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Abstract

Due to the increasing criticality of the functions in terms of safety, embedded

automotive systems must now respect stringent dependability constraints despite

the faults that may occur in a very harsh environment. In a context where criti-

cal functions are distributed over the network, the communication system plays a

major role. First, we discuss the main services and functionalities that a commu-

nication system should offer for easying the design of fault-tolerant applications

in the automotive context. Then, we review the features of the protocols that are

currently considered for being used and, finally, we highlight areas where devel-

opments are still needed.

1 Introduction

In the next decade, most features of a car will be supported by an electronic embed-

ded system. This strategy is already used for functions like light management, window

management, door management, etc. as well as for the control of traditional functions

like braking, steering, etc. Moreover, the planned deployment of X-by-Wire tech-

nologies is leading the automotive industry in the world of safety-critical applications.

Therefore, such systems must, obviously, respect theirfunctional requirements, obey

the properties ofperformanceandcostand furthermore, guarantee theirdependability
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despite the possible faults (physical or design) that may occur. More precisely, the

design of such systems must take into account the dependability of two kinds of re-

quirements. On the one hand, safety, the absence of catastrophic consequences, for the

driver, the passengers and the environment, has to be ensured and on the other hand, the

system has to provide reliable service and be available for the sollications of its users.

This section introduces the emerging standards that are likely to influence the certi-

fication process for in-vehicle embedded systems and describes the general concepts

of dependability and the means by which dependability can be attained. The commu-

nication system is a key point for an application: it is in charge of the transmission

of critical information or events between functions that are deployed on distant sta-

tions (Electronic Control Units - ECUs) and it is a means for the OEM (carmakers) to

integrate functions provided by different suppliers. So, in this chapter, we pay special

attention to in-vehicle embedded networks and to the services that enhance the depend-

ability of the exchanges and the dependability of the embedded applications. Note that

a classical means, that is sometimes imposed by the regulatory policies in domains

close to those in automotives, consists of introducing mechanisms that enable a system

to tolerate faults. The purpose of section2 is to present the main services, provided by

a protocol, that allow an application to tolerate certain faults. These services generally

provide fault detection and, for some of them, are able to mask fault occurrences from

upper layer and to prevent the propagation of faults. In section3, we compare some

classes of protocols with respect to their ability to ensure services for increasing the

dependability of an application. For each class, we will discuss the effort needed at the

middleware level or application level for reaching the same quality of system.

1.1 The issue of safety-critical systems in the automotive industry

In some domains recognized as critical (for example, nuclear plants, railways, avion-

ics), safety requirements in computer-based embedded systems are very rigorous and

the manner of specification and the management of dependability / safety requirements

is an important issue. These systems have to obey regulatory policies that require these

industries to follow a precise certification process. At the moment, nothing similar
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exists in the automotive industry for certifying electronic embedded systems. Never-

theless, the problem is crucial for car-makers as well as for suppliers and, so, several

proposals, are presently under study. Among the existing certification standards [32],

RTCA/DO-178B [14], used in avionics, or EN 50128 [8], applied in the railway in-

dustry, provide stringent guidelines for the development of a safety-critical embedded

system. But, these standards are hardly transposable for in-vehicle software-based sys-

tems: partitioning of software (critical / non critical), multiple versions, dissimilar soft-

ware components, use of active redundancy, hardware redundancy. In the automotive

sector, the Motor Industry Software Reliability Association (MISRA), a consortium of

the major actors of automotive products in UK, proposes a loose model for the safety-

directed development of vehicles with software on-board [22]. Finally, the generic

standard IEC 61508 [18], applied to Electrical / Electronic / Programmable Electronic

systems is a good candidate for supporting a certification process in the automotive in-

dustry. In Europe, in particular, in the transport domain, the trend is to move from “rule

based” to “risk based” regulation [29]. So, the certification process will certainly be

based on the definition of safety performance levels that characterize a safety function

regarding the consequences of its failures defined as catastrophic, severe, major, minor

or insignificant. The IEC 61508 standard proposes, in addition to other requirements

on the design, validation and testing processes, 4 integrity levels, termed “Safety In-

tegrity Levels” (SIL) and a quantitative safety requirement for each (see table1). The

challenge is therefore to prove that each function realized by a computer-based sys-

tem, reaches the requirements imposed by its Safety Integrity Level. “Dependability”,

“safety”, “failure”, etc. are terms used in standard documents. So, we evoke, in the

next section, definitions admitted in the context of dependability.

