yes yes yes
Global Time no yes yes
Synchronized actions no no yes
Middleware abstraction messages event messages and channels IFS
Device Descriptions Language LIN-specific XML XML

high efficiency, predictability, and the possibility to syn-
chronize actions. However, the configuration effort of a
TTP/A network is higher than for a LIN device or COS-
MIC devices not requiring stringent real-time guarantees.
For example, a TTP/A node has to be configured with the
correct schedule before it can participate in the RT com-
munication. In contrast, a LIN node or a COSMIC node
might be reused in another application without reconfigu-
ration of the node. Anyway, all three approaches depend
on an adequate tool support.

The IFS concept of TTP/A is an abstraction mechanism
that hides the time-triggered messages from the applica-
tion. The IFS implements a distributed shared memory
that provides a simple interface for applications. There-
fore, TTP/A applications are not triggered by the recep-
tion of a message, which allows for a separation of com-
munication and computation.

LIN is designed to serve as sub-bus in automobiles
and is therefore specified in a very rigid way towards
use in a specific end product. This makes the LIN ar-
chitecture, though the approach is resource efficient and
interesting, less suitable for applications which require a
higher degree of cooperation between the nodes and also
the rather constraint LIN message format restricts larger
sensor-actuator systems. Also the LIN device description
is rather focussed on the specific LIN application area.

In contrast, COSMIC and TTP/A specify several high-
level features, while leaving details of physical and data
link layer up to the implementer. The XML-based
datasheets of COSMIC and TTP/A are easily extendable
in order to support future extensions.

The mechanisms of the three approaches are different,
which makes them incompatible in the first place. In or-
der to achieve interoperability between heterogeneous net-
works, an adequate interface system, whereas the mecha-
nisms of COSMIC and TTP/A are candidates rather than
LIN. COSMIC provides a versatile message interface that
abstracts over the underlying communication protocol.
On the other hand, the IFS approach of TTP/A allows to
abstract over the communication by establishing a distrib-
uted shared memory. The IFS comes with the main ad-
vantage of being easily adapted to a different protocol,
however for convenient application development, tools
supporting the set up of the distributed communication
schedules are required. Thus, it is up to the application
developer if a message-based interface (COSMIC) or a

memory-based interface (TTP/A / IFS) is preferred.

7 Conclusion

The contributions of this paper are threefold: Firstly we
have elaborated a set of requirements for different kinds
of real-time constraints for a distributed system of smart
transducers.

Secondly, we have presented and analyzed the concepts
of three different smart transducer interface implementa-
tion approaches. Each approach has its specific focus con-
cerning an application area. LIN is the protocol with the
lowest hardware and cost requirements, however several
design decisions restrict its use to an isolated sub-bus for
automotive body electronics or simple control systems in
industrial automation. LIN is supported by mature tools
from automotive suppliers. TTP/A has a similar resource
footprint as LIN but firstly substantially benefits from the
strict time-triggered communication scheme and secondly
provides a convenient distributed shared memory pro-
gramming model where consistency problems are solved
by the synchrony of the communication system. Para-
meters such as communication speed can be adapted in
a rather flexible way depending on the physical network.
This makes TTP/A an interesting choice for all kind of
low-cost embedded time-triggered applications with real-
time requirements. Additionally, the IFS is standardized
by OMG in the Smart Transducer Interface Standard [22].
COSMIC provides flexible real-time support and will in-
tegrate well into distributed applications with a publish-
subscribe communication scheme. The main objective of
COSMIC was interoperability between networks with dif-
ferent real-time properties. Thus, a higher overhead in the
nodes may be needed. COSMIC and TTP/A come with
different configuration support providing similar features

A third contribution of the paper is the discussion of de-
vice description. We think that this is an important issue
because it firstly underlines the hardware/software (and
probably mechanical) nature of a smart transducer and the
intrinsically component-based system structure and sec-
ondly is indispensable in a complex reliable control sys-
tem. Presently, device descriptions are mainly used during
system configuration to avoid faults from manual set-up.
The LIN NFC and also LDF exactly meet these require-
ments. Device description of TTP/A and COSMIC go be-
yond the needs of configuration and also are intended for

203

dynamic use. This can range from diagnostic purposes to
dynamic device discovery and use during operation.

Although being quite different, we think that it will be
possible to establish methods and tools that operate on a
meta-level and can be used to configure an application
using different underlying fieldbus systems. In order to
achieve this, a generic interface model for transducer data
has to be found. The Interface File System (IFS) presented
with TTP/A seems to be a promising approach for forming
a generalized interface, since it is relatively easy to convert
transducer data onto an IFS. We will further investigate
ways to provide coexistence and cooperation between the
different network and programming models.

Acknowledgments

This work was supported in part by the ARTIST2 Net-
work of Excellence on Embedded Systems Design under
contract No. IST-004527 and by the Austrian FWF project
TTCAR under contract No. P18060-N04. We would like
to thank Christian Paukovits, Stefan Pitzek, Gernot Klin-
gler, Christian El-Salloum and Andreas Pfandler for con-
structive comments on an earlier version of this paper.

References

[1] H. Kopetz, M. Holzmann, and W. Elmenreich. A
universal smart transducer interface: TTP/A. Inter-
national Journal of Computer System Science & En-
gineering, 16(2):71–77, March 2001.

[2] R. Alami, R. Chatila, S. Fleury, M. Ghallab, and
F. Ingrand. An architecture for autonomy. Interna-
tional Journal of Robotics Research, 17(4):315–337,
April 1998.

[3] A. Krüger. Interface Design for Time-Triggered
Real-Time System Architectures. PhD thesis, Tech-
nische Universität Wien, Institut für Technische In-
formatik, Vienna, Austria, April 1997.

[4] K. Mori. Autonomous decentralized systems: Con-
cepts, data field architectures, and future trends.
In International Conference on Autonomous Decen-
tralized Systems (ISADS93), 1993.

[5] J. Kaiser and M. Mock. Implementing the real–
time publisher/subscriber model on the controller
area network (CAN). In Proceedings of the 2nd
IEEE International Symposium on Object-Oriented
Real-Time Distributed Computing, pages 172–181,
Saint Malo, France, May 1999.

[6] R. DeLine. Resolving Packaging Mismatch. PhD
thesis, Computer Science Department, Carnegie
Mellon University, Pittsburgh, June 1999.

[7] K. Langendoen, R. Bhoedjang, and H. Bal. Models
for asynchronous message handling. IEEE Concur-
rency, 5(2):28–38, April-June 1997.

[8] C. E. McDowell and D. P. Helmbold. Debugging
concurrent programs. ACM Computing Surveys,
21(4):593–622, December 1989.

[9] S. Pitzek and W. Elmenreich. Plug-and-play: Bridg-
ing the semantic gap between application and trans-
ducers. In Proceedings of the 10th IEEE Conference
on Emerging Technologies and Factory Automation
(ETFA05), volume 1, pages 799–806, Catania, Italy,
September 2005.

[10] Institute of Electrical and Electronics Engineers, Inc.
IEEE Std 1451.2-1997, Standard for a Smart Trans-
ducer Interface for Sensors and Actuators - Trans-
ducer to Micro-processor Communication Protocols
and Transducer Electronic Data Sheet (TEDS) For-
mats, 1997.

[11] CAN in Automation e.V. CANopen - Communi-
cation profile for industrial systems. available at
http://www.can-cia.de/downloads/.

[12] Robert Bosch GmbH. CAN specification version
2.0, September 1991.

[13] L.-B. Fredriksson. CAN for critical embedded auto-
motive networks. IEEE Micro, 22(4):28–36, 2002.

[14] J. Kaiser and C. Brudna. A publisher/subscriber ar-
chitecture supporting interoperability of the CAN–
bus and the internet. In Proceedings of the 4th IEEE
International Workshop on Factory Communication
Systems (WFCS 2002), Västerås, Sweden, 2002.

[15] M. Gergeleit and H. Streich. Implementing a dis-
tributed high–resolution real–time clock using the
CAN–bus. In 1st International CAN Conference,
1994.

[16] J. Ruffino, P. Verissimo, C. Almeida, and L. Ro-
drigues. Fault–tolerant broadcasts in CAN. In Pro-
ceedings FTCS–28, Munich, Germany, 1998.

[17] J. Kaiser and M. A. Livani. Achieving fault–tolerant
ordered broadcasts in CAN. In Proceedings of the
Third European Dependable Computing Conference
(EDCC–3), Prague, September 1999.

[18] J. Kaiser and H. Piontek. CODES: Supporting the
development process in a publish/subscribe system.
In Proceedings of the fourth Workshop on Intelligent
Solutions in Embedded Systems WISES 06, 2006.

[19] M. Kay, Ed. W3C XSL transformations (XSLT) ver-
sion 2.0. http://www.w3.org/TR/xslt20, June 2006.

[20] Audi AG, BMW AG, DaimlerChrysler AG, Mo-
torola Inc. Volcano Communication Technologies
AB, Volkswagen AG, and Volvo Car Corporation.
LIN specification v2.0, 2003.

[21] S. Pitzek and W. Elmenreich. Configuration and
management of a real-time smart transducer net-
work. In Proceedings of the 9th IEEE International
Conference on Emerging Technologies and Factory
Automation (ETFA 2003), pages 407–414, Lisbon,
Portugal, September 2003.

[22] Object Management Group (OMG). Smart Trans-
ducers Interface V1.0, January 2003. Specification
available at http://doc.omg.org/formal/2003-01-01
as document ptc/2002-10-02.

204

Delay-Bounded Medium Access for Unidirectional Wireless Links1

1 Due to space limitations, some results in this conference version are omitted. See the extended version for details [11].

Björn Andersson, Nuno Pereira, Eduardo Tovar
IPP Hurray Research Group

Polytechnic Institute of Porto, Portugal
{bandersson, npereira, emt}@dei.isep.ipp.pt

Abstract

Consider a wireless network where links may be
unidirectional, that is, a computer node A can broadcast
a message and computer node B will receive this
message but if B broadcasts then A will not receive it.
Assume that messages have deadlines. We propose a
medium access control (MAC) protocol which replicates
a message in time with carefully selected pauses between
replicas, and in this way it guarantees that for every
message at least one replica of that message is
transmitted without collision. The protocol ensures this
with no knowledge of the network topology and it
requires neither synchronized clocks nor carrier sensing
capabilities. We believe this result is significant because
it is the only MAC protocol that offers an upper bound
on the message queuing delay for unidirectional links
without relying on synchronized clocks.

1 Introduction

Consider a computer node A that can broadcast a
message and computer node B that can receive this
message but if B broadcasts then A cannot receive it. We
say that the network topology has a unidirectional link
from A to B. Empirical data show that unidirectional
links exist and they are not uncommon; typically, in
networks with low-power radios, 5-15% of all links are
unidirectional [1-7]. This has been recognized at the
routing layer but the MAC layer is still poorly developed
for unidirectional links. Traditional MAC protocols fail
on unidirectional links. For example, consider a node A
that performs carrier-sensing before it sends a message
to node B. Node B transmits as well but due to the fact
that the link A→B is unidirectional, node A perceives
that there is no carrier. Consequently, node A transmits
and it collides with the transmission from node B. Also,
RTS/CTS (Request-to-Send/Clear-to-Send) exchanges
fail as well because node A sending a RTS-packet does
not receive a CTS packet from node B. In addition,
protocols that allow collisions but let a sender A wait for
an acknowledgement from node B can fail too. Node B

received the message but since the link A→B was
unidirectional, node B cannot send an acknowledgement
back to the sender A: the sender A has to wait forever.
The only existing solutions today for medium access in
the presence of unidirectional links require synchronized
clocks [8] or cause unbounded number of collisions.

In this paper we study medium access of wireless
links which may be unidirectional. We show, informally,
that designing a collision-free MAC protocol is
impossible. For this reason, we design a replication
scheme; every message that an application requests to
transmit is replicated in time by the MAC protocol with
carefully selected pauses between the transmissions of
replicas. This guarantees that for every message, at least
one of its replicas is transmitted without collision.

The protocol proposed in this paper is quite heavy-
weight. We will see that such a high overhead is
necessary in order to bound the number of collisions and
hence to achieve real-time guarantees in the presence of
unidirectional links; this is our main focus. But less time-
critical applications (such as file transfer) demand high
throughput and networks often have links that are mostly
bidirectional, and unidirectional only occasionally. In
such networks, the robustness and delay guarantees
offered by the bounded number of collisions of our
scheme is not worth the high overhead. For this reason,
we will discuss how the protocol can be adapted to
obtain an average-case overhead similar to “normal”
protocols designed for bidirectional links, while
retaining the upper bound on the number of collisions in
the presence of unidirectional links.

The remainder of this paper is organized as follows.
Section 2 presents the system model, the impossibility of
designing a collision-free MAC protocol and the main
idea of the protocol. Section 3 presents schedulability
analysis of sporadic message streams. Section 4 presents
implementation and experimental validation of the
protocol. Section 5 reviews previous work and discusses
unidirectional links in its larger context. Finally,
Section 6 offers conclusions.

205

N1 N2 N3

Fig. 1. A network topology which illustrates the impossibility of collision-free medium access in the presence of
unidirectional links. N1 can transmit to N2 but N2 cannot transmit to N1. Analogously for N2 and N3. When N1 and N3 transmit
there will be a collision on node N2.

2 Preliminaries and the Main idea

2.1 Network and Message Model

The network topology is described using a graph with
nodes and links. A node represents a computer node. A
link is directed. Consider a node Ni that broadcasts a
message or any signal (for example an unmodulated
carrier wave). Then node Nk will receive it if and only if
there is a link in the topology graph from node Ni to node
Nk. A node can only transmit by performing a broadcast
and it is impossible for a node Ni to broadcast such that
only a proper subset of its neighbor nodes receive it. No
assumption on the topology of each node is made. It is
allowed that a node has only outgoing links or only
ingoing links or no links at all. Unless otherwise stated,
the topology is assumed to be unknown to the MAC
protocol. In Section 5, we will discuss how knowledge
of the network topology can be exploited.

Let mtotal denote the number of nodes and let m
denote the number of nodes that can transmit. Nodes are
indexed from 1 to mtotal, where the m nodes that can
transmit have the lowest index. As an illustration,
consider a network with mtotal = 5 nodes but 2 nodes
will never transmit; these nodes will have index 4 and 5.
The other m = 3 nodes are permitted to request to
transmit and these nodes have index 1, 2 and 3.

We will initially assume that on each node with index
1..m, there is a single application and it makes only a
single request to the MAC protocol to transmit a
message. The exact time of the request is unknown
before run-time and the MAC protocol does not know
about the time of the request before it occurs. Let Ji
denote this single message on node Nj. (Ji is analogous to
a job in processor scheduling.) It is assumed that when
the MAC protocol sends a message it takes one time
unit. We are interested in finding a value z such that it
holds for any node that the time from when a message
transmission request is made at a node until this message
is successfully transmitted without collision is at most z.

Let propi,j denote the propagation delay of the
medium between nodes Ni and Nk. We assume that
propi,k is unknown but it is bounded such that
∀i,k∈{1..mtotal}: 0 < propi,k ≤ prop. Hence, prop is an
upper bound on the propagation delay of the medium;
we expect that a typical value is prop = 1μs for

distributed real-time systems in a small geographical
area, such as a ship, a factory or a virtual caravan of cars.
We assume that prop is finite but we make no
assumptions on its actual value. However, we assume the
following: (i) nodes can “boot” at different times and
when they boot, they do not have synchronized clocks;
(ii) when a node is transmitting it cannot receive
anything; and (iii) the MAC protocol can be represented
as a set of timed automata, with potentially different
automata on different computer nodes.

2.2 Impossibility

Let us now show that, under these assumptions, it is
impossible to design a collision-free MAC protocol
when there are unidirectional links. Consider Figure 1. It
illustrates a simple exemplifying topology. For such
topology and links characteristics, it is necessary that N1
does not transmit simultaneously with N3, in order to
guarantee that collisions will not occur. This requires
that N1 can get some information about the other nodes
on whether there is an ongoing transmission on the other
link. But N1 cannot hear anything so the transmission
from N1 may overlap with the transmission from N3, and
then N2 will not receive any of them. Hence, it is
impossible to design a MAC protocol that is guaranteed
to be collision-free in the presence of unidirectional
links. Even if a node knows the topology but it does not
know the time when other nodes will transmit then a
collision can occur, and hence the above mentioned
impossibility also extends to the case where the topology
is known to the MAC protocol.

Given the impossibility of collision-free medium
access in the presence of unidirectional links we will
now design a solution.

2.3 The Main Idea

For each message Ji the MAC protocol transmits the
message several times. Each one of them is called a
replica. Of those replicas from message Ji let Ji,1 denote
the one that is transmitted first. Analogously, let Ji,2
denote the one that is transmitted second, and so on. The
number of replicas transmitted for each message of Ji is
nreplicas(Ji), and the time between the start of
transmission of Ji,j until the start of transmission of Ji,j+1
is denoted as Δi,j. Figure 2 illustrates these concepts for
the case when all messages request to transmit

206

J1

J2

J3

J4

Δ1,1=6 Δ1,2=16 Δ1,3=16

Δ2,1=8 Δ2,2=18 Δ2,3=8

Δ3,1=10 Δ3,2=20 Δ3,3=10

Δ4,1=12 Δ4,2=12 Δ4,3=12

time

Fig. 2. Transmission of replicas with a possible assignment of Δ:s to messages. J1, J2, J3, J4
requested to transmit simultaneously at time 0. As it can be seen, at least one replica is
collision-free. It turns out that for every possible combination of times of requests of
J1, J2, J3, J4 this is true as well.