1.2 Generic concepts of dependability

Dependability is defined in [3] as “the ability of a system to deliver service that can jus-

tifiably be trusted”. The service delivered by a system is its behavior as it is perceived

by another system (human or physical) interacting with it.

A service can deviate from its desired functionality. The occurrence of such an
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Table 1: Relationship between integrity levels and quantitative requirements for a sys-
tem in continuous operation (IEC-61508)

event is termed afailure. An error is defined as the part of the system state that may

cause a failure. Afault is the determined or hypothesized cause of an error. It can be

active, when it produces an error and dormant otherwise. A system fails according to

severalfailure modes. A failure mode characterizes a service that does not fit with its

desired functionality according to three parameters: the failure domain (value domain

or time domain, see section ), the perception of the failure by several users of the system

(consistent or inconsistent) and the consequences of the failures (from insignificant to

catastrophic). As we will see in section2 at the communication level, services are

available to contend with the occurrences of failures in the value or time domain and

to preserve the consistency, as well as the possibility, of the perception of a failure

by several stations. The consequence of a failure at the communication level is the

responsability of the designer of the embedded system and its assessment is a difficult

issue.

Dependability is a concept that covers, in fact, several attributes. From a quality

point of view, reliability, or the continuity of a correct service, andavailability, ex-

pressing the readiness for a correct service, are important for automotive embedded

systems.Note that the on-line detection of a low level of the reliability or availability

of a service supported by an embedded system can lead to the “non-availability” of the

vehicle and consequently affect the quality of the vehicle as perceived by the customer.

Safetyis the reliability of the system regarding critical failure modes, or failure

modes leading to catastrophic, severe or major consequences [2]. This attribute char-

acterizes the ability of a system to avoid the occurrences of catastrophic events that

5



may be very costly in terms of monetary loss and / or human suffering.

One way to reach the safety objective is, first, to apply a safe development process

in order to prevent and / or remove any design faults. As presented in [3], this method

has to be completed, in the design step, with an evaluation of the embedded system’s

behavior (fault forecasting). This can be achieved through a qualitative analysis (iden-

tification of failure modes, component failures, environmental conditions leading to a

system failure) and a quantitative analysis (the probability evaluation applied to some

parameters for the verification of dependability properties). The last means for reach-

ing dependability is to apply a fault tolerant approach. This technique is mandatory

for in-car embedded systems because the environment of the system is partially known

and the reliability of the hardware components cannot be fully guaranteed.

Note that, the problem, in the automotive industry, is not only to be compliant

to standards whose purpose mainly concerns the safety of the driver, the passengers,

the vehicle and its environment but also to ensure a level of performance, comfort,

and, more generally, the quality of the vehicle. The specification, in a quantitative

way, of the properties required by an electronic embedded system, and the proof that

this system meets these requirements are the principal challenges in the automotive

industry.

2 Safety-relevant communication services

In this section, we discuss the main services and functionalities that the communication

system should offer for easying the design of fault-tolerant automotive applications. In

order to reduce the development time and increase quality through the re-use of val-

idated components, these services should, as much as possible, be implemented in

layers below the applicative level software. More precisely, some services such as the

global time are usually provided by the communication controller, while others, such

as redundancy management, are implemented in the middleware software layer (e.g.,

OSEK Fault-Tolerant Layer [31] or the middleware described in [44]). As suggested

in [24], solutions where the middleware is running on a dedicated CPU, will enhance
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the predictability of the system by reducing the interactions between the middleware

layer and the application level software.In particular, it will prevent conflicts in ac-

cessing the CPU, which may induce temporal faults such as missed deadlines.