Message arrival Replica transmission

z

simultaneously. We let Ji,1 be transmitted immediately
when Ji is requested to be transmitted. For convenience,
we assume in this section (Section 2) that prop = 0 and
this is known to the MAC protocol. In Section 5, we will
discuss a simple technique to extend the results to the
case where prop > 0.

We will now reason about how to select nreplicas(Ji)
and then select Δi,j. It is necessary to select
nreplicas(Ji) ≥ m because otherwise there is a topology
for which it is possible that all replicas of Ji collide. To
see this, consider m nodes where one central node Nk has
ingoing links from all other nodes; one of these other
nodes is node Ni. There is also a link from Nk to Ni. Let
us now consider the case where Ni broadcasts its
replicas. Let Nl denote any other node than Nk and Ni.
The first message transmission of Jl can happen at any
time, so it can collide with one of the replicas from Ji.
Analogously, the first replica of another message Jl can
collide with another replica of Ji. In addition, the first
replica from Jk can occur any time too, so this first
replica can be transmitted when Ji sends a replica to Nk.
Then Nk will not hear the replica from Ji Hence, if Ji
transmits nreplicas(Ji) < m replicas, it can happen that
none of them are received at node Nk. Therefore,
nreplicas(Ji) must be selected such that:

() mJnreplicas i ≥

Later in this section, we will select Δi,j such that at
most one replica from Ji can collide with a replica of Jl.
With such an assignment of Δi,j, the assignment of
nreplicas(Ji) is as follows:

{ } () mJnreplicasmi i =∈∀ :,..,1 (1)

Having selected nreplicas(Ji) = m, the issue of
selecting �i,j will now be considered. Clearly, since a
node i transmits nreplicas(Ji) replicas, it is necessary to
specify nreplicas(Ji) – 1 values of �i,j for node i.
Consider the time span starting from when an application
requests to transmit on a node until the last replica has
finished its transmission on that node. The maximum
duration of this time span over all nodes is z (as
mentioned in Section 2.1). Figure 2 illustrates this.
Clearly, we wish to minimize z. This can be formulated
as a mixed linear/quadratic optimization problem.
Therefore, the objective is to minimize z subject to:

{ }
()

{ } (){ } ii

Jnreplicas

j
ji

nreplicasjmi

zmi
i 1

1
,

0:1,..,1,,..,1

1:,..,1

Δ≤−∈∀∈∀

≤+Δ∈∀ ∑
−

=

τ

(2)

and (1), and subject to an additional third constraint that
will be described now. Let u and v denote the indices of
two nodes that may transmit. Hence, u and v belong to
the set {1..m}. Let ju and jv denote the indices of the first
replica of the sequence of replicas transmitted in nodes
Nu and Nv, respectively. Hence ju belongs to
{1..nreplicas(Ju)–1} and jv belongs to {1..nreplicas(Jv)–
1}. Let lu and lv denote the lengths of these subsequences
in terms of the number of replicas. lu should be selected
such that ju + (lu - 1) ≤ nreplicas(Ju) – 1. Analogous for
lv. Hence, lu belongs to {1.. nreplicas(Ju) – ju} and lv
belongs to {1.. nreplicas(Jv) – jv}. We say that a
combination of u, v, ju, jv, lu, lv is valid if: (i) these 6

207

variables are within their ranges; and
(ii) u ≠ v ∧ (ju ≠ jv ∨ lu ≠ lv). For every valid combination
of u, v, ju, jv, lu, lv, the optimization problem must respect
the following constraint:

2

2
1

,

1

, 2≥⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Δ ∑∑

−+

=

−+

=

vv

v

uu

u

lj

jj
jv

lj

jj
ju

 (3)

Intuitively, (3) states that there is no sum of
consecutive Δ:s on node u which is equal to a
consecutive sum of Δ:s on node v. In addition, the
difference is larger than 2; this implies that it is enough
to be sure that there is no collision. (To understand why
the difference must be 2, consider the following system:
m = 2, nreplicas(J1) = 2 and nreplicas(J2) = 2 and Δ1,1 =
2 and Δ2,1 = 3.98, and J1 arrives at time 0.99 and J2
arrives at time 0. Then the first replica of J1 and J2 will
collide, and the second replicas of J1 and J2 will collide
as well. One can see that the sum of Δ:s must differ by
the duration of two.).

Therefore, (3) states that at most one replica from
node u can collide with a replica from node v. Hence, of
those nreplicas(Ju) replicas sent from node u, at most
m – 1 of them can collide. Naturally, this permits stating
Theorem 1 below.

Theorem 1. If the differences between transmission
start times of replicas are selected according to (1)-(3),
then it holds that: (i) for every node i, at least one replica
does not collide; and (ii) the time from when an
application requests to transmit on node i until the last
replica is transmitted on node i is at most z.

Proof: Follows from the discussion above. �
We will now illustrate the use of (1)-(3) in

Example 1.
Example 1. Consider m = 4 to be solved using (1)-

(3). The solution that is obtained is as follows:

121212
102010
8188

16166

3,42,41,4

3,32,31,3

3,22,21,2

3,12,11,1

=Δ=Δ=Δ
=Δ=Δ=Δ
=Δ=Δ=Δ

=Δ=Δ=Δ

This is illustrated in Figure 2. �
It is easily perceived that the number of inequalities in

(3) grows as O(m6). Hence, it is only possible to solve
small problems with this approach. (There were 232
constraints for m = 4 and 3411 constraints for m = 6. We
used a modeling tool (AMPL [9]) and a back-end solver
(LOQO [10]), and with these tools it was only possible
to solve (1)-(3) for m ≤ 6.) Many interesting systems are
larger though. For those systems the optimization
problem phrased in (1)-(3) simply cannot be solved
because the number of inequalities in (3) is too large.
(The extended version of this paper [11] presents

techniques that find Δ:s for m≤100 by trading off the
optimality of z.)

3 Sporadic Message Streams

Let us now consider that traffic is characterized by the
sporadic model [12]. Each node has exactly one message
stream. Node Ni is assigned the message stream τi. This
message stream makes an infinite sequence of requests,
and for each request, the message stream requests to
transmit a message. The exact time of a request is
unknown before run-time and the MAC protocol only
knows about the time of the request when it occurs. But
for every message stream τi there is at least Ti time units
between two consecutive requests in τi and the MAC
protocol knows all Ti. For every such request, the MAC
protocol must finish the transmission of one replica of a
message from stream τi without collisions at most Ti time
units after the request. If this is the case, then we say that
deadlines are met; otherwise a deadline is missed.
Naturally, we assume 0 ≤ Ti.

From Section 2.3 it results that the maximum time it
takes from when a message requests to send until the
MAC protocol has transmitted a collision-free replica is
z, if a message stream only makes a single request.
Based on this, it would be tempting to think that if
∀i∈{1..m}: z ≤ Ti then all deadlines are met.
Unfortunately, this is false, as illustrated by Figure 3,
even if T1 = T2 = T2 = … = Tm . A correct schedulability
analysis is given now.

Let wi be defined as:
()

1
1

1
, +Δ= ∑

−

=

inreplicas

j
jiiw

τ
 (4)

Theorem 2. If (Δ:s satisfy (1)-(3))∧(wi is computed
according to (4))∧(wi≤Ti)∧(∀k,k≠i:wi≤Tk-wk-1) then
every message released from τi transmits at least one
replica collision-free at most Ti time units after the
message transmission request occurred.

Proof: Follows from the fact that during a time
interval of duration Tk - wk - 1, message stream τk can
release at most one message. �

4 Implementation and Experiments

Having seen that the replication scheme can guarantee
that at least one replica is collision-free in theory, we
now turn to practice. We want to test the following
hypotheses:

1. The replication scheme is easy to implement.
2. The number of lost or corrupted messages at the

receiver is smaller when the replication scheme in
this paper is used, as compared to a replication
scheme with random pauses. This applies even if
the random scheme transmits only a single replica
per message.

208

time

τ1

τ2

τ3

τ4

Fig. 3. Consider Δ:s that are selected based on the assumption a transmission request on a node occurs at
most once. If these Δ:s are used for sporadic message streams with T1 = T2 = T3 = T4 = z then a deadline miss
can occur. All replicas from τ4 collide and τ4 misses its deadline.

3. The replication scheme guarantees that for each
message, at least one replica is indeed collision-
free.

4. If a link is bidirectional then our replication
scheme can be extended so that it still offers a
bounded number of collisions but it also has a low
average-case overhead.

In order to test these hypotheses, we implement the
replication protocol both on a real platform and use
simulation (for details, see [11]). The following sections
describe the implementation, experimental setup and
results obtained. For these experiments, we used more
than 6 computer nodes and hence the optimal algorithm
described in Section 2.3. could not be used. We
developed a heuristic algorithm (see [11]) for assigning
Δ:s such that (1)-(3) are satisfied.

4.1 Implementation and Experimental Setup

The replication protocol was implemented on the
MicaZ platform [13] and this implementation was
dubbed HYDRA. MicaZ is a platform offering a low
power microcontroller, 128 Kbytes of program flash
memory and an IEEE 802.15.4 compliant radio
transceiver, capable of 250 kbps data rate. The MicaZ
supports running TinyOS [14] an open-source operating
system. This platform was found to be attractive for the
implementation of our experiments because of some
particularly relevant characteristics: (i) it allowed us to
replace the MAC protocol; (ii) the timers available
where reasonably precise for our application; (iii) the
radio transceiver makes automatic CRC checks and
inserts a flag indicating the result of this check along
with the packet, and (iv) the spread spectrum modulation
used makes data frames resistant to noise and distortion.

Hence, collisions due to medium access are the main
source of lost frames or corrupted frames.

The experimental application setup consisted of one
receiving node and a many sending nodes. Efforts where
made such that the experiments took place under a
similar, noise-free, environment. The sending nodes send
messages with sequence numbers so that the receiving
node detects when a message has been lost. Additionally,
the receiver collected other statistics, such as total
number of replicas and redundant replicas received (by
redundant replicas we mean replicas for which a
previous replica of the same message has already been
received). The time to transmit a replica is 928μs. So, we
let one time unit represent 1 ms to improve robustness
against propagation delay and clock inaccuracy.

First, to acquire the probability that a replica is not
correctly received (this is due to noise or distortion), we
set up a scenario with one sending node (N1) and one
receiving node (N2). Node N1 transmitted 2 replicas per
message and N2 gathered statistics on the number of
received replicas. We obtained that the probability of
having a replica lost is approximately 0.002737%. If the
events “a replica is lost” were independent, we would
expect that the probability that two consecutive replicas
are lost is 0.000027372. Hence we would expect the
probability that a message was lost is 0.000027372 as
well. However, we observed a 0.00153% probability for
messages loss; this indicates that errors are correlated,
which was expected.

After that, we ran experiments with different number
of nodes, for three different MAC protocols: (i) one
where we use our scheme with deterministic Δ:s
(HYDRA); (ii) another where we used a similar scheme,
but where the Δ:s were random variables within an

209

8.4336%

1.5070%

0.1647%
0.0540%

0.0029%
0.0015%

0.0001%

16.5021%
9.4810% 5.6374% 3.6505% 3.1127% 3.1049% 2.1439%

0% 0% 0% 0% 0% 0% 0%
0.0000%

0.0001%

0.0010%

0.0100%

0.1000%

1.0000%

10.0000%

100.0000%

2 3 4 5 6 7 8
m

m
es

sa
ge

 lo
ss

 p
ro

ba
bi

lit
y

RHYDRA

RMAC

HYDRA

Fig. 4. Message loss ratio in simulation

interval between 1 ms and (Ti − 1)/(nreplicas(τi) − 1)
time units, which was named Random HYDRA
(RHYDRA) and (iii) finally a third MAC protocol where
only one replica is sent at a random time within the
interval [0, Ti − 1] time units after the message was
requested, which will be referred to as Random MAC
(RMAC). The Δ:s were obtained from a close-to-optimal
algorithm (see [11] for details). From these Δ:s, we
derived z and Ti. The application on Ni generated
message transmission requests such that the time
between two consequtive requests is a uniform random
variable with minimum Ti and maximum Ti × 1.25.

The experiments where performed until each node
transmitted 100000 messages, for m = 2 and m = 4. The
resulting message loss rate is shown in Figure 5, which
is presented in a logarithmic scale. By these results, we
can observe that HYDRA obtained a message loss rate
always better to the replica loss rate (0.002737%)
previously obtained, indicating that noise was the cause
for application message loss.

Performing statistically significant experiments with
the actual implementations was very time consuming.
Therefore, in order to test our protocol further, a
simulation model for the protocol in OMNeT++ [15] was
implemented. With this model we study the message loss
ratio for different numbers of nodes with HYDRA,
RHYDRA and RMAC (see [11] for details). The
simulator assumes that replicas cannot get lost or
corrupted due to noise, but it does model collisions
which is the only source of lost messages.

All simulations were executed for a length of 10
simulated hours. For simulations involving random
numbers generation, several independent runs were
executed to verify the statistical validity of the results.
The results of the simulations are given in Figure 4 with
respective error bars which are mostly not visible due to
the small variation found throughout the simulation runs.

0.0001%

0.0010%

0.0100%

0.1000%

1.0000%

10.0000%

2 4
m

m
es

sa
ge

 lo
ss

 p
ro

ba
bi

lit
y

HYDRA

RHYDRA

RMAC

Fig. 5. Message loss ratio of experiments

with MicaZ platforms
Observe that the application message loss for the scheme
using deterministic Δ:s is always zero. This is expected
as the simulation only models collisions, no noise in
transmission was introduced, whereas the other schemes
suffer from application message loss.

4.2 Support of Hypotheses

§Hypothesis 1. In order to test Hypothesis 1 the time
required to implement HYDRA was measured. We spent
approximately 3 days on implementing the protocol.
Almost a third of this time was spent on getting familiar
with the platform details. The time for coding the
protocol was less than a day and we encountered no
relevant bugs that were related to the implementation of
the protocol. However, we encountered and fixed some
bugs related to the platform. This suggests that
Hypothesis 1 withstood our test.

§Hypothesis 2. The experiments presented in
Section 4.1. corroborate Hypothesis 2.

§Hypothesis 3. Testing Hypothesis 3 is difficult
because it is difficult to know if a lost frame is due to a
collision or due to noise/distortion. Corrupt CRC may be
because of noise or it may be because of collisions.
Based on the experiments with the actual
implementation of HYDRA in Section 4.1, it results that
the number of lost messages is less than the probability

210

m=8

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

1 2 3 4 5 6 7 8

number of replicas until success

fr
eq

ue
nc

y

a)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

2 3 4 5 6 7 8

m

re
du

nd
an

t r
ep

lic
as

b)

Fig. 6. The frequency of the number of necessary replicas and variation of the number of redundant replicas with m.

of a single message with a single sender being lost; this
corroborates our hypothesis that the implementation of
our protocol indeed guarantees that at least one replica is
collision-free. Furthermore, we have run simulations
during a period of 100 simulated hours for the scheme
using deterministic Δ:s for 2 ≤ m ≤ 8 and found that no
application messages were lost during these simulation
runs. This suggests that Hypothesis 3 withstood our test.

§Hypothesis 4. In order to test Hypothesis 4, we
considered the simulation experiments used to test
Hypothesis 3 and acquired both the frequency of the
number of replicas necessary until the first replica is
transmitted without collision (Figure 6a) and the number
of redundant replicas for 2 ≤ m ≤ 8 (Figure 6b). Observe,
in Figure 6b, that for the case with m = 8 we obtain that
approximately 84% of the first replicas of a message are
collision-free. Hence, if most (but not all) links are
bidirectional and we would have used a scheme where
the receiver sends an acknowledgement when it receives
the first successful replica then in approximately 84% of
the cases the sender Ns only needs to send one replica.
Hence, in 84% of the cases, Ns can send 7 non real-time
messages instead of the replicas that Ns would normally
send. This discussion supports, Hypothesis 4.

In order for the acknowledgement scheme described
above to be efficient, it is necessary that the time
required to send acknowledgements is negligible.
Nonetheless, it could easily been the case by using
longer packets (say 1500 bytes) for data and short
packets (say 20 bytes) for the acknowledgements. But
unfortunately this is not supported by our experimental
platform so we did not implement it.

5 Discussion and Previous Work

Bidirectional links are useful for MAC and routing
protocols. Let us categorize a MAC protocol based on
whether it can suffer from collisions. If it can suffer from
collisions then a sender typically retransmits data
packets until it receives an acknowledgement from the
intended receiver. Typically the data and the
acknowledgement are transmitted on the same link, so
this requires bidirectional links. This is exemplified by
ALOHA [16] and some CSMA/CA protocols. MAC

protocols that are collision-free typically rely on that
senders receive feedback from the intended receiver.
Some protocols, such as MACA [17] do this using an
RTS/CTS exchange before the data packet is sent. In
other protocols, a receiver sends a busy tone when it
receives a packet and other senders can hear it, thus
avoiding a collision. Common to all these MAC
protocols is that they depend on bidirectional links.
Routing algorithms also typically assume that links are
bidirectional, being one notable exception the Dynamic
Source Routing (DSR) [18]. We can conclude that the
current communication protocols are heavily dependent
on bidirectional links.

Unfortunately, unidirectional links are not rare and
they are caused by a variety of reasons such as:
(i) differences in antenna and transceivers even from the
same type of devices; (ii) differences in the voltage
levels due to different amounts of stored energy in the
battery; (iii) different properties of the medium in
different directions (anisotropic medium) and (iv)
different interferences from neighboring nodes.

Given that protocol stacks tend to be implemented
based on the assumption that unidirectional links do not
exist, three techniques have been used to "hide" the
unidirectional links: (i) tunneling; (ii) blacklisting
and (iii) transmission power increase. If a link from
node u to v is unidirectional, the tunneling approach
attempts to find a path from v to u and give higher level
protocols the illusion of a link from v to u. In order to
achieve this, some routing functionality has to be
performed at the lower layers of the protocol stack [19].
Packets sent across the tunnel have larger delays because
they have to cross several hops. This is not too important
though, because often the tunnel is used only for
acknowledgements to packets that were sent across the
unidirectional link. It is important however to avoid the
ACK explosion [20]. Consider a unidirectional link from
node Nu to node Nv. Consider also that there is a path
from Nv to Nu. A data message has been sent across the
link Nu to Nv and now the node Nv should send an ACK
across the path back to Nu. However, the path from Nv to
Nu contains a unidirectional link too. This link is from
node Nx to Ny. When a packet has crossed the hop from

211

Nx to Ny, node Ny should send an ACK to Nx. In order to
do this, it may have to find a path to Nx. It is possible that
the path from Ny to Nx uses the link from Nu to Nv. This
may generate an ACK from Nu to Nv and this process
continues forever.

The technique of blacklisting detects unidirectional
links when sending data messages, and does not use
them in the future. The technique "hello" is similar but
here “hello” messages are exchanged so a node i knows
about the existence of a neighbor and whether they can
hear i. This exchange is periodic and occurs regardless of
whether the nodes are involved in routing data traffic or
not. These techniques are sometimes called ignoring [21]
or check symmetry [6]. Yet another technique to ignore
unidirectional links is to treat it as a fault. This technique
has been applied in conjunction with Ad-hoc On-
Demand Distance Vector Routing (AODV) and it works
as follows. When a source node attempts to find a route
to the destination, it floods the network with Route-
Request (RREQ) packets. In the normal AODV when
RREQ packet reaches a node which knows a route to the
destination, this node sends Route Reply (RREP) back
on the same paths as the RREQ was sent on. With the
normal AODV, RREP would fail on unidirectional links
but instead this technique attempts to find a new path
back to the source. When it finds a node with RREQ it
knows a route back to the source node [22]. A similar
scheme was proposed in [6] called Bidirectional
flooding. Another technique (which we call
“transmission power increase”) permits a downstream
node of a unidirectional link to temporarily increase its
power for sending responses such as acknowledgements
and clear-to-send [23]. This technique is based on the
sender to piggyback its geographical position obtained
by GPS and the receiver should use this information to
calculate the distance, which in turn is used to know how
much the transmission power should be increased. We
think the idea of increasing transmission power is
interesting but in [23] the authors do neither give any
details on how this increase transmission power is
computed nor state the assumed path loss. Common to
these techniques is that they require no or minimal
changes to routing protocols.

Several routing algorithms have been proposed for
unidirectional links. A common challenge that faces
routing with unidirectional links is knowledge
asymmetry; that is, if a link from u to v is unidirectional,
only v can detect the existence of the link (by hearing a
broadcast from u) but u is the one that will use the
knowledge of the link for routing purposes. One
technique builds on distance vector. The classic distance
vector algorithm maintains a vector at each node and this
vector stores the hop count to every other node Ni and
the next node that should be used for forwarding to this
node Ni (sometimes a sequence number is added too; it is
used for updates).

Consider a node Nu with a neighbor Nv. Node Nv
knows a route to node Nw. The number of hops from Nu
to Nw is no larger than the number of hops from Nv to Nw
plus one. If the link Nu to Nv is bidirectional this fact can
be easily exploited in the design of a routing protocol
because the length of the route Nv to Nw can simply be
communicated over one hop to Nu. However, if the link
Nu to Nv is unidirectional this is more challenging.

One extension of distance vector [21] however stores
all distance vectors of all nodes in the network (hence it
requires O(m2) storage). Another extension [24] sends
information "downstream" until every node knows a
circuit to itself. The node selects the shortest circuit and
informs its upstream neighbors, and then the standard
distance vector algorithm is used. Other techniques [19,
25] and [26] disseminate link state information across a
limited number of hops. This is based on the assumption
that the reverse path of a unidirectional link is short and
this assumption has been supported empirically [19].

Pure link-state routing disseminates the topology
information to all nodes and then the routes are
calculated. This avoids the problem of asymmetric
information (mentioned earlier) but the overhead of this
scheme is large already.

In order to reduce the routing cost in networks with
unidirectional links, it has been suggested that a subset
of nodes should be selected and only they should
maintain routing information about all nodes in the
network. It is required that all nodes which are not in this
subset have a link from the subset and a link to the
subset. Algorithms for selecting this subset of nodes
have been proposed and they have very low
overhead [27].

It has often been pointed out that unidirectional links
should be avoided altogether because existing MAC
protocols cannot deal with them (as we already
mentioned, MACA, which was the basis for the
RTS/CTS exchange in IEEE 802.11, relies on
bidirectional links). But recently, this view has been
challenged. For example [28] mentioned that their
routing protocol works well for multicast and that it
could be used for unicast routing as well – if there was a
MAC protocol for unidirectional links.

To the best of our knowledge, the only previous MAC
protocol that work for unidirectional links require
synchronized clocks and it suffers from (an unbounded
number of) collisions [8]. The technique in [8] addresses
medium access control on unidirectional links. The
technique generates pseudo-random numbers on each
node and these numbers act as priorities. Every node
knows the seed of the pseudo-random numbers on other
nodes and hence a node knows if it has a higher priority
than its neighbors. If it has, then it is the winner;
otherwise it is not a winner. If it is a winner then it
transmits in that time slot. Every new time slot, a new
pseudo-random number is generated. This protocol is
designed to deal with hidden nodes in the following

212

way: if a node Ni has a neighbor with higher priority
two hops way then node Ni simply does not transmit.
This scheme is collision-free but it depends on
synchronized clocks. Our protocol does not require
that.

In the theory we assumed that prop = 0. We can
easily extend the theory for the case when prop > 0.
We can do it as follows. Select the time unit such that
(1−prop) is the time it takes to transmit a replica.
Hence, if prop = 1μs and the time to transmit a replica
is 1 ms, then let 1.001 ms denote a time unit.

In this paper, we assumed topology is not known.
However, if the topology is known we can perform
significantly better (assuming that we also know the
interference graph). Every node in the topology graph
also exists in the interference graph. The links in the
interference graph are non-directed. The links in the
interference graph cannot simply be computed from the
topology graph. However, there are some links in the
interference graph that are necessary. Consider two
nodes in the topology graph Ni and Nj. If there is a link
from Ni to Nj or from Nj to Ni, then there is a link
between Ni and Nj in the interference graph as well. If
there is a node Nk with a link from Ni to Nk and a link
from Nj to Nk then there is a link between Ni and Nj in
the interference graph as well. From the interference
graph, it is possible calculate Δ:s that cause a
significant decrease in the overhead. This is illustrated
in Example 2.

Example 2. Consider m = 13 nodes ordered in a line
such that every node with an even index has two
outgoing links; node i has a link to node i-1 and node
i+1. This is illustrated in Figure 7a. If the topology is
unknown, then we must assume that all 13 nodes can
transmit simultaneously and can collide. A solution to
(1),(2),(3) in Section 2.3 is the following Δ:s:
Δ1 = 22, Δ2=26, Δ3 = 34, Δ4 = 38, Δ5 = 46,
Δ6 = 58, Δ7 = 62, Δ8 = 74, Δ9 = 82, Δ10 = 86, Δ11 = 94,
Δ12 = 106, Δ13 = 118 and z = 1417. From the

interference graph shown in Figure 7b, we observe that
every node has at most 4 links. This gives us m = 5,
and we calculate the following Δ:s: 6, 10, 14, 22, 26.
Now we can assign Δ1 = 6, Δ2 = 10, Δ3 = 14, Δ4 = 22,
Δ5 = 26, Δ6 = 6, Δ7 = 10, Δ8 = 14, Δ9 = 22, Δ10 = 26,
Δ11 = 6, Δ12 = 10, Δ13 = 14. Observe that we reuse Δ:s
and this does not cause any collisions. In this way, we
obtain z = 105, which is significantly lower. �

In general this requires solving the problem
Achromatic Number which is known to be NP-hard
(see page 191 in [29]) but several approximation
algorithms are available. We can see from Figure 7 that
z is unaffected by the size of the network; only the
number of neighbors 2-hops away matters. Hence, this
approach is efficient in large networks if they are not
dense.

(a) Connectivity graph.

(b) Interference graph.

N1 N3 N5 N7 N9 N11 N13 N2 N4 N6 N8 N10 N12

N1 N3 N5 N7 N9 N11 N13 N2 N4 N6 N8 N10 N12

(a) Topology graph

(b) Interference graph

Fig. 7. An example of how the performance of our MAC
protocol can be significantly improved if the topology is known.

6 Conclusions

We have presented the first MAC protocol that can
guarantee that the time from when an application
requests to transmit until the message is transmitted is
bounded even in the presence of unidirectional links
and without using synchronized clocks or taking
advantage of topology knowledge. We have
implemented the protocol and observed that: (i) the
effort required to implement it is small; (ii) by
observing the number of lost messages we found that
the implementation guaranteed that at least one replica
of a message is collision-free and (iii) the number of
lost messages at the receiver is significantly lower
using our protocol than a replication scheme with
random delays between replicas. We also run a scheme
with random time for transmission with only one
replica. We expect such a scheme to perform similarly
to ALOHA [16], and we found that our protocol
performed significantly better.

213

Acknowledgements

This work was partially funded by Fundação para
Ciência e Tecnologia (FCT) and the Network of
Excellence on Embedded Systems Design ARTIST2
(IST-004527).

References

[1] A. Cerpa, J. L. Wong, L. Kuang, M. Potkonjak, and D. Estrin,
"Statistical Model of Lossy Links in Wireless Sensor
Networks," in Information Processing in Sensor Networks
(IPSN'05). Los Angeles, California, USA, 2005.

[2] A. Cerpa, N. Busek, and D. Estrin, "SCALE: A Tool for Simple
Connectivity Assessment in Lossy Environments," UCLA
Center for Embedded Network Sensing (CENS) Technical
report 0021, September 2003.

[3] A. Woo, T. Tong, and D. Culler, "Taming the underlying
challenges of reliable multihop routing in sensor networks," in
Conference On Embedded Networked Sensor System. Los
Angeles, California, USA, 2003.

[4] D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, D. Estrin,
and S. Wicker, "Complex Behavior at Scale: An Experimental
Study of Low-Power Wireless Sensor Networks," UCLA
Technical Report CSD-TR 02-0013, February 2002.

[5] D. Kotz, C. Newport, R. Gray, J. Liu, Y. Yuan, and C. Ellliot,
"Experimental Evaluation of Wireless Simulation Assumptions,"
in International Workshop on Modelling Analysis and
Simulation of Wireless and Mobile Systems, 2004.

[6] G. Zhou, T. He, S. Krishnamurthy, and J. Stankovic, "Impact of
Radio Irregularities on Wireless Sensor Networks," in
International Conference on Mobile Systems, Applications, and
Services, 2004.

[7] J. Zhao and R. Govindan, "Understanding packet delivery
performance in dense wireless sensor networks," in On
Embedded Networked Sensor Systems,. Los Angeles,
California, 2003.

[8] L. Bao and J. J. Garcia-Luna-Aceves, "Channel access
scheduling in Ad Hoc networks with unidirectional links," in
Workshop on Discrete Algothrithms and Methods for MOBILE
Computing and Communications. Rome, Italy, 2001.

[9] "AMPL, www.ampl.com."
[10] "LOQO, http://www.princeton.edu/~rvdb/."
[11] B. Andersson, N. Pereira, and E. Tovar, "Delay-Bounded

Medium Access for Unidirectional Wireless Links," Institute
Polytechnic Porto, Porto, Portugal HURRAY-TR-060701,
Available at
http://www.hurray.isep.ipp.pt/asp/show_doc.asp?id=255, July
2006.

[12] A. Mok, "Fundamental Design Problems of Distributed Systems
for the Hard Real-Time Environment," in Electrical Engineering
and Computer Science. Cambridge, Massachusetts:
Massachusetts Institute of Technology, 1983.

[13] "Crossbow, "MICAz - Wireless Measurement System Product
Datasheet," 2005.

[14] J. Hill, "System Architecture for Wireless Sensor Networks," in
Computer Science Department: University of California,
Berkeley, 2003.

[15] A. Varga, OMNeT++ Discrete Event Simulation System. Tech.
University of Budapest, Budapest, 2003.

[16] N. Abrahamson, "The ALOHA system - another alternative for
computer communications," in 1970 fall joint computer
communications, AFIPS Conference Proceedings. Montvale.,
1970.

[17] P. Karn, "MACA - A New Channel Access Method for Packet
Radio," presented at ARRL/CRRL Amateur Radio 9th
Computer Networking Conference, 1990.

[18] D. B. Johnson and D. A. Maltz, "Dynamic Source Routing in Ad
Hoc Wireless Networks," in Mobile Computing, T. I. a. H.
Korth, Ed.: Kluwer Academic Publishers, 1996.

[19] V. Ramasubramanian, R. Chandra, and D. Mossé, "Providing a
Bidirectional Abstraction for Unidirectional Ad Hoc Networks,"
in IEEE INFOCOM. New York NY, 2002.

[20] S. Nesargi and R. Prakash, "A Tunneling Approach to Routing
with Unidirectional Links in Mobile Ad-Hoc Networks," in
IEEE International Conference on Computer Communications
and Networks (ICCCN). Las Vegas, 2000.

[21] R. Prakash, "A routing algorithm for wireless ad hoc networks
with unidirectional links," Wireless Networks, vol. 7, pp. 617 -
625, 2001.

[22] M. K. Marina and S. R. Das, "Routing performance in the
presence of unidirectional links in multihop wireless networks,"
in 3rd ACM international symposium on Mobile ad hoc
networking & computing. Lausanne, Switzerland, 2002.

[23] D. Kim, C.-K. Toh, and Y. Choi, "GAHA and GAPA : Two
Link-level Approaches for Supporting Link Asymmetry in
Mobile Ad Hoc Networks," IEICE Transaction on
Communication, vol. E-86B, pp. 1297-1306, 2003.

[24] M. Gerla, L. Kleinrock, and Y. Afek, "A Distributed Routing
Algorithm for Unidirectional Networks," in IEEE GLOBECOM.
. 1983.

[25] L. Bao and J. J. Garcia-Luna-Aceves, "Unidirectional Link-State
Routing with Propagation Control," in IEEE Mobile Multimedia
Communications (MoMuC). Tokyo, Japan, 2000.

[26] T. Ernst, "Dynamic Routing in Networks with Unidirectional
Links," INRIA, Sophia Antipolis 1997.

[27] J. Wu and H. Li, "Domination and Its Applications in Ad Hoc
Wireless Networks with Unidirectional Links," in International
Conference on Parallel Processing. Toronto, Ontario, Canada,
2000.

[28] M. Gerla, Y.-Z. Lee, J.-S. Park, and Y. Yi, "On Demand
Multicast Routing with Unidirectional Links," in IEEE Wireless
Communications & Networking Conference (WCNC). New
Orleans, LA, USA, 2005.

[29] M. R. Garey and D. S. Johnson, Computers and Intractability A
Guide to the Theory of NP-Completeness. New York: W. H.
Freeman and Company, 1979.