2.1 Reliable communication

The purpose of this section is to discuss the main services and features related to the

data exchange one can expect for safety-critical automotive applications. On the one

hand, these services serve to hide the occurrence of faults from higher levels. For

example, a shielded transmission support will mask some EMIs (Electro-Magnetic In-

terferences), considered as faults. On the other hand, other services are intended to

detect the occurrence of errors and to avoid their propagation in the system (e.g., a

CRC will prevent corrupted data from being used by an applicative process).

2.1.1 Robustness against EMIs

Embedded automotive systems suffer from environmental perturbations such asα par-

ticles, temperature peaks or EMIs.. The latter type of perturbations has been identified

for a long time [30, 50] as being a serious threat to the correct behavior of an automotive

system. EMIs can either be radiated by some in-vehicle electrical devices (switches,

relays, etc.) or come from a source outside the vehicle (radio, radar, flashes of light-

ning, etc.). EMIs could affect the correct functioning of all the electronic devices but

the transmission support is a particularly “weak link”.The whole problem is to ensure

that the system will behave according to its specification whatever the environment.

In general, the same Medium Access Control (MAC) protocol can be implemented

on different types of physical layers (e.g., unshielded pair, shielded twisted pair or plas-

tic optical fiber) which exhibit significantly different behavior with regards to EMIs

(see [5] for more details on the electro-magnetic sensitivity of different types of trans-

mission support). Unfortunately, the use of an all-optical network, which offers very

high immunity to EMIs, is not generally feasible because of the low-cost requirement

imposed by the automotive industry.

Besides using a resilient physical layer, another means to alleviate the EMI problem
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is to replicate the transmission channels where each channel transports its own copy of

the same frame. Although an EMI is likely to affect both channels in quite a similar

manner, the redundancy provides some resilience to transmission errors.

The two previous approaches are classical means for hiding as well as possible a

fault due to EMIs that can occur at the physical layer level. Nevertheless, when a frame

is corrupted during transmission (i.e., at least one bit has been inverted), it is crucial

that the receiver be able to detect it in order to discard the frame. This is the role

of the Cyclic Redundancy Check (CRC) whose so-called Hamming distance indicates

the number of inverted bits below which the CRC will detect the corruption. It is

worth noting that if the Hamming distance of the MAC protocol CRC is too small with

regards to the dependability objectives, a middleware layer can transparently insert an

additional CRC in the data field of the MAC level frame.This will reinforce the ability

of the system to detect errors happening during the transmission.

2.1.2 Time-triggered transmissions

One major design issue is to ensure that at run-time no errors will jeopardize the re-

quirements imposed on the temporal behavior of the system; for data exchanges, these

temporal requirements can be imposed on response times of frames or jitter upon re-

ception.Among communication networks, one distinguishes time-triggered (TT) pro-

tocols where transmissions are driven by the progress of time (i.e., frames are trans-

mitted at predefined points in time) and event-triggered (ET) protocols where trans-

missions are driven by the occurrence of events. Major representatives of ET and TT

protocols considered for use in safety-critical in-vehicle communications will be dis-

cussed in section3. Both types of communication have advantages and drawbacks but

it is now widely admitted that dependability is much easier to ensure using a TT bus

(see, for instance, [41, 13, 15, 1]), the main reasons being that

• access to the medium is deterministic (i.e., the order of the transmissions is de-

fined statically at the design time and organized in "rounds" that repeat in cycles),

and thus the frame response times are bounded and there is no jitter at reception,
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• it simplifies the composability, which is the ability to add new nodes without

affecting existing ones1, as well as partitioning, which is the property that assures

that a failure occurring in one sub-system cannot propagate to others,

• the behavior of a TT communication system is predictable,which makes it eas-

ier to understand its behavior and verify if the temporal constraints have been

respected,

• message transmissions can be used as “heartbeats” which allow a very prompt

detection of station failures,

• finally, the medium access scheme does not limit the network bandwidth, as is

the case with the arbitration on message priority used by CAN, and thus large

amounts of data can be transferred between nodes.