214

http://www.ampl.com./
http://www.princeton.edu/%7Ervdb/
http://www.hurray.isep.ipp.pt/asp/show_doc.asp?id=255

Tolerating Arbitrary Failures in a Master-Slave Clock-Rate Correction
Mechanism for Time-Triggered Fault-Tolerant Distributed Systems with

Atomic Broadcast

Astrit Ademaj Alexander Hanzlik Hermann Kopetz
Vienna University of Technology

Real-Time Systems Group
Treitlstr. 3/182-1, A-1040 Vienna, Austria�

ademaj,hanzlik,hk � @vmars.tuwien.ac.at

Abstract

In a previous work we have shown that by deploying a
node with a high-quality oscillator (rate-master node) in
each cluster of a real-time system, we can integrate inter-
nal and external clock synchronization by a combination
of a distributed mechanism for clock state correction with
a master-slave mechanism for clock rate correction. By
means of hardware and simulation experiments we have
shown that this combination improves the precision of the
global time base in single- and multi-cluster systems while
reducing the need for high-quality oscillators for non rate-
master nodes. Previous experimental results have shown
that transient fail-silent failures of the rate-master node
will not affect the operation of the distributed clock state
correction algorithm, and the cluster will remain inter-
nally synchronized. In this paper we consider all possible
failure modes of the rate-master node by taking the sys-
tem structure into account, and present a solution that tol-
erates arbitrary rate-master failures by using replicated
rate-master nodes. Possible arbitrary failure modes are
listed in the paper where a main part of them is handled
by the fault-tolerant mechanisms of the system architec-
ture, whereas the remaining failure modes are handled by
a fault-tolerant rate correction mechanism.

1. Introduction

The temporal accuracy of an information in a dis-
tributed real-time system depends on the precision of the
global view of time. This precision depends on the jit-
ter of the message transmission delay, the clock drifts
and the clock synchronization mechanism. A predictable
real-time communication system must guarantee message
transmission within a constant transmission delay and
with bounded jitter [8].

The duration of the message transmission over the net-
work depends on the assumptions made about the network
traffic. In principle we can distinguish between two differ-

ent scenarios: competing senders or cooperative senders.
If senders are competing (as in standard Ethernet or CAN)
there is always the possibility that many messages are sent
to a single receiver simultaneously. There are two possi-
bilities to resolve this conflict: back-pressure flow con-
trol to the sender or the storage of the messages within
the network. Both alternatives involve increased message
transmission jitter which is unsatisfactory from the point
of view of real-time performance for applications that de-
mand highly precise time measurements.

The solution of cooperative senders (which deploys a
communication schedule that ensures conflict free mes-
sage transmissions, e.g. a TDMA scheme) provides con-
stant transmission delays and bounded jitter. This paper
focuses on the generation of a fault-tolerant global time
base of high precision (in the range of half a microsecond)
in a distributed real-time system with cooperating senders
within constraints imposed by a market of mass produc-
tion.

One challenge in a mass production market, such as the
emerging automotive market for drive-by-wire systems, is
to provide ultra-high dependability at affordable cost. In
such a market the cost of every single component is scruti-
nized in order to find alternatives that are less costly. One
target for cost savings in the distributed control system for
a mass production market is the oscillator at a computer
node. Today upscale cars have more than 50 computer
nodes, each one with its own local oscillator.

The precision (the maximum deviation between any t-
wo clocks in an ensemble) of the global time base is the
key factor to the accuracy of real-time information in a
distributed system. The precision depends, among other
factors, on the quality (and price) of the given oscillators.

In [10] we have presented an algorithm that establishes
and maintains a global time base of high precision in a dis-
tributed system while reducing the need for high-quality
oscillators. This algorithm introduces the notion of a rate
master node that dictates the rate of the global time base in
a cluster. However, the approach presented in [10] was on-
ly resilient against transient fail-silent failures of the rate

215

Node A3

Node A1

Node A2

Node A4

Node A5

Node B1

Node B2

Node B3

Node B4

Gateway

Communication network A

GPS

Cluster A (high level cluster)
 Cluster B (low level cluster)

Communication network B

Figure 1. Two-cluster system

master node. This failure mode assumption is too weak
for a safety critical environment, where a node may ex-
hibit arbitrary faulty behavior.

In this paper we consider the possible node failure
modes in a system with cooperating senders and present
a solution for tolerating this restricted set of failure modes
imposed by the presented system model.

2. System Structure

We assume that a distributed real-time computer sys-
tem can be built from one or more clusters. A cluster
consists of a set of node computers that communicate with
each other using a shared communication medium. Figure
1 shows a distributed real-time computer system consist-
ing of two clusters.

2.1. Node
Each node contains a host computer that executes the

application program and a communication controller for
message-based communication with the other nodes. Ev-
ery node maintains an oscillator that drives a clock local
to this node. We call this clock the local clock of the node.

2.2. Communication
All nodes communicate by periodic message exchange

using an a-priori known global communication schedule
available at all nodes. The communication schedule is a
periodic and static scheme based on a fault-tolerant global
time base. It contains, among other information, which n-
ode is allowed to send at which point in global time. One
period of communication is referred to as TDMA round.
Every node is allowed to transmit a message at least one
message each TDMA round. A message sent from a cor-
rect sender will arrive correctly at all correct receivers at
about the same point in time.

2.3. Oscillators
We assume that every oscillator of a node can be char-

acterized by a nominal frequency and a maximum drift
rate that defines a permitted drift window around this
nominal frequency [8]. Every device that oscillates within
this permitted drift window is classified as a correct oscil-
lator, otherwise as a faulty oscillator. The data concerning

the nominal frequencies and the permitted drift windows
are supplied by the oscillator manufacturer.

2.4. Timer Control Unit
We assume that each node has a timer control unit

(TCU) in its communication controller that is responsi-
ble for the generation of a local view of global time. Each
node has its local clock which measures the time with the
granularity that we call microtick (� t). The granularity of
the node-local view of global time is called a macrotick
(MT). To maintain a reasonable global time base, all n-
odes must be synchronized within a precision of one MT
[8]. One macrotick is made from a number of microticks
initially derived from the nominal frequency of the oscil-
lator. The number of microticks (� t) per macrotick (MT)
is denoted as microtick-macrotick conversion factor (MM-
CF). By changing the MMCF the frequency divider shown
in Figure 2 can be adjusted in order to manipulate the gen-
eration rate of the MT, the node-local representation of
global time.

A clock state synchronization algorithm (executed in
each node) periodically calculates a clock state correction
term for the local clock (in terms of microticks) and stores
the value in the Macrotick Correction Term (MTCT) reg-
ister (see Figure 2) of the communication controller. A
hardware mechanism assures that the value of the MTCT
register is added to the microtick counter in order to cor-
rect the clock deviations among the nodes in the cluster.

Oscilator

µT Counter

Microticks (µT)

Macroticks (MT)

C

l
o

c

k

c
o

r
r

e

c

t
i
o

n

s

(
c

l
o

c

k

s
y

n

c
h

r
o

n

i
z

a

t
i
o

n

)

Local View of

Global Time

MT Counter

Frequency Divider

MTCT

Figure 2. Timer unit of a communication
controller

216

The clock state correction algorithm periodically cor-
rects the local clock of the node at so called state synchro-
nization instants contained in the communication sched-
ule (Section 2.2). The time interval between two state syn-
chronization instants is denoted as state synchronization
interval. Because of the imperfect manufacturing process
of oscillators, each clock has a slightly different drift rate
and therefore each node will have a slightly different mi-
crotick duration. During a synchronization interval the lo-
cal clocks of the nodes are running free and may thus devi-
ate from each other due to different clock drifts. These de-
viations are corrected at the next synchronization instant
by the fault-tolerant clock state synchronization algorith-
m.

2.5. Time difference capturing
A node has to know the deviation of its local clock to

the local clocks of other nodes to be able to synchronize to
these nodes. The process of reading a remote clock is re-
ferred to as time difference capturing. The expected mes-
sage receive instants of all messages are a-priori known
to all nodes (Section 2.2). The difference between the ex-
pected message receive instant and the actual message re-
ceive instant is measured by a time-difference capturing
unit of the communication controller. The measured dif-
ferences in terms of microticks (���) are used by the clock
state synchronization algorithm.

2.6. Fault Hypothesis
The fault hypothesis for a system specifies the smallest

unit of failure (fault containment region - FCR), plus the
type, the number and the frequency of FCR failures that
shall be tolerated. The fault hypothesis makes assump-
tions about the behavior of the system in the presence of
faults. In our system model we consider either a computer
node or a communication channel as a fault containment
region. The fault hypothesis assumes at most one arbitrary
faulty FCR at any point in time.

3. Clock Correction Mechanism

In our earlier work [10], we have proposed to establish
the fault-tolerant global time base by a combination of t-
wo algorithms, a distributed state synchronization algo-
rithm and a central rate correction algorithm. An example
for the state synchronization algorithm is the fault-tolerant
average (FTA) algorithm, the correctness of which has
been established by formal analysis [16]. All clocks es-
timate their deviation from the other clocks and calculate
a clock state correction term on the base of these esti-
mates. At the end of each synchronization interval, all
nodes apply the clock state correction term to their local
clocks by means of state correction to get into agreemen-
t with the nodes in their cluster. This algorithm remains
unchanged and therefore the arguments for its correctness
remain valid.

In our system model we use at least one node (denot-
ed as rate-master node) with a high-quality oscillator as a
rate-master clock. Other nodes with low-quality oscilla-
tors, denoted as time-keeping nodes, correct their rate (by
proper adjustment of the MMCF value of the TCU). In
such a system model, the cluster drift rate is determined
by the drift rate of the rate-master node [10].

The rate-master node has a high-quality clock that
serves as a reference for the rate of all other clocks in the
cluster. We assume that the rate-master clock has a drift-
rate that is better than �������
	��
	 (that is the drift-rate of an
ordinary wrist watch oscillator). The drift rate of the rate-
master clock determines the drift rate of the whole cluster.
Available field-data from the automotive industry shows
that the permanent failure rate of oscillators is better than
100 FIT [14].

Time-keeping nodes establish the fault-tolerant global
time base by a distributed clock state correction algorithm.
In addition, they periodically adjust their rate to the rate
of the rate-master clock by manipulation of their MMCF
values according to their deviations from the rate-master
node. The time-keeping nodes are assumed to have stan-
dard computer oscillators with a drift rate in the range of
������� s/s. The permanent and transient failure rates of the
time-keeping clocks are assumed to be equal to those of
the rate-master clock [10].

3.1. Rate Correction Algorithm
All nodes communicate by periodic exchange of mes-

sages using an a-priori known communication schedule.
The instant when the message transmission has started is
called message send instant. The instant of arrival of a
message is called message receive instant. The expect-
ed message receive instants of all messages are a-priori
known to all nodes. The difference between the expect-
ed message receive instant and the actual message receive
instant is measured by a time-difference capturing unit
of the communication controller. The differences are ex-
pressed in terms of microticks (���) and are used by the
FTA algorithm to perform clock state correction. These
measurements are denoted as time-difference capturing
values and they represent the difference in the local view
of global time between the sender node and the receiver
node at the instant when a message is transmitted by the
sender node. A positive time-difference capturing value
means that the receiver’s clock is running faster than the
sender’s clock. Consequently, a negative time-difference
capturing value means that the receiver’s clock is running
slower than the sender’s clock. This information can be
used to perform clock-rate correction. Based on the time-
difference capturing values at the message send instant of
messages sent by the rate-master node, time-keeping n-
odes can estimate the required rate correction. The time-
difference capturing values depend on the length of the
clock state synchronization interval and on the sending s-
lot position of the rate-master node within the clock state
synchronization interval. Thus, the time-keeping nodes

217

can only approximately estimate their rate deviation from
the rate of the rate-master clock. Experimental results of
the implementation of the mechanism presented above are
given in [10] where it is shown that transient fail-silent
failures of the rate-master node do not affect the precision
of the cluster.

In this paper we go one step further and present a so-
lution that tolerates arbitrary failure modes of rate-master
nodes.

Furthermore, we analyze all possible failure modes
(transient and permanent arbitrary failures) of the rate-
master node within the given system model. As it will
be discussed in the next section, a main part of failure
modes is handled by the fault tolerance mechanisms of
the system architecture (i.e. they need not to be handled
by the rate-correction mechanism), whereas the remain-
ing failure modes have to be handled by the fault-tolerant
rate correction mechanism. The presented solution toler-
ates arbitrary FCR failures within the given time-triggered
system model using atomic broadcast.

4. Rate-Master Failure Modes

We consider a clock synchronization algorithm in
which the nodes do not explicitly send time information
to other nodes. We assume a synchronous system that pe-
riodically transmits messages according to a static com-
munication schedule that is a-priori known to all com-
munication participants. Every node knows the expected
arrival time of frames from other nodes. For a case s-
tudy we use the Time-Triggered Architecture (TTA) [11].
In the TTA an incoming message is classified as correc-
t if the syntax check is successfully passed (checksum,
header structure, etc.) and if the message is received with-
in the expected receive window. Node � knows a-priori
the expected frame arrival time of the message sent by n-
ode � , say �������
	 � . A message sent from node � that is
received at node �
��� 	���	��� will be classified as correc-
t if the message is received within the receive window� ��������	 ������� �������
	 �����! , where � is the precision of the
global time base. Based on the difference between the
expected frame arrival time and the actual frame arrival
time, the nodes know the deviation of their own clocks
from the clock of the sender node. We also assume that
the minimum message transmission delays are known and
constant between any two nodes. The jitter is bounded.

The TTA deploys a membership and a clique avoidance
algorithm [3] that makes sure that all correct nodes reach
a consensus about the operating state of all other nodes
in the system. Moreover the TTA deploys either a star
guardian (for a star topology) or a bus guardian (for a bus
topology) that allows nodes to send messages only with-
in their sending slot. Any message sent by a faulty node
outside its sending slot will be blocked by the guardian
[11].

In the following we consider all possible failure modes
of the rate-master node and the time-keeping nodes with

regard to the clock synchronization algorithm.
Time-keeping nodes are passive nodes regarding the

clock rate correction. Thus, a failure of a time-keeping
node cannot affect the proper operation of the rate-master
clock.

Consistent detectable failures of the rate-master n-
ode occur when the rate master transmits a message which
is syntactically incorrect. Message syntax failures are
handled by the error detection mechanisms that check the
structure and the content of the message headers and by
comparing the checksum of the received data with the re-
ceived checksum. All correct nodes consistently detect
this failure of a rate-master node by means of the mem-
bership algorithm.

Fail-silent failures of the rate-master node occur
when the rate-master node fails to transmit a message.
This failure can occur either because of a fault in the timer
unit of the controller, or in other functional units (e.g. in a
faulty transmitter unit). This failure is consistently detect-
ed by all nodes.

Babbling idiot failures occur when a node tries to
transmit a message outside its allocated sending slot. Such
failures are avoided by the guardian mechanism [20]. In
case that the guardian functionality is not provided, a bab-
bling node can disturb the communication of the whole
cluster. Therefore, we assume the guardian functionality
in our system model. Because of the guardian, a faulty
node that experiences babbling idiot failures causes that
either no message from this node is received, or that oth-
er nodes receive invalid messages from this faulty node.
This failure is consistently detected by all nodes.

Masquerading failures occur when a faulty node
sends a message using the identity of any other node.
Because of a-priori knowledge of the message schedule,
each node expects a message from a specific node in a
specific slot. A message that contains a node ID that does
not match with its statically allocated sending slot will be
detected as faulty. Another way for a node to try to mas-
querade within our system model is to send a wrong node
ID (say ") in the sending slot of node " . This case is
handled as a babbling idiot failure by the guardian. This
failure is consistently detected by all nodes.

Drift rate changes of a rate-master node will change
the drift rate of the whole cluster. Consider a scenario
where a faulty rate-master node slowly changes its rate,
such that the messages sent by the rate-master node are
always received within the receive window of the other
nodes. If this rate change is small enough, the other n-
odes will adjust their rate accordingly (the rates of the
time-keeping nodes will follow the rate of the rate-master
node). Eventually, the rates of all nodes will change s-
lightly such that they slow-down or speed-up. Note that
clock rate adjustment changes the macrotick (MT) dura-
tion as well. A continuous rate change into one direction
will change the MT duration such that the operation of

218

the cluster with the new MT duration (granularity of the
global time base) may eventually become impossible.

SOS (Slightly-Off-Specification) failures are failures
where a message sent by a faulty node is received correct-
ly by some nodes, and incorrectly by other nodes. We dis-
tinguish between SOS failures in the value domain, SOS
failures in the time domain and SOS failures with respec-
t to the start of frame transmission [1, 2]. The effect of
all three SOS failure scenarios is the same in our system
model. For example, in case of an SOS failure with re-
spect to the start of frame transmission, the rate-master
node sends a message that is received within the limit of
the receive window of some nodes in the cluster, and s-
lightly outside the receive window of other nodes in the
cluster. An SOS failure causes an inconsistent view of the
node states in the system by formation of cliques (nodes
in one clique assume that the rate-master node is faulty,
nodes in the other clique assume the rate-master node is
correct). SOS failures are a subclass of Byzantine fail-
ures and, from the point of view of clock synchronization,
they are the only possible Byzantine fault manifestation
in our system model. Note that in our system model the
rate-master node does not send any explicit time informa-
tion. The measured time differences between the expected
and actual frame arrival times of the messages sent by the
rate-master node are used to perform master-slave clock-
rate correction. SOS failures in the TTA are handled by
the group membership algorithm [3].

The presented clock synchronization mechanism
makes use of a voting algorithm explicitly for 2 rate-
master nodes, denoted as rate-master voting (see Sec-
tion 5). Using this voting mechanism, even systems that
do not use a group membership algorithm will be able to
have a consistent view of the state of the rate-master n-
odes. Thus, SOS failures of the rate-master node are con-
sistently detected by all nodes.

To sum up, all arbitrary failure modes of the rate-
master nodes with respect to the clock synchronization
mechanisms within our system model can be classified in-
to two groups:

� The rate-master node is consistently detected as
faulty (it transmits an incorrect, an invalid or no mes-
sage at all). From the point of view of the clock rate
correction mechanism, all correct nodes will detect
a faulty rate-master, and therefore will not perform
clock-rate correction based on messages sent by the
rate-master node.

� A slow change of the drift rate of the rate master will
cause a change of the cluster drift rate (and a change
of the granularity of the global time). From the point
of view of the clock-rate correction mechanism (pre-
sented in [10]) the nodes will not detect a faulty rate
master, and will continue to perform clock rate cor-
rection based on the messages sent by a faulty rate-
master node.

5. Fault-Tolerant Rate Correction Algorithm

In this section we describe the new fault-tolerant rate
correction algorithm for a single-cluster system. The fault
hypothesis (Section 2.6) claims that the system is capa-
ble of tolerating a single arbitrary node failure at a time.
Therefore, we replicate the rate-master node by adding a
second rate-master node with a high-quality oscillator. In
the following, we will denote the two rate-master nodes
as primary rate-master (PRM) and secondary rate-master
(SRM), respectively. At system startup, all nodes agree
on the same PRM. The task of the SRM is to take over the
role of the PRM once a majority of nodes in the cluster
considers the PRM to be faulty. The decision which node
is the rate-master is met by means of a rate-master voting
mechanism.

All nodes periodically perform clock-state correction
according to the clock state correction term delivered by
the FTA algorithm. The time-keeping nodes (including
the SRM) periodically perform clock rate correction ac-
cording to the clock rate of the PRM determined from the
time-difference capturing value obtained in the sending s-
lot of the PRM. All nodes will perform rate correction by
proper adjustment of the MMCF value as long as their
MMCF value is within pre-defined bounds.

Rate-master voting. The PRM and the SRM node
transmit at least one message per TDMA round. The time-
keeping nodes and the SRM calculate a new MMCF val-
ue based on the time-difference capturing value from the
PRM and apply the new MMCF value to their local clock-
s. If a node fails to receive a message from the PRM at
the expected arrival time or if the new MMCF value is not
within a pre-defined bound, the node considers the PRM
to be faulty, otherwise to be correct. Each node maintains
a two bit vector containing the value of the node that it has
classified as the primary rate-master node. At its message
send instant (once per TDMA round), each node adds it-
s local view of who is the PRM to the message sent (the
PRM always considers itself as correct). Upon reception
of a message, each node increments a

�������	�
counter if

the sender classifies the PRM to be correct (indicated by
the rate-master voting information included in the mes-
sage) and a

���
����
	���
counter otherwise. Both counters

are set to 0 at system startup.

Rate-master agreement. At a pre-defined instant once
per TDMA round (the PRM membership point), all nodes
evaluate their local counters. If

�������	�������
����
	���
, a

majority of nodes considered the PRM to be correct dur-
ing the last TDMA round and the current PRM is trusted
until the next PRM membership point. If no majority for
the current PRM is found, all nodes agree that the SRM
becomes the new primary rate-master. The former PRM,
which also evaluates its local counters, detects that it is no
longer trusted by a majority of nodes and classifies itself

219

as SRM. All nodes clear the
���
���	�

and
��������
	���

coun-
ters and restart the rate-master voting algorithm. This rate-
master voting algorithm is derived from the group mem-
bership algorithm of the TTP/C protocol [3]. A correct-
ness proof of the TTP group membership algorithm can
be found in [15].

Rate-master handover. After a new PRM has been vot-
ed, this new PRM slowly returns to its original (nominal)
rate by periodically adding a pre-defined value to its cur-
rent MMCF value until its MMCF value reaches its (off-
line defined) nominal value. Note that before the handover
occurs, the current PRM was an SRM that has adjusted its
clock rate to the rate of the former PRM. The new PRM
considers itself correct and stepwise readjusts its MMCF
to its nominal value to bring the clock rates of all nodes
closer to the progression of realtime (a rate-master node
has a more accurate oscillator than the time-keeping n-
odes).

The presented mechanism is capable of handling arbi-
trary rate-master node failures within our system model.
As elaborated in Section 4, arbitrary failure modes within
our system model can be classified into:

Consistent detectable rate-master failures. If the PRM
fails to send a message in its sending slot, a majority
of nodes (all correct nodes) will consistently agree on
a new PRM according to the rate-master agreement
algorithm1.

Clock drift rate failures. If a clock reading from a PRM
leads to a MMCF boundary violation at a majority
of nodes, all nodes will consistently agree on a new
PRM according to the rate-master agreement algo-
rithm.

6. Tolerating Arbitrary Failures - Simulation
Experiments

The rate-master voting algorithm has been validated by
means of simulation experiments using SIDERA, a simu-
lation model for time-triggered distributed systems [7]. In
this section, we present the results of two typical valida-
tion experiments.

6.1. Experimental setup
Table 1 summarizes the system configuration used for

the simulation experiments.
The 6 nodes are numbered from 0 to 5 and are assigned

the following drift rates � � from the clock drift rate win-
dow: ����� �����
	�� ��
������ � ����� ��	 ������	�� ��
�� ��� ,
����� ���
��	�� ����� ��� � �� �� �
��	�� ����� ��� ,
�"!#� 	 ���$��	�� ��
 � ��� � �
 � ����	�� ��
 � ��� .

Node 2 and Node 3 are chosen as the PRM and the SR-
M, respectively (their clock drift rates are an order of mag-
nitude better than those of the other clocks). The MMCF

1In the TTA, SOS failures are resolved by the group membership and
clique avoidance algorithm of the Time Triggered Protocol TTP [21].

Number of nodes 6
TDMA round length 12ms (%'&)(*%,+�-�.0/)
Macrotick length 1 1 sec (%,+ -�2 /)
nominal MMCF 20
Clock drift rate window 40ppm (34(*%,+�-�56/870/)
MMCF boundary 0.2 (9:%<;�=?>�@8&�+�=A&"B)
Primary Rate-Master Node 2
Secondary Rate-Master Node 3
Precision 10 microticks

Table 1. Cluster configuration

boundary is derived from the nominal MMCF and is equal
for all nodes. This value for the MMCF boundary toler-
ates rate changes of the PRM of ��� ��� s/s. The precision
(the maximum deviation between any two clocks) of the
cluster shall be guaranteed to be better than 10 microticks.

The figures used in the description of the simulation
experiments consist of two windows each and show the
following information: the x-axis denotes the progression
of simulation time with the same granularity for all win-
dows (i.e. events on the same x-coordinate in different
windows happen at the same point in simulation time) and
is divided into 12 columns of equal width (corresponding
to a duration of � �,	DC �) separated by dotted vertical lines.
The columns are numbered from 1 to 12, starting at the
leftmost column in each figure. The y-axis has different
meanings in different windows: The upper window (win-
dow 1) shows the precision (i.e. the maximum deviation
between any two clocks), whereas the lower window (win-
dow 2) shows the MMCF values of the different nodes.

6.2. Case I: Consistent detectable failure of the PRM
All nodes execute the fault-tolerant clock state and rate

correction algorithm described in Section 5. After a few
rate corrections at the time-keeping nodes and the SRM,
cluster precision improves from 11 microticks to 4 mi-
croticks. Figure 3 shows the experimental results for Case
I.

After about � �E� � simulation time (column 3), the PRM
(node 2) suffers from a drift rate failure such that its local
clock speeds up and changes its rate by 	�� � � ��� within
a duration of � �,�0F � . The time-keeping nodes and the SR-
M modify their MMCF values to maintain agreement be-
tween their clock rates and the clock rate of the PRM (col-
umn 3, window 2). However, the rate calibration mecha-
nism at the time-keeping nodes cannot prevent the PRM
from drifting apart too far from cluster time: at � �G��� �
simulation time (column 3), the PRM detects a clock syn-
chronization error and fails 2 (note the deterioration of pre-
cision in window 1). The time-keeping nodes and the S-
RM note that the PRM is out of service (all nodes fail to
receive a message from the PRM in the following round)
and agree on node 3 to become the new PRM according

2A node encounters a clock synchronization error if its current clock
state correction term is bigger than half the granularity of the global time-
base (which is 10 microticks in our configuration) [21].

220

Figure 3. Consistent detectable failure of the PRM

to the rate-master voting algorithm (Section 5). The new
PRM stepwise returns to its original rate by periodically
adding a constant value of 0.005 to its MMCF fractional
part (MMCF values rising in window 2, column 4) until
its nominal MMCF value is attained at � �6CA� � simulation
time (column 5). The time-keeping nodes also adjust their
MMCF values according to this rate change of the new
PRM. The former PRM reintegrates at � �E��F � simulation
time, starts with an initial MMCF value of � � � ��� (deter-
mined during a measurement phase before reintegration)
and follows the clock rate of the PRM (node 3). At about
� �6CA� � simulation time the clock rates of the time-keeping
nodes and the former PRM (node 2) are calibrated to the
clock rate of the new PRM (node 3) and do not change
significantly till the end of simulation (window 2). Even-
tually, the cluster reaches and maintains a stable precision
of 4 microticks.

In this experiment, the PRM detects a synchronization
error and performs restart.

6.3. Case II: PRM clock drift rate failure
All nodes execute the fault-tolerant clock state and rate

correction algorithm described in Section 5. After a few
rate corrections at the time-keeping nodes and the SRM,
cluster precision improves from 11 microticks to 4 mi-
croticks. Figure 4 shows the experimental results for Case
II.

After about � �G� � simulation time (column 3), the PRM
(node 2) suffers from a drift rate failure such that its local
clock speeds up and changes its rate by 	D� � ! � �"� within a
duration of � �,�0F � . The time-keeping nodes modify their
MMCF values to maintain agreement between their clock
rates and the clock rate of the PRM (column 3, window 2).
Compared to the last experiment, the rate change of the
PRM is one order of magnitude smaller, small enough to
prevent the PRM to encounter a clock synchronization er-
ror. However, the PRM remains synchronized and slowly
becomes faster and faster, drawing the clock rates of the
time-keeping nodes towards its own clock rate (window
2, columns 4-7). As the clock rate change of the PRM
is rather smooth, there is no significant deterioration in
precision during this phase (window 1, columns 4-7). At

about � ���"C � simulation time, a majority of time-keeping
nodes encounters a violation of their MMCF boundaries
and agree on the SRM (node 3) to become the new PRM
according to the rate-master voting algorithm (Section 5).
The former PRM (node 2) detects that it is no longer trust-
ed by a majority of nodes and fails (column 7). The new
PRM stepwise returns to its original rate by periodically
adding a constant value of 0.005 to its MMCF fraction-
al part (MMCF values rising in window 2, column 7) until
its nominal MMCF value is attained at about 	 �,C � simula-
tion time (column 10). The time-keeping nodes also adjust
their MMCF values according to this rate change of the
new PRM. The former PRM reintegrates at 	 �<�?� � simu-
lation time (column 7), starts with an initial MMCF value
of �
� � ��� (determined during a measurement phase before
reintegration) and follows the clock rate of the PRM (node
3). At 	 �,C � simulation time the clock rates of the time-
keeping nodes are calibrated to the clock rate of the new
PRM (node 3) and do not change significantly till the end
of simulation (window 2). Eventually, the cluster reaches
and maintains a stable precision of 4 microticks.

In this experiment, the decision to stop operation was
met by the majority of nodes based on the rate-master
membership and not by the PRM itself.

7. Tolerating Arbitrary Failures - Hardware
Experiments

The rate correction algorithm is evaluated using the
Time-Triggered Architecture as a case study [11]. We
have performed experiments with clusters with 6 TTA n-
odes. In the following, we present two representative sce-
narios of rate-master failures:

Case I: A fault causes a consistently detectable failure of
a rate-master node.

Case II: The drift rate of a rate-master node slowly
changes.

7.1. Case I
The target setup consists of a cluster of 6 nodes, us-

ing bus interconnection topology. Nodes are numbered

221

Figure 4. Clock drift rate failure of the PRM

from 0 to 5. One TDMA round consists of 6 slots and
has a length of 15 milliseconds. The clock state synchro-
nization interval is � � TDMA = 30 milliseconds. Because
the clock drift rates of the nodes used in the hardware ex-
periments are in the range of ��� ��� s/s, we have chosen
a longer synchronization interval of two TDMA rounds
to be able to observe a more significant deviation of the
slowest and the fastest clock between two state synchro-
nization instants (i.e. more than 10 microticks) to be able
to illustrate the performance of the rate correction algo-
rithm. The duration of the nominal microtick (� t) is 50
nanoseconds, and the initial value of the MMCF is 20,
therefore the nominal duration of one macrotick (MT) is
� � 	 . ����� ��� is chosen as the primary rate-master node,
and " ��� � � is chosen as the secondary rate-master node.
The behavior of the presented algorithm is investigated in
the presence of faults. We have performed several fault
injection experiments, in which the rate-master node fails
in a fail-silent manner (consistently detected by all nodes).
One of the experiments is shown in Figure 5.

In this experiment the clock-rates of the nodes are cor-
rected based on the PRM (" ��� �	�). The horizontal axis in
Figure 5 presents the elapsed time in terms of TDMA slots
(2.5 ms). The upper part of Figure 5 presents the precision
and the lower part of Figure 5 shows the difference of the
calculated MMCF values from the nominal value of nodes
0,1 and 2.

It can be seen in Figure 5 that during the first 30 slots
(i.e. before rate correction is performed) the precision of
the cluster is 16 ��� . After the start of clock rate correction
the precision of the cluster improves to 6 ��� .

The PRM node fails in a fail-silent manner in TDMA
slot 500 (Figure 5). As the time-keeping nodes and the S-
RM detect the failure of the rate-master, they select " ��� � �
as PRM. As the new PRM has changed its rate according
to the previous PRM (" ��� �
� , before becoming a PRM),
it starts to stepwise change its rate until its nominal rate
has been reached. Other nodes adjust their clock rates to

the rate of the new PRM (" ��� � �).
����� ��� reintegrates

in TDMA slot 550. No changes in cluster precision are
observed during the reintegration of the rate-master node
(" ��� �	�).

It can be seen that the MMCF of " ��� � � changes back
to its nominal rate. The difference of the MMCF to the
nominal MMCF value is 1, because the chosen step size
for the MMCF change is 2.

-15

-10

-5

5

10

1 43 85 127 169 211 253 295 337 379 421 463 505 547 589 631 673 715 757 799 841 883 925

Precision

0

2

4

6

8

10

12

14

16

18

1 43 85 127 169 211 253 295 337 379 421 463 505 547 589 631 673 715 757 799 841 883 925

Rcorr 1

Rcorr 0

Rcorr 2

Deviation from nominal MMCF

Figure 5. Fail-silent failure of PRM

7.2. Case II
The setup is the same as for ��
 	���� . We injected fault-

s into the PRM to cause drift rate changes of the PRM.
Because of the injected faults the PRM (" ��� ���) starts
to change its rate slowly starting from TDMA slot 450
(Figure 6). The clock rates of the time-keeping nodes

222

and the SRM also change because they try to follow the
rate changes of the PRM (" ��� ���). The time-keeping n-
odes and the SRM node follow the PRM until their rate
changes have reached the allowed limit. As soon as this
limit is reached, the nodes vote for the secondary rate-
master (" ��� � �) to become the new PRM, but continue to
adjust their rates to the current PRM (" ��� � �) until " ��� � �
gets a majority of votes. When the majority of votes is for
the secondary rate-master (" ��� � �), all nodes classify the
secondary rate-master as new PRM and the previous PRM
as the new SRM (handover). The new PRM (" ��� � �) now
slowly changes its current MMCF value back to the nom-
inal MMCF value.

In our experiments we have considered the worst case
with respect to the drift rates of the nodes: " ��� � � node
is the fastest node in the cluster, whereas " ��� � � is the
slowest node in the cluster. Usually both rate-master n-
odes have similar clock drift rates, as they are nodes with
high-quality oscillators.

-10

0

10

20

30

40

50

1 79 157 235 313 391 469 547 625 703 781 859 937 1015 1093 1171

Precision

0

2

4

6

8

10

12

14

68 135 202 269 336 403 470 537 604 671 738 805 872 939 1006 1073 1140

Rcorr 1

Rcorr 0

Rcorr 2

Deviation from nominal MMCF

Figure 6. Clock drift rate failure of PRM

7.3. Discussion

Our system model reduces the arbitrary failure modes
of the rate-master nodes to a restricted set of failure
modes. Therefore, within our system model we have to
consider only this reduced set of failure modes in order
to be able to tolerate arbitrary failure modes of the rate-
master nodes. By means of experiments we have shown
that the proposed algorithm is capable of handling arbi-
trary rate-master node failures that can occur within our
system model.

8. Related Work

Fetzer and Cristian in [5] present the CS algorithm for
the integration of internal and external clock synchroniza-
tion, where a set of reference time servers provide access
to external reference time for non-reference time servers
which are running virtual clocks.