These reasons explain that, currently, only time-triggered communication systems are

being considered for use in safety critical applications such as Steer-by-Wire [49, 48]

or Brake-by-Wire.

2.1.3 Global time

Some control functions need to know the occurrence order among a set of events that

happened in the system; some functions, such as diagnosis, even need to be able to

precisely date them. This can be achieved by forming a global synchronized time base.

The second reason why a global time is needed comes from the TT communication

scheme. In TT communications, as time drives the transmissions, all nodes of the

network must have a coherent notion of time and a clock synchronization algorithm is

required. This clock synchronisation algorithm is, in fact, a service that tolerates faults

that can affect local clocks. In fact, the local clocks tend to drift apart since oscillators

are not perfect; this imposes periodic resynchronization. For instance, on TTP/C, each

node periodically adjusts its clock according to the difference between its own clock

1Adding new nodes requires that some bandwidth has been reserved for their transmission at design time.
For instance, in TTP/C, some “slots” can be left free for future use.
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and the average value of those from other nodes (the clocks with the highest value and

lowest value are discarded).

A crucial performance metric for a clock synchronization algorithm is the maxi-

mum difference that can be observed among all local clocks. This value directly im-

pacts the network’s throughput in TT buses since the length of a transmission window,

in addition to the actual transmission time of the frame, has to include some extra time

to compensate for the skew between local clocks (i.e., a frame transmitted at the right

point in time must not be rejected because the clock of a receiver diverges from the

clock of the sender). Other criteria of major interest are the number and the type of

faults (e.g., wrong clock value or no value received) that can be tolerated by the al-

gorithm. For example, the TTP/C algorithm can tolerate a single fault on a network

composed of at least 4 nodes (see [40] for a detailed analysis).

2.1.4 Atomic broadcast and acknowledgement

At a same point in time, it is mandatory that some functions distributed on the network

have the same understanding of the state of the system in order to interoperate in a

satisfactory manner. This implies that the information on the state of the system must be

consistent throughout the whole network (this property is termed “spatial consistency”

or “exact agreement”). The requirement of spatial consistency is particularly important

for active redundancy2, which is the basic strategy for ensuring fault-tolerance, i.e.,

the capacity of a system to deliver its service even in the presence of faults.To be

able to compare the output results, it is crucial that the set of all replicated components

process the same input data, which, in particular, implies that the values obtained from

local sensors are exchanged over the network.All non-faulty nodes must thus receive

the messages in the same order and with the same content. This property, which is

called “atomic broadcast” or “interactive consistent broadcast” (see [9, 41]), enables

distributed processes to reach common decisions or “consensus” despites faults, for

instance, using majority voting.

2Active redundancy means that a set of components realizing the same functions in parallel enable the
system to continue to operate despite the loss of one or more units. In passive redundancy, additional com-
ponents are only activated when the primary component fails.
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In practice, it may happen that all or a subset of nodes do not receive a message be-

cause of an incorrect signal shape due to EMIs or because nodes are temporarily faulty.

The communication system usually provides, through the use of a CRC for detecting

corrupted frames, a weak form of atomic broadcast that ensures that all stations that

successfully receive a frame get the same value. This alone is however not sufficient

for constructing fault-tolerant applications and, in addition, at least the acknowledge-

ment of the reception of a message is needed because the sender, and possibly other

nodes, may have to adapt their behavior according to this information (e.g., reschedule

the transmission of the information in a subsequent frame). This latter requirement is

important, in the automotive context, for distributed functions such as steering, braking

or active suspension.

2.1.5 Avoiding “babbling-idiots”

As already said before, it is crucial that the system does not deviate from the temporal

behaviour defined at design time. If a node does not behave in the specified manner, it

has to be detected and masked at the communication system level in order to prevent

the failure from propagating.