A synchronization strategy for external synchroniza-
tion of multi-cluster real-time systems based on clock s-
tate correction is presented in [12]. Experimental results
of the implementation of a similar mechanism using a G-
PS receiver as a reference time server are presented in [4].

Verissimo et al. propose a synchronization mechanis-
m designed for large-scale systems that are divided into
sub-networks [22]. Each sub-network has at least one G-
PS node that has access to GPS time and that provides
reference time to the other nodes within its network.

The network time protocol NTP [13] is a synchroniza-
tion strategy for large, heterogenous systems like the in-
ternet. NTP is organized hierarchically, i.e. one or more
primary servers synchronize directly to external reference
time and secondary servers synchronize either to these pri-
mary servers or to other secondary servers.

Schmid in [17] presents a clock validation technique
for establishing a highly accurate global time in fault-
tolerant, large-scale distributed real-time systems that pro-
vides a precise system time that also relates to an external
time standard with high accuracy.

The approach described in [19] presents an interval-
based fault-tolerant algorithm for synchronizing both state
and rate of clocks in a distributed system. The algorithm
presented in [19] requires the exchange of synchronization
messages among the nodes in the cluster.

The FlexRay protocol [6] uses a combination of clock
state and clock rate correction to improve the precision of
the global time base in distributed automotive application-
s. All nodes adjust their clock drift rate according to their
deviation from the internally synchronized global time.

Schmuck and Cristian in [18] introduce the notion of
clock amortization where the clock state correction term is
not instantaneously applied to the local clocks, but spread
over parts of or over the whole synchronization interval.

In our approach we are considering a system that us-
es a synchronous model of communication (using a T-
DMA scheme with a-priori knowledge of message send
times). For the clock rate correction no additional mes-
sages or overhead in the message is introduced. Our so-
lution is applicable for all synchronous systems that ex-
change messages using a TDMA scheme in broadcast
mode (e.g TTP/C, FlexRay [6], TT Ethernet [9]).

A detailed discussion that compares our approach to
the related work presented in this section is given in [10].

9. Conclusion

In this paper we presented an approach for maintaining
a central clock rate correction algorithm in the case of ar-

223

bitrary failures of a rate-master clock. The presented sys-
tem model restricts the manifestation of arbitrary failures
such that a replication of the rate-master clock together
with a rate-master membership algorithm is sufficient to
tolerate arbitrary node failures.

As the implementation, debugging and monitoring of
the special properties of the presented mechanisms in
hardware is a very time-consuming task, we have first in-
vestigated the algorithm using a simulation model. Af-
ter the algorithm has been developed and validated in the
simulation environment, it was implemented in hardware
to validate its applicability in a real environment with real
oscillators.

By means of simulation and hardware experiments we
have shown that using this approach it is possible to es-
tablish and maintain a global time base of high precision
in the presence of arbitrary node failures in the presented
system model.

Acknowledgments This work has been supported by
the FWF project P16638 and the European IST project
DECOS under project No. IST-511764.

References

[1] A. Ademaj. Slightly-Off-specification Failures in the
Time-Triggered Architecture. In Seventh Annual IEEE
Workshop on High-Level Design Validation and Test
(HLDVT02), pages 7–12, Cannes, France, Oct. 2002.

[2] A. Ademaj, H. Sivencrona, G. Bauer, and J. Torin. Evalua-
tion of Fault Handling of the Time-Triggered Architecture
with Bus and Star Topology. In IEEE International Con-
ference on Dependable Systems and Networks (DSN 2003),
pages 123–132, San Francisco, Cal, USA, June 2003.

[3] G. Bauer and M. Paulitsch. An Investigation of Member-
ship and Clique Avoidance in TTP/C. In Proceedings 19th
IEEE Symposium on Reliable Distributed Systems (SRD-
S’00), pages 118–124, Nürnberg, Germany, Oct. 2000.

[4] G. Bauer and M. Paulitsch. External Clock Synchroniza-
tion in the TTA. Research Report 3/2000, Technische Uni-
versität Wien, Institut für Technische Informatik, Treitlstr.
1-3/182-1, 1040 Vienna, Austria, 2000.

[5] C. Fetzer and F. Christian. Integrating External and Internal
Clock Synchronization. Real-Time Systems, 12(2):123–
171, 1997.

[6] FlexRay-Group. FlexRay Communications System Proto-
col Specification Version 2.1. Technical report, FlexRay
Consortium, 2005. Available at: http://www.flexray.com.

[7] A. Hanzlik. SIDERA - a Simulation Model for Time-
Triggered Distributed Real-Time Systems. International
Review on Computers and Software (IRECOS), 1(3):181–
193, Nov. 2006. Praise Worthy Prize.

[8] H. Kopetz. Real-Time Systems: Design Principles for Dis-
tributed Embedded Applications. Kluwer Academic Pub-
lishers, 1997. ISBN 0-7923-9894-7.

[9] H. Kopetz, A. Ademaj, P. Grillinger, and K. Steinham-
mer. The Time-Triggered Ethernet (TTE) Design. In 8th
IEEE International Symposium on Object-oriented Real-
time distributed Computing (ISORC), Seattle, Washington,
May 2005.

[10] H. Kopetz, A. Ademaj, and A. Hanzlik. Integration of In-
ternal and External Clock Synchronization by the Combi-
nation of Clock-State and Clock-Rate Correction in Fault-
Tolerant Distributed Systems. In The 25th IEEE Inter-
national Real-Time Systems Symposium, Lisbon, Portugal,
Dec. 2004, pages 415–425, Dec. 2004.

[11] H. Kopetz and G. Bauer. The Time-Triggered Architecture.
Proceedings of the IEEE, Special Issue on Modeling and
Design of Embedded Software, 91(1):112–126, Jan. 2003.

[12] H. Kopetz, A. Krüger, D. Millinger, and A. Schedl. A
Synchronization Strategy for a Time-Triggered Multiclus-
ter Real-Time System. 14th IEEE Symposium on Reliable
Distributed Systems, Apr. 1995.

[13] D. L. Mills. Internet Time Synchronization: The Network
Time Protocol. In Zhonghua Yang and T. Anthony Mars-
land (Eds.), Global States and Time in Distributed Systems,
IEEE Computer Society Press. 1994.

[14] B. Pauli, A. Meyna, and P. Heitmann. Reliability of Elec-
tronic Components and Control Units in Motor Vehicle
Applications. Electronic Systems for Vehicles, pages 1009–
1024, 1998.

[15] H. Pfeifer. Formal Verification of the TTP Group Mem-
bership Algorithm. In Formal Techniques for Distribut-
ed System Development, FORTE/PSTV 2000, IFIP TC6
WG6.1 Joint International Conference on Formal Descrip-
tion Techniques for Distributed Systems and Communica-
tion Protocols (FORTE XIII) and Protocol Specification,
Testing and Verification (PSTV XX), October 10-13, 2000,
Pisa, Italy, pages 3–18, 2000.

[16] H. Pfeifer, D. Schwier, and F. W. von Henke. Formal Veri-
fication for Time-Triggered Clock Synchronization. In De-
pendable Computing for Critical Applications (DCCA-7),
pages 207–226, San Jose, USA, Jan. 1999.

[17] U. Schmid. Synchronized Universal Time Coordinated
for Distributed Real-Time Systems. Control Engineering
Practice, 6(3):877–884, 1995.

[18] F. Schmuck and F. Cristian. Continuous Clock Amortiza-
tion need not affect the Precision of a Clock Synchroniza-
tion Algorithm. In Proceedings of the ninth annual ACM
symposium on Principles of distributed computing, pages
504–511, Quebec City, Quebec, Canada, 1990.

[19] K. Schossmaier and B. Weiss. An Algorithm for Fault-
Tolerant Clock State and Rate Synchronization. In Sympo-
sium on Reliable Distributed Systems, Lausanne, Switzer-
land, pages 36–47, Oct. 1999.

[20] C. Temple. Avoiding the Babbling-Idiot Failure in a Time-
Triggered Communication System. In 28th International
Symposium on Fault-Tolerant Computing, volume FTCS-
28, pages 218–227, Munich, Germany, June 1998. IEEE
Press.

[21] TTTech. Time-Triggered Protocol, High Level Specifica-
tion Document. Vienna, Austia, D-032-S-10-28 Available
at http://www.tttech.com, 2002.

[22] P. Verissimo, L. Rodrigues, and A. Casimiro. Cesium-
Spray: a Precise and Accurate Global Time Service for
Large-scale Systems. In Special Issue on the Challenge
of Global Time in Large-Scale Distributed Real-Time Sys-
tems. Journal of Real-Time Systems, 12(3):243–294, 1997.

224

Exploiting Slack for Scheduling Dependent, Distributable
Real-Time Threads in Unreliable Networks

Kai Han?, Binoy Ravindran?, and E. D. Jensen‡
?ECE Dept., Virginia Tech
Blacksburg, VA 24061, USA
{khan05,binoy}@vt.edu

‡The MITRE Corporation
Bedford, MA 01730, USA

jensen@mitre.org

Abstract

We consider scheduling distributable real-time
threads with dependencies (e.g., due to synchro-
nization) in unreliable networks, in the presence
of node/link failures, message losses, and dynamic
node joins and departures. We present a distrib-
uted real-time scheduling algorithm called RTG-
DS. The algorithm uses a gossip-style protocol for
discovering eligible nodes, node/link failures, and
message losses. In scheduling local thread sec-
tions, it exploits thread slacks to optimize the time
available for gossiping. We prove that RTG-DS
probabilistically bounds distributed blocking times
and distributed deadlock detection and notification
times. Thereby, it probabilistically satisfies end-
to-end thread time constraints. We also prove that
RTG-DS probabilistically bounds failure-exception
notification times for failed threads (so that their
partially executed sections can be aborted). Our
simulation results validate RTG-DS’s effective-
ness.

1. Introduction

Many distributed systems are most naturally
structured as a multiplicity of causally-dependent,
flows of execution within and among objects, asyn-
chronously and concurrently. The causal flow of
execution can be a sequence such as one that
is caused by a series of nested, remote method
invocations. It can also be caused by a series
of chained, publication and subscription events,
caused due to topical data dependencies—e.g.,
publication of topic A depends on subscription of
topic B; B’s publication, in turn, depends on sub-
scription of topic C, and so on. Since partial fail-
ures are the common case rather than the excep-
tion in some distributed systems, those applica-
tions desire the sequential execution flow abstrac-
tion to exhibit application-specific, end-to-end in-
tegrity properties. Real-time distributed applica-
tions also require (application-specific) end-to-end

timeliness properties for the abstraction, in addi-
tion to end-to-end integrity.

An abstraction for programming causal, multi-
node sequential behaviors and for enforcing
end-to-end properties on them is distributable
threads [1, 9]. They first appeared in the Alpha
OS [9], and now constitute the first-class program-
ming and scheduling abstraction for multi-node se-
quential behaviors in Sun’s emerging Distributed
Real-Time Specification for Java [1]. In the rest
of the paper, we will refer to distributable threads
as threads, unless qualified.

Object A
 Object D
Object B

DT1

Object C

DT2

DT3

1-Way

Invocation

Figure 1. Distributable Threads

A thread is a single logically distinct (i.e., hav-
ing a globally unique ID) locus of control flow
movement that extends and retracts through local
and (potentially) remote objects. A thread carries
its execution context as it transits node bound-
aries, including its scheduling parameters (e.g.,
time constraints, execution time), identity, and se-
curity credentials. The propagated thread context
is intended to be used by node schedulers for re-
solving all node-local resource contention among
threads such as that for node’s physical and log-
ical resources (e.g., CPU, I/O, locks), according
to a discipline that provides acceptably optimal
system-wide timeliness. Thus, threads constitute
the abstraction for concurrency and scheduling.
Figure 1 shows the execution of three threads [10].

We consider threads as the programming
and scheduling abstraction in unreliable networks
(e.g., those without a fixed network infrastructure,
including mobile, ad hoc and wireless networks),
in the presence of application- and network-

225

induced uncertainties. The uncertainties include
resource overloads (due to context-dependent
thread execution times), arbitrary thread arrivals,
arbitrary node failures, and transient and perma-
nent link failures (causing varying packet drop rate
behaviors). Despite the uncertainties, such ap-
plications desire strong assurances on end-to-end
thread timeliness behavior. Probabilistic timing
assurances are often appropriate.

When threads mutually-exclusively share non-
CPU resources (e.g., disks, NICs) at a node using
lock-based synchronizers, distributed dependen-
cies can arise, causing distributed blockings and
deadlocks. For example, a thread A may lock a
resource on a node and may make a remote invoca-
tion, carrying the lock with it. Thread B may later
request the same lock and will be blocked, until A
unwinds back from its remote invocation and re-
leases the lock. Unbounded blocking time can de-
grade system-wide timeliness optimality—e.g., B
may have a greater urgency than A. Further, dis-
tributed deadlocks can occur when threads A and
B block on each other for remotely held locks. Un-
bounded deadlock detection and resolution times
can also degrade timeliness optimality.

When a thread encounters a node/link failure,
partially executed thread sections may be blocked
on nodes that are upstream and downstream of
the failure point, waiting for the thread to un-
wind back from invocations that are further down-
stream to them. Such sections must be notified of
the thread failure, so that they can respond with
application-specific exception handling actions—
e.g., releasing handlers for execution that abort
the sections, after releasing and rolling-back re-
sources held by them to safe states (under a termi-
nation model). Untimely failure notifications can
degrade timeliness optimality—e.g., threads unaf-
fected by a partial failure may become indefinitely
blocked by sections of failed threads.

In this paper, we present an algorithm
called Real-Time Gossip algorithm for Dependent
threads with Slack scheduling (or RTG-DS) that
provides assurances on thread time constraint sat-
isfactions in the presence of distributed depen-
dencies. We prove that thread blocking times
and deadlock detection and notification times are
probabilistically bounded under RTG-DS. Con-
sequently, we prove that thread time constraint
satisfactions’ are probabilistically bounded. We
also prove that RTG-DS probabilistically bounds
failure-exception notification times for partially
executed sections of failed threads. Our simula-
tion studies verify the algorithm’s effectiveness.

End-to-end real-time scheduling has been pre-
viously studied (e.g., [2, 15]), but these are lim-
ited to fixed infrastructure networks. Real-time
assurances in unreliable networks have been stud-

ied (e.g., [6, 8]), but these exclude dependencies,
which is precisely what RTG-DS targets.

Our work builds upon our prior work in [4]
that presents the RTG-D algorithm. While RTG-
DS uses a slack-based thread scheduling approach,
RTG-D uses the Dependent Activity Scheduling
Algorithm (DASA) in [3] for thread scheduling.
We compare RTG-DS with RTG-D in this pa-
per and illustrate RTG-DS’s superiority. Fur-
ther, RTG-D does not consider deadlock detec-
tion and notification, and failure-exception noti-
fication, while RTG-DS provides probabilistic as-
surances on such notification times. Thus, the pa-
per’s contribution is the RTG-DS that provides
probabilistic end-to-end timing assurances (time
constraint satisfactions and failure recovery times)
in the presence of distributed dependencies.

The rest of the paper is organized as follows: In
Section 2, we discuss the models of RTG-DS and
state the algorithm objectives. Section 3 presents
RTG-DS. We analyze RTG-DS in Section 4. In
Section 5, we report our simulation studies. We
conclude the paper and identify future work in
Section 6.

2. Models and Algorithm Objectives

2.1. Task Model: Thread Abstraction
Distributable threads execute in local and re-

mote objects by location-independent invocations
and returns. A thread begins its execution by in-
voking an object operation. The object and the
operation are specified when the thread is created.
The portion of a thread executing an object opera-
tion is called a thread segment. Thus, a thread can
be viewed as being composed of a concatenation
of thread segments.

A thread’s initial segment is called its root and
its most recent segment is called its head. The
head of a thread is the only segment that is ac-
tive. A thread can also be viewed as being com-
posed of a sequence of sections, where a section is a
maximal length sequence of contiguous thread seg-
ments on a node. A section’s first segment results
from an invocation from another node, and its last
segment performs a remote invocation. More de-
tails on threads can be found in [1,9, 10].

Execution time estimates of the sections of a
thread are assumed to be known. The time es-
timate includes that of the section’s normal code
and its exception handler code, and can be vi-
olated at run-time (e.g., due to context depen-
dence).

Each object transited by threads is uniquely
hosted by a node. Threads may be created at
arbitrary times at a node. Upon creation, the
number of objects (and the object IDs) on which
they will make subsequent invocations are known.

226

The identifier of the nodes hosting the objects,
however, are unknown at thread creation time, as
nodes may dynamically fail, or join, or leave the
system. Thus, eligible nodes have to be dynami-
cally discovered as thread execution progresses.

The sequence of remote invocations and returns
made by a thread can be estimated by analyzing
the thread code. The total number of sections of
a thread is thus assumed to be known.

The application is thus comprised of a set of
threads, denoted T = {T1, T2, T3, . . .}.

2.2. Timeliness Model
Each thread’s time constraint is specified using

a time/utility function (or TUF) [5]. A TUF spec-
ifies the utility of completing a thread as a function
of that thread’s completion time. Figure 2 shows
three example downward “step” shaped TUFs.

-
Time

6Utility

0

Figure 2. Step
TUFs

A thread’s TUF decouples its
importance and urgency—
i.e., urgency is measured as
a deadline on the X-axis,
and importance is denoted
by utility on the Y-axis. This
decoupling is significant, as
a thread’s urgency is some-
times orthogonal to its rela-
tive importance—e.g., the most urgent thread is
the least important, and vice versa.

A thread Ti’s TUF is denoted as Ui (t). Classi-
cal deadline is unit-valued—i.e., Ui(t) = {0, 1},
since importance is not considered. Downward
step TUFs generalize classical deadlines where
Ui(t) = {0, {n}}. We focus on downward step
TUFs, and denote the maximum, constant utility
of a TUF Ui (), simply as Ui. Each TUF has an
initial time Ii, which is the earliest time for which
the TUF is defined, and a termination time Xi,
which, for a downward step TUF, is its discon-
tinuity point. Further, we assume that Ui (t) >
0,∀t ∈ [Ii, Xi] and Ui (t) = 0, ∀t /∈ [Ii, Xi] ,∀i.

When thread time constraints are expressed
with TUFs, the scheduling optimality criteria are
based on maximizing accrued thread utility—e.g.,
maximizing the sum of the threads’ attained util-
ities. Such criteria are called utility accrual (or
UA) criteria, and sequencing (scheduling, dis-
patching) algorithms that consider UA criteria
are called UA sequencing algorithms. The cri-
teria may also include other factors such as re-
source dependencies. Several UA algorithms such
as DASA are presented in the literature. We de-
rive RTG-DS’s local thread section scheduling al-
gorithm from DASA, and compare it with DASA.

2.3. Exceptions and Abortion Model
If a thread has not completed by its termination

time, a failure-exception is raised, and exception

handlers are immediately released and executed
for aborting all partially executed thread sections.
The handlers are assumed to perform the neces-
sary compensations to avoid inconsistencies (e.g.,
rolling back resources held by the sections to safe
states) and other actions that are required for the
safety and stability of the external state.

Note that once a thread violates its termination
time, the scheduler at that node will immediately
raise the failure exception. At all other (upstream)
nodes, a notification for the exception must be de-
livered. RTG-DS delivers those notifications.

We consider a similar abortion model for thread
failures, for resolving deadlocks, and for resolving
thread blocks when a blocking thread is aborted
to obtain greater utility (similar to transactional
abortions [14]). The scheduler at the node where
these situations are detected will raise the failure
exception. At all other (upstream) nodes, where
the thread has partially executed, RTG-DS deliv-
ers the failure exception.

2.4. Resource Model
Thread sections can access non-CPU resources

(e.g., disks, NICs) located at their nodes during
their execution, which are serially reusable. Simi-
lar to fixed-priority resource access protocols [13]
and that for TUF algorithms (e.g., [3]), we con-
sider a single-unit resource model. Resources can
be shared under mutual exclusion constraints. A
thread may request multiple shared resources dur-
ing its lifetime. The requested time intervals for
holding resources may be nested, overlapped or
disjoint. Threads explicitly release all granted re-
sources before the end of their executions.

All resource request/release pairs are assumed
to be confined within nodes. Thus, a thread can-
not lock a resource on one node and release it on
another node. Note that once a thread locks a re-
source on a node, it can make remote invocations
(carrying the lock with it). Since request/release
pairs are confined within nodes, the lock is re-
leased after the thread’s head returns back to the
node where the lock was acquired.

Threads are assumed to access resources
arbitrarily—i.e., which resources will be needed by
which threads, and in what order is not a-priori
known. Consequently, we consider a deadlock de-
tection and resolution strategy. A deadlock is re-
solved by aborting a thread involved in the dead-
lock, by executing the thread’s handler.

2.5. System Model
The system consists of a set of processing com-

ponents, generically referred to as nodes, denoted
N = {n1, n2, n3, . . .}, communicating through
bidirectional wireless links. A basic unicast rout-
ing protocol such as DSR is assumed for packet

227

transmission. MAC-layer packet scheduling is as-
sumed to be done by a CSMA/CA-like protocol
(e.g., IEEE 802.11). Node clocks are synchro-
nized using an algorithm such as [12]. Nodes may
dynamically join or leave the network. We as-
sume that the network communication delay fol-
lows some non-negative probability distribution—
e.g., the Gamma distribution. Nodes may fail
by crashing, links may fail transiently or perma-
nently, and messages may be lost, all arbitrarily.

2.6. Objectives
Our goal is to design an algorithm that can

schedule threads with probabilistic termination-
time satisfactions in the presence of (distributed)
blockings and deadlocks. We also desire to max-
imize the total thread accrued utility. Moreover,
the time needed to notify partially executed sec-
tions of a failed thread (so that handlers for abort-
ing thread sections can be released) must also be
probabilistically bounded.

Note that maximizing the total utility sub-
sumes meeting all termination times as a special
case. When all termination times are met (dur-
ing underloads), the total accrued utility is the
optimum possible. During overloads, the goal is
to maximize the total utility as much as possible,
thereby completing as many important threads as
possible, irrespective of their urgency.

3. The RTG-DS Algorithm

We first overview RTG-DS. When a thread ar-
rives at a node, RTG-DS decomposes the thread’s
end-to-end TUF into a set of local TUFs, one for
each of the sections of the thread. The decom-
position is done using the thread’s scheduling pa-
rameters including its end-to-end TUF, number of
sections, section execution time estimates that the
thread presents to RTG-DS upon arrival. Local
TUFs are used for thread scheduling on nodes.

When a thread completes its execution on
a node, RTG-DS must determine the thread’s
next destination node. In order to be robust
against node/link failures, message looses, and
node joins/departures, RTG-DS uses a gossip-
style protocol (e.g., [7]). The algorithm starts a
series of synchronous gossip rounds. During each
round, the node randomly selects a set of neighbor
nodes and queries whether they can execute the
thread’s next section (as part of the thread’s next
invocation or return from its current invocation).
The number of gossip rounds, their durations, and
the number of neighbor nodes are derived from the
local TUF’s slack, as they directly affect the com-
munication time incurred by gossip, and thereby
affect following sections’ available local slack.

When a node receives a gossip message, it

checks whether it hosts the requested section, and
can complete it satisfying its local TUF (propa-
gated with the gossip message). If so, it replies
back to the node where the gossip originated (re-
ferred to as the original node). If not, the node
starts a series of gossip rounds and sends gossip
messages (like the original node).

If the original node receives a reply from a node
before the end of its gossip rounds, the thread is
allowed to make an invocation on, or return to
that node, and thread execution continues. If a
reply is not received, the node regards that fur-
ther thread execution is not possible (due to pos-
sible node/link failures or node departures), and
releases the section’s exception handler for execu-
tion. A series of gossip rounds is also immediately
started to deliver the failure-exception notification
to all upstream sections of the thread, so that han-
dlers may be released on those nodes.

We now discuss the key aspects of RTG-DS.

3.1. Building Local Scheduling Parameters

RTG-DS decomposes a thread’s end-to-end
TUF based on the execution time estimates of the
thread’s sections and the TUF termination time.
Let a thread Ti arrive at a node nj at time t.
Let Ti’s total execution time of all the thread sec-
tions (including the local section on nj) be Eri,
the total remaining slack time be Sri, the number
of remaining thread sections (including the local
section on nj) be Nri, and the execution time of
the local section be Eri,j . RTG-DS computes a
local slack time LSi,j for Ti as LSi,j = Sri

Nri−1 , if
Nri > 1; LSi,j = Sri, if 0 6 Nri 6 1.

RTG-DS determines the local slack for a thread
in a way that allows the remaining thread sections
to have a fair chance to complete their execution,
given the current knowledge of section execution-
time estimates, in the following way. When the
execution of Ti’s current section is completed at
the node nj , RTG-DS determines the next node
for executing the thread’s next section, through a
set of gossip rounds. The network communication
delay incurred by RTG-DS for the gossip rounds
must be limited to at most the local slack time
LSi,j . The algorithm equally divides the total re-
maining slack time to give the remaining thread
sections a fair chance to complete their execution.

The local slack is used to compute a local ter-
mination time for the thread section. The lo-
cal termination time for a thread Ti is given by
LXi,j = t + Eri,j + LSi,j . The local termina-
tion time is used to test for schedule feasibility,
while constructing local section schedules (we dis-
cuss this in Section 3.3).

228

3.2. Determining Next Destination Node
Once the execution of a section completes on

a node, RTG-DS determines the node for execut-
ing the next section of the thread, through a set
of gossip rounds during which the node randomly
multicasts with other nodes in the network. RTG-
DS determines the number of rounds for “gossip-
ing” (i.e., sending messages to randomly selected
nodes during a single gossip round) as follows. Let
the execution of Ti’s local section on node nj com-
plete at time tc. Ti’s remaining local slack time is
given by LSri,j = LXi,j − tc.

Note that LSri,j is not always equal to LSi,j ,
due to the interference that the thread section
suffers from other sections on the node. Thus,
LSri,j ≤ LSi,j . With a gossip period Ψ, RTG-
DS determines the number of gossip rounds be-
fore LXi,j as round = LSri,j/Ψ. RTG-DS also
determines the number of messages that must be
sent during each gossip round, called fan out, for
determining the next node.

RTG-DS divides the system node members
into: a) head nodes that execute thread sections,
and b) intermediate nodes that propagate received
gossip messages to other members.

3.3. Scheduling Local Sections
RTG-DS constructs local section schedules with

the goals of (a) maximizing the total attained util-
ity from all local sections, (b) maximizing the
number of local sections meeting their local termi-
nation times, and (c) increasing the likelihood for
threads to meet thread termination times, while
respecting dependencies.

The algorithm’s scheduling events include sec-
tion arrivals and departures, and lock and unlock
requests. When the algorithm is invoked, it first
builds the dependency list of each section by fol-
lowing the chain of resource request and owner-
ship. A section i is dependent upon a section j, if i
needs a resource which is currently held by j. De-
pendencies can be local—i.e., the requested lock
is locally held, or distributed—i.e., the requested
lock is remotely held.

The algorithm then checks for deadlocks, which
can be local or distributed (e.g., two threads are
blocked on their respective nodes for locks which
are remotely held by the other). Deadlocks are
detected by the presence of a cycle in the resource
graph (a necessary condition). Deadlocks are re-
solved by aborting that section in the cycle, which
will likely contribute the least utility. That section
is aborted by executing its handler, which will per-
form roll-backs/compensations.

Now, the algorithm examines sections in the
order of non-increasing potential utility densities
(or PUDs). A section’s PUD is the total utility
accrued by immediately executing it and its de-

pendents divided by the aggregate execution time
spent (i.e., the section’s “return on investment”).

The algorithm inserts each examined section
and its dependents into a tentative schedule that is
ordered by local slacks, least-slack-first (or LSF).
The insertion also respects each section’s depen-
dency order. After insertion, the feasibility of the
schedule is checked. If infeasible, the inserted sec-
tion and its dependents are removed. The process
is repeated until all sections are examined. Then,
RTG-DS selects the least-slack section for execu-
tion. If the selected section is remote (because
it holds a locally requested lock), the algorithm
will speed up it’s execution by adding all local de-
pendents’ utilities and propagating the aggregate
value to it (by gossiping).

We now explain key steps of the algorithm.

3.3.1 Arranging Sections by PUD

The local scheduling algorithm examines sections
in non-increasing PUD order to maximize the to-
tal accrued utility. Section i’s PUD, PUDi =
Ui+U(Dep(i))
ci+c(Dep(i)) , where Ui is i’s utility, ci is i’s ex-

ecution time, and Dep(i) is the set of sections
on which i is directly or transitively dependent.
Note that PUDi can change over time, since ci

and Dep(i) may change over time.

3.3.2 Determining Schedule Feasibility

RTG-DS determines a node’s processor load ρR by
considering that node’s own processor bandwidth,
and also by leaving a necessary gossip time interval
for each thread section. Let t be the current time,
and di be the local termination time of section i.
ρR in time interval [t, di] is given by:

ρRi
(t) =

∑
dk≤di

ck(t) + Tcomm

(di − t)
, Tcomm ≥ LCD

where ck(t) is section k’s remaining execution time
with dk ≤ di, and LCD is the lower bound of net-
work communication delay. Different from com-
puting ρ on a single node, RTG-DS adds an ad-
ditional communication time interval, Tcomm, to
each ck(t). If a section is the last one of its parent
thread, there is no need to consider gossiping time
and Tcomm = 0. Without adding Tcomm, a sec-
tion may successfully complete, but may not have
enough time to find the next destination node.
Thus, not only that section’s parent thread will
be aborted in the end, but also will waste proces-
sor bandwidth, which could otherwise be used for
other threads’ sections.

Suppose there are n sections on a node, and let
dn be the longest local termination time. Then,
the total load in [t, dn] is computed as: ρR(t) =
maxρRi

(t),∀i.

229

3.3.3 Least-Slack Section First (LSF)

RTG-DS selects local sections with the lesser (lo-
cal) slack time earlier for execution. This ensures
that greater remaining slack time is available for
threads to find their next destination nodes.

Figure 3. Slack Under DASA

For example, consider five sections with dif-
ferent local slack times. Figure 3 shows slacks
of the sections before and after execution under
DASA, on a single node. In the worst case, DASA
will schedule sections along the decreasing order
of slacks, as shown in Figure 3. Assuming that
the lower bound of network communication time,
LCD, is 0.5 time unit, section 5 has only 1 time
unit left to gossip (its original local slack is 3 time
units), which makes it more difficult to make a suc-
cessful invocation on (or return to) another node.

Figure 4. Slack Under RTG-DS

RTG-DS avoids this with the LSF order. In
Figure 4, section 5’s remaining local slack remains
unchanged after execution, while section 1’s slack
decreases from 7 to 5 time units, which will slightly
decrease its gossip time. Note that RTG-DS gains
the same total slack time in these five sections
as DASA does, but it allocates slack time more
evenly, thereby seeks to give each section an equal
chance to complete gossiping.

When checking feasibility, it is important to re-
spect dependencies among sections. For example,
section j may depend on section i, thus i must

be executed before j to respect the dependency.
However, under LSri > LSrj , j will be arranged
before i. To resolve this conflict without breaking
the LSF order, RTG-DS “tightens” i’s local slack
time to the same as j’s.

RTG-DS’s local section scheduling algorithm is
described in Algorithm 1.

Algorithm 1: RTG-DS’s Local Section
Scheduling Algorithm

Create an empty schedule φ;1

for each section i in the local ready queue do2

Compute Dep(i), detecting and resolving3

deadlocks if any;
Compute PUDi;4

Sort sections in ready queue according to PUDs;5

for each section i in decreasing PUD order do6

φ̂ = φ; /* get a copy for tentative changes */7

if i /∈ φ then8

CurrentLST = LST(i); /* LST(i) returns9

the local slack of i */
for each PrevS in Dep(i) do10

if PrevS ∈ φ then11

if LST(PrevS) ≤ CurrentLST12

then
Continue;13

else14

LST(PrevS) = CurrentLST;15

Remove(PrevS, φ̂, LST); /*16

Remove PrevS from φ̂ at
position LST */

Insert(PrevS, φ̂, CurrentLST);17

if Feasible(φ̂) then18

Insert(i, φ̂, CurrentLST);19

if Feasible(φ̂) then20

φ = φ̂;21

Select least-slack section from φ for execution;22

3.3.4 Utility Propagation

Section i may depend on section j located on the
same node or on a different node. For the latter
case, RTG-DS propagates i’s utility to j in order
to speed up j’s execution, and thus shorten i’s
time waiting for blocked resources. The utility
is propagated by gossiping to all system members
within a limited time interval, as it does in finding
the next destination node.

When j’s head node receives an utility-
propagation message, it has to decide whether to
continue executing j, or to immediately abort j
and grant the lock to i. This decision is based on
Global Utility Density (or GUD), which is defined
as the ratio of the owner thread utility to the total
remaining thread execution time. Thread PUDs
are not used in this case, because this utility com-
parison involves multiple nodes.

Algorithm 2 describes this decision process. If
the decision is to continue j’s execution, the node

230

Algorithm 2: RTG-DS’s Utility Propagation
Algorithm

Upon receiving a UP gossip message msg:1

COPY(gossip, msg) ;2

if GUDi > GUDj then3

if abtj < erj then4

abort j;5

gossip.lsr ← msg.lsr − abtj ;6

/* give resource lock to i */7

else8

continue j’s execution;9

/* keep resource lock */10

gossip.lsr ← msg.lsr;11

else12

gossip.lsr ← msg.lsr;13

gossip.round ← gossip.lsr/Ψ ;14

gossip.c ← FANOUT(gossip.round);15

RTG GOSSIP(gossip);16

will add i’s utility to j’s current and previous
head nodes, consequently speeding up j’s execu-
tion (since the scheduler examines sections in the
PUD order). If the decision is not to continue j’s
execution, the node will release j’s abort handler,
and will start gossiping to 1) release j’s abort han-
dler’s on all previous head nodes of j and 2) grant
lock to i. Note that i’s utility is only propagated
to j’s execution nodes after the node from where
i requested the lock, because j’s other execution
nodes do not contribute to this dependency.