It may happen that a faulty ECU transmits outside its specification, e.g., it may

send at a wrong point in time or send a frame larger than planned at design time. When

communications are multiplexed, this will perturb the correct functioning of the whole

network, especially the temporal behavior of the data exchanges. One well-known

manifestation is the so-called "babbling idiots" [46, 45] nodes that transmit continu-

ously (e.g., due to a defective oscillator). To avoid this situation, a component called

the "bus guardian", restricts the controller’s ability to transmit by allowing transmis-

sion only when the node exhibits a specified behavior. Ideally, the bus guardian should

have its own copy of the communication schedule, should be physically separated from

the controller, should possess its own power supply and should be able to construct the

global time itself. Due to the strong pressure from the automotive industry concerning

costs, these assumptions are not fulfilled in general, which reduces the efficiency of the

bus guardian strategy.
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If the network has a star topology, with a central interface - called the “star” -

for interconnection, instead of the classical bus topology, then the star can act as a

central bus guardian and protect against errors that cannot be avoided by a local bus

guardian. For instance, a star topology is more resilient to spatial proximity faults (e.g.,

temperature peaks) and to faults due to the desynchronization of an ECU (i.e., the star

can disconnect a desynchronized station). To avoid a single point of failure, a dual star

topology should be used with the drawback that the length of the wires is significantly

increased.

2.2 Higher-level services

In this paragraph, we identify services that provide fault-tolerant mechanisms belong-

ing conceptually to layers above the Medium Access Control in the OSI reference

model.

2.2.1 Group membership service

As discussed in section2.1.4, atomic broadcast ensures that all non-faulty stations

possess the same variables describing the state of the system at a particular point in

time. Another property that is required for implementing fault tolerance at a high

level is that all non-faulty stations know the set of stations that are operational (or

“non-faulty”). This service, which is basicallya consensus on the set of operational

nodes,is provided by the group membership and it is generally highly recommended

for X-by-Wire applications.A classical example detailed in [24] is a brake-by-wire

system where four ECUs, interconnected by a network, control the brakes located at

the four wheels of the car. As soon as a wheel ECU is no longer functioning, the brake

force applied to its wheel has to be redistributed among the remaining three wheels

in such a way that the car can be safely parked. As pointed out in [24], for a brake-

by-wire application, the time interval between the dysfunctioning of the wheel ECU

and the knowledge of this event by all other stations has an impact on the safety of the

application and thus it has to bounded and taken into account at design time.

A membership service implemented at the communication system level assumes
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that all nodes that are correctly participating in the communication protocol are non-

faulty. In TT systems, as transmissions are perfectly foreseeable, the decisions regard-

ing membership can be taken at points in time where frames should have been received.

In a very simplified way, a missing or “faulty” frame indicates to the receivers that the

sending node is not functioning properly. In addition, a node that is unable to transmit

must consider itself as faulty and stops operating. Since it takes some time to detect

faulty nodes, there can be faulty stations in the membership list of a node during some

time intervals. The maximum number of such undetected faulty nodes, the maximum

duration it takes to discover that a node is faulty, the maximum number of faulty sta-

tions and the types of faults than can be detected are major performance criteria of a

membership algorithm. Other criteria include: the time needed for a “repaired” node to

rejoin the membership list, how well the different nodes agree on the membership list

at any point in time (are “cliques”, i.e., sets of stations that disagree on the state of the

system, possible? and how long can these cliques co-exist?) and the implementation

overheads mainly in terms of CPU load and network bandwidth.

Group membership algorithms are complex distributed algorithms and formal meth-

ods are of great help in analyzing and validating them; the reader can refer to [9, 33,

40, 34] as good starting points on this topic.

2.2.2 Management of nodes’ redundancy

A classical way for ensuring fault tolerance is to replicate critical components. We

saw, in section2.1.1, that the redundancy of the bus can hide faults due to EMIs. To

achieve fault-tolerance, certain nodes are also replicated and clustered into so-called

Fault-Tolerant Units (FTUs). A FTU is a set of several stations which perform the same

function and each node of a FTU possesses its own slot in the round so that the failure

of one or more stations in the same FTU can be tolerated. Actually, the role of FTUs

is two-fold. First, they make the system resilient in the presence of transmission errors

(some frames sent by nodes of the FTU may be correct while others are corrupted).