3.3.5 Resolving Distributed Deadlocks

Detecting deadlocks between different nodes re-
quire all system members to uniformly identify
each thread. Thus, when a thread is created, a
global ID (or GID) is created for it. With GIDs,
it is easier to determine the thread that must
be aborted to resolve a distributed deadlock: If
GUDi > GUDj , then i has a higher utility. Then,
j is aborted to grant the lock to i. Otherwise, j
keeps the lock and gossips an abortion message
back to i. Algorithm 3 describes this procedure.

4. Algorithm Analysis

Let δ be the desired probability for delivering
a message to its destination node within the gos-
sip period Ψ. If the communication delay follows
a Gamma distribution with a probability density
function:

f (t) =
(t− LCD)α−1

e
−(t−LCD)

β

Γ (α)βα
, t > LCD

where Γ (α) =
∫∞
0

xα−1e−xdx, α > 0. Then, δ =∫ tb

LCD
f (t) dt, t > LCD, where tb : D (tb) = δ, and

D(t) is the distribution function. Note that LCD

Algorithm 3: RTG-DS’s Distributed Dead-
lock Detection Algorithm

Upon j receiving i’s UP gossip message msg:1

COPY(gossip, msg) ;2

if DETECT(msg) = true then3

/* a distributed deadlock occurs */4

if GUDi > GUDj then5

abort j;6

gossip.lsr ← msg.lsr − abtj ;7

give resource lock to i;8

else9

continue j’s execution;10

keep resource lock;11

gossip.lsr ← msg.lsr;12

gossip.round ← gossip.lsr/Ψ ;13

gossip.c ← FANOUT(gossip.round);14

RTG GOSSIP(gossip);15

is the communication delay lower bound and Ψ >
tb.

We denote the message loss probability as 0 ≤
σ < 1, and the probability for a node to fail dur-
ing thread execution as 0 ≤ ω < 1. Let C denote
the number of messages that a node sends dur-
ing each gossip round (i.e., the fan out). We call
a node susceptible if it has not received any gos-
sip messages so far; otherwise it is called infected.
The probability that a given susceptible node is
infected by a given gossip message is:

p =
(

C

n− 1

)
(1− σ) (1− ω) δ (1)

Thus, the probability that a given node is not in-
fected by a given gossip message is q = 1− p. Let
I(t) denote the number of infected nodes after t
gossip rounds, and U(t) denote the number of re-
maining susceptible nodes after t rounds. Given i
infected nodes at the end of the current round, we
can compute the probability for j infected nodes
at the end of the next round (i.e., j − i suscep-
tible nodes are infected during the next round).
The resulting Markov Chain is characterized by
the following probability pi,j of transitioning from
state i to state j:

pi,j = P [I (t + 1) = j|I (t) = i]

=





(
n− i
j − i

) (
1− qi

)j−i
qi(n−j) j > i

0 j < i
(2)

The probability that the expected number of j
nodes are infected after round t + 1 is given by:

P [I (0) = j] =

{
1 j = 1
0 j > 1

(3)

P [I (t + 1) = j] =
∑

i6j

P [I (t) = i] pi,j (4)

231

Theorem 1. RTG-DS probabilistically bounds
thread time constraint satisfactions’.

Proof. Let a thread will execute through m head
nodes. The mistake probability pMk

that a head
node k cannot determine the thread’s next desti-
nation head node after gossip completes at round
tmax is given by:

pMk
= {1− P [I (tmax) = η]} × 1

U (tmax)

=



1−

∑

i6η

P [I (tmax−1) = i] pi[η]



× 1

U (tmax)

(5)

where η is the expected number of infected nodes
after tmax. This pMk

is achieved when all nodes
are not overloaded (consequently, RTG-DS’s LSF-
order being locally optimal, will feasibly complete
all local sections).

Let wk be the waiting time before section k’s ex-
ecution. wk includes the section interference time,
gossip time, and blocking time (we bound block-
ing time in Theorem 4). Now, Xk and Xm can be
defined as:

Xk =

{
1 If wk ≤ LSrk − LCD

0 Otherwise
(6)

Xm =

{
1 If wk ≤ LSrm

0 Otherwise
(7)

If Xk = 1, the relative section can not only
finish its execution, but it can also make a suc-
cessful invocation. Xm is for the last destination
node, so it does not consider the communication
delay LCD. Thus, the probability for a distrib-
utable thread d to successfully complete its execu-
tion PSd

, and that for a thread set D to complete
its execution, PSD

, is given by:

PSd
= Xm

∏

k≤m−1

(1− pMk
)Xk PSD

=
∏

d∈D

PSd

(8)

Theorem 2. The number of rounds needed to in-
fect n nodes, tn, is given by:

tn = logC+1 n +
log n

C
+ o (1) (9)

Proof. We skip the proof, due to page constraints.
The proof is similar to [11], but we conclude the
theorem under the assumption that the fan out C
exceeds 1.

Lemma 3. A head node will expect its gossip mes-
sage to be replied in at most 2tn rounds, with a
high (computable) probability.

Proof. Suppose the next destination node N is the
last node getting infected by the gossip message
from a head node A. Thus, node A will take tn
rounds to gossip to node N . Suppose A is the last
node to be infected by N ’s reply message, and
it will take another tn rounds. Thus, the worst
case to determine the next destination node is 2tn
rounds. The probability can be computed using
Equations 3 and 5. Since the fan out number C
can be adjusted, we can get a required probability
by modifying C into a proper value.

Theorem 4. If a thread section is blocked by an-
other thread section on a different node, then its
blocking time under RTG-DS is probabilistically
bounded.

Proof. Suppose section i is blocked by section j
whose head is now on a different node. According
to Theorem 2, it will take section i at most tni

time rounds to gossip an utility propagation (UP)
message to section j’s head node.

After j’s head node receives i’s UP message,
RTG-DS will compare i’s GUD with j’s. If
GUDi > GUDj , then j must grant the lock
to i as soon as possible. According to Algo-
rithm 2, the handler will deal with j’s head within
min(abtj,erj). According to Lemma 3, i’s head
will expect a reply from j after at most tni time
rounds. If tni− min(abtj,erj) ≥ LCD, then j can
reply and grant lock to i at the same time. Thus,
i’s blocking time bound bi,j = 2tni . Otherwise,
j must first reply to i. Since i’s head needs at
least LCD gossip time to continue execution, the
blocking time is at most LSri − LCD. Thus, if
(LSri−LCD)− tni− min(abtj,erj) ≥ LCD, bi,j

= LSri − LCD. If not, i has to be aborted be-
cause there is not enough time to grant the lock.
Under this condition, RTG-DS aborts i, and bi,j

= 2tni, since j need not respond any more after
the first reply to i. If GUDi ≤ GUDj , then j
will not grant i the lock until it finishes necessary
execution. Thus, bi,j = LSri − LCD.

The probability of the blocking time bound is
induced by RTG-DS’s gossip process. It can be
computed using (3) and (5), and a desired proba-
bility can be obtained by adjusting C.

Theorem 5. RTG-DS probabilistically bounds
deadlock detection and notification times.

Proof. As shown in Figure 5, there are two possi-
ble situations: 1) deadlock happens when section
i requires resource R2, or 2) when section j’s REQ
R1 message arrives at Node 2.

Let GUDi > GUDj . Under the first condition,
i will check the necessary time for deadlock solu-
tion, which is denoted as dsi2. Let LSri2 be the
remaining local slack time of section i on Node 2,
tni2 be the time rounds needed by i to gossip to

232

Figure 5. Example Distributed Deadlock

Node 1 in order to finish i on time, and abtj1, abtj2
be the needed abortion time of section j on Node
1 and 2, respectively.

Then, dsj2 = abtj2, if no LIFO-ordered abor-
tion is necessary from node 1 to node 2; otherwise
dsj2 = abtj1 + abtj2 + 2tni2. By LIFO-ordered
abortion, the last executed section is the first one
that is aborted.

Under the second condition, deadlock happens
when j’s REQ message arrives at Node 2. Now,
dsj2 = tnj1, if tnj1 − abtj2 ≥ LCD, or if tnj1 −
(abtj1 + abtj2 + 2tni2) ≥ LCD. Otherwise, dsj2 =
max (tnj1 + abtj1 + tni1, abtj2).

Thus, if dsj2 ≤ LSri2 − LCD, the scheduler
will resume i. Otherwise, it will abort i since i
won’t have necessary remaining local slack time
for gossiping.

The analysis is similar if GUDi > GUDj . The
probabilistic blocking time bound is induced by
RTG-DS’s gossiping. It can be computed using
(3), and a desired probability can be obtained by
adjusting fan out C.

Theorem 6. RTG-DS probabilistically bounds
failure-exception notification times for aborting
partially executed sections of failed threads.

Proof. From Lemma 6 in [4], we obtain the failure-
exception notification time fn as follows: fn =
3tn, if no LIFO-ordered abortion is necessary from
node m to node n. Otherwise, fn = 3tn +∑

i=m,...,n tni.

5. Simulation Studies

We evaluate RTG-DS’s effectiveness by com-
paring it with “RTG-DS/DASA” — i.e., RTG-
DS with DASA as the section scheduler — as
a baseline. We do so because DASA exhibits
very good performance among most UA schedul-
ing algorithms. We use uniform distribution to
describe section inter-arrival times, section execu-
tion times, and termination times of a set of dis-
tributable threads. All threads are generated to
make invocations through the same set of nodes
in the system. However, the relative arrival order
of thread invocations at each node may change due
to different section schedules on nodes. Thus, it

is possible that a thread may miss its termination
time because it arrives at a destination node late.

A fixed number of shared resources is used in
the simulation study. The simulations featured
four (one on each node) and eight (two on each
node) shared resources, respectively. Each section
probabilistically determines how many resources it
needs. Each time a resource is acquired, a fraction
(following uniform distribution) of the section’s re-
maining execution time is assigned to it.

Figure 6. AUR in a 8-Resource-System
Under RTG-DS and RTG-DS/DASA

We measure RTG-DS’s performance using the
metrics of Accrued Utility Ratio (AUR), Termi-
nation time Meet Ratio (TMR) and Offered Load
(OL) in a 100-node system. AUR is the ratio of
the total accrued utility to the maximum possi-
ble total utility, TMR is the ratio of the number
of threads meeting their termination times to the
total thread releases in the system, and OL is the
ratio of a section’s expected execution time to the
expected section inter-arrival time. Thus, when
OL < 1.0, a section will most possibly complete
its execution before the next section arrives; when
OL > 1.0, system will have long-term overloads.

Note that RTG-DS uses the novel techniques
that we have presented here including ρR(t), GUD
and PUD, selecting LSF section, utility propaga-
tion, and distributed deadlock resolution. RTG-
DS/DASA does not use any of these, but only
follows RTG-DS in the gossip-based searching of
next destination nodes.

233

Figure 7. TMR in a 8-Resource-System
Under RTG-DS and RTG-DS/DASA

Figures 6 and 7 show the results for the eight-
resource system. From the figure, we observe
that RTG-DS gives much better performance than
RTG-D/DASA. Further, when OL is increased,
both algorithms’ AUR and TMR decrease. We ob-
serve consistent results for the four-resource case,
but omit them here for brevity.

Figure 8. Remaining Local Slack Time
Under RTG-DS and RTG-DS/DASA
(Mean, Variance)

In Figure 8, as discussed in Section 3.3.3, we ob-
serve that under any OL, RTG-DS has a smaller
variance of remaining local slack time than RTG-
DS/DASA, because it first executes the least-slack
section instead of the earliest local termination
time section. By this way, though sections’ mean
value of remaining local slack time after execution
is almost the same, RTG-DS gives sections with
less local slack time more chances to finish their
gossip process, and thus more chances to find their
next destination nodes.

6. Conclusions and Future Work

We presented a gossip-based algorithm called
RTG-DS, for scheduling distributable threads un-
der dependencies in unreliable networks. We
proved that RTG-DS probabilistically bounds
thread blocking times and deadlock detection
and notification times, thereby probabilistically
bounding thread time constraint satisfactions’.
We also showed that the algorithm probabilisti-
cally bounds failure-exception notification times
for aborting failed threads.

Example directions for extending our work in-
clude allowing node anonymity, unknown number
of thread sections, and non-step TUFs.

References

[1] J. Anderson and E. D. Jensen. The distributed
real-time specification for java: Status report. In
JTRES, 2006.

[2] R. Bettati. End-to-End Scheduling to Meet Dead-
lines in Distributed Systems. PhD thesis, UIUC,
1994.

[3] R. K. Clark. Scheduling Dependent Real-Time
Activities. PhD thesis, CMU, 1990. CMU-CS-
90-155.

[4] K. Han et al. Probabilistic, real-time schedul-
ing of distributable threads under dependencies
in mobile, ad hoc networks. In IEEE WCNC,
2007.

[5] E. D. Jensen et al. A time-driven scheduling
model for real-time systems. In RTSS, pages 112–
122, 1985.

[6] E. D. Jensen and B. Ravindran. Guest editor’s
introduction to special section on asynchronous
real-time distributed systems. IEEE Transac-
tions on Computers, 51(8):881–882, August 2002.

[7] H. Li et al. Bar gossip. In OSDI, November 2006.
[8] B. S. Manoj et al. Real-time traffic support for

ad hoc wireless networks. In IEEE ICON, pages
335 – 340, 2002.

[9] J. D. Northcutt. Mechanisms for Reliable Dis-
tributed Real-Time Operating Systems - The Al-
pha Kernel. Academic Press, 1987.

[10] OMG. Real-time corba 2.0: Dynamic scheduling
specification. Technical report, OMG, September
2001. Final Adopted Specification.

[11] B. Pittel. On spreading a rumor. SIAM J. Appl.
Math., 47(1), 1987.

[12] K. Romer. Time synchronization in ad hoc net-
works. In MobiHoc, pages 173–182, 2001.

[13] L. Sha, R. Rajkumar, and J. P. Lehoczky. Prior-
ity inheritance protocols: An approach to real-
time synchronization. IEEE Transactions on
Computers, 39(9):1175–1185, 1990.

[14] N. R. Soparkar, H. F. Korth, and A. Silber-
schatz. Time-Constrained Transaction Manage-
ment. Kluwer Academic Publishers, 1996.

[15] J. Sun. Fixed-Priority End-To-End Scheduling
in Distributed Real-Time Systems. PhD thesis,
UIUC, 1997.

234

Institut National Polytechnique de Lorraine
Impressions et Reliures :

INPL – Atelier de reprographie
2, avenue de la forêt de la Haye

B.P. 3. – F-54501 Vandoeuvre Cedex
Tel : 03.83.59.59.26 ou 03.83.59.59.27

Scientific editors : Isabelle PUAUT (IRISA),
Nicolas NAVET (LORIA), Françoise SIMONOT-LION (LORIA)

ISBN : 2-905267-53-4

	actes.pdf
	header.pdf
	Binder4_num.pdf
	Binder3.pdf
	Binder2.pdf
	Binder3.pdf
	Binder1.pdf
	Formal-0.pdf
	Formal-1.pdf
	Formal-2.pdf
	Formal-3.pdf
	Archi-0.pdf
	Archi-1.pdf
	Blank.pdf

	Archi-2.pdf
	Archi-3.pdf
	Archi-4.pdf
	Archi-5.pdf
	SchedulingA-0.pdf
	SchedulingA-1.pdf
	Blank.pdf

	SchedulingA-2.pdf
	Blank.pdf
	SchedulingA-3.pdf
	SchedulingA-4.pdf
	SchedulingB-0.pdf

	SchedulingB-1.pdf
	Blank.pdf
	SchedulingB-2.pdf
	SchedulingB-3.pdf
	Introduction
	Simulator and system model
	Data and transactions
	Transactions system priorities (SPriority)
	Transaction scheduler (TS)
	GEDF Scheduling policy
	GEDF contributions

	Conflicts level
	System performance metrics
	Transaction success ratio (SRatio)
	System Quality of Service (QoS)

	General mechanism of the simulator

	Simulations and results
	Simuations parameters
	Influence of the scheduling policy
	System Quality of Service (QoS)
	GEDF flexibility according to the system workload

	Conclusion

	SchedulingAndControl-0.pdf
	SchedulingAndControl-1.pdf
	SchedulingAndControl-2.pdf
	SchedulingAndControl-3.pdf

	Blank.pdf
	Distributed-0.pdf
	Distributed-1.pdf
	Distributed-2.pdf
	1 Introduction
	2 Preliminaries and the Main idea
	2.1 Network and Message Model
	2.2 Impossibility
	2.3 The Main Idea
	3 Sporadic Message Streams
	4 Implementation and Experiments
	4.1 Implementation and Experimental Setup
	4.2 Support of Hypotheses

	5 Discussion and Previous Work
	6 Conclusions
	Acknowledgements

	Distributed-3.pdf
	Distributed-4.pdf

	tail.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