Second, they provide a means to fight against measurement and computation errors

occurring before transmission (some nodes may send the correct values while others
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may make errors).

Fail-silence property In the fault-tolerance terminology, a node is said fail-silent

if 1.a) it sends frames at the correct point in time (correctness in the time domain),

and 1.b) the correct value is transmitted (correctness in the value domain), or 2.) it

sends detectably incorrect frames (e.g., wrong Cyclic Redundancy Check - CRC) in

its own slot or no frame at all. A communication system such as TTP/C provides very

good support for the requirements 1.a) and 2) (whose fulfillment provides the so-called

“fail-silence in the temporal domain”) especially through the bus guardian concept (see

§2.1.5), while the value domain is the responsibility of higher level layers.

The use of fail-silent nodes greatly decreases the complexity of designing a critical

application since data produced by fail-silent nodes is always correct and thus can be

safely consumed by the receivers.Tolerating one arbitrary failure can be achieved with

FTUs made of two nodes whereas three are necessary if the nodes are not fail-silent.

However, in practice, it is difficult to ensure the fail-silent assumption, especially in

the value domain. Basically, a fail-silent node has to implement redundancy plus er-

ror detection mechanisms and stop functioning after a failure is detected. Self-check

mechanisms can be implemented in hardware or, more usually, in software on com-

mercial off-the-shelf hardware [7]. An example of such mechanisms is the “double

execution” strategy, which consists of running each task twice and to compare the out-

put. However, both executions can be affected in the same way by a single error; a

solution that provides some protection against so-called “common-mode faults” is to

perform a third execution with a set of reference input data and to compare the output

of the execution with pre-computed results that are known to be correct. This strategy

is known as “double execution with reference check”.

The reader is referred to [7, 17, 44] for good starting points on the problem of

implementing fail-silent nodes.

Message agreement From an implementation point of view, it is usually preferable

to present only one copy of data to the application in order to simplify the application

code (considering possible divergences between replicated message instances is not
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needed) and to keep it independent from the degree of redundancy (i.e., the number of

nodes composing a FTU).

The algorithm responsible for the choice of the value that will be transmitted to

the application is termed "the agreement algorithm". Many agreement strategies are

possible: pick-any (replicated messages are coming from a FTU made of fail-silent

nodes), average-value, pick-a-particular-one (the selected value has been produced by

the best sensor), majority vote, etc. OSEK/VDX consortium [31] has proposed a soft-

ware layer responsible for implementing the agreement strategy. Two other important

services of the OSEK FTCom (Fault-Tolerant Communication layer) are 1) to manage

the packing of signals (elementary pieces of information such as the speed of the vehi-

cle) into frames according to a pre-computed configuration, which is needed if the use

of network bandwidth has to be optimized (see, for instance, [28, 42] for frame-packing

algorithms), and 2) to provide message filtering mechanisms for passing only "signif-

icant" data to the application. Another fault-tolerant layer that offers the agreement

service is described, as well as the set of associated tools, in [44].

2.2.3 Support for functioning mode

A functioning mode is a specific operational phase of an application. Typically, several

functioning modes, that are mutually exclusive, are defined in a safety-critical applica-

tion. For a vehicle, possible modes include factory mode (e.g., download of calibration

parameters), pre-run mode (after doors are unlocked and before the engine is started

- pre-heating is possible for some components), post-run mode (engine was shut-off

but, for example, cooling can still be necessary), park mode (most ECUs are powered

off) and even show-room mode. Besides these “normal” functioning modes, the occur-

rence of a failure can trigger the switching to a particular mode that will aim to bring

the system back to a safe state again.

Particular functions corresponds to each functioning mode, which means a different

set of tasks and messages as well as different schedules. If mode changes provide

flexibility, great care must be taken that changes happen at the right points in time

and that all nodes agree on the current mode. The communication system can provide
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some support in this area by ensuring that mode changes take place only at predefined

points in time, are triggered by the authorized nodes and that the message schedule is

changed simultaneously for all nodes. For example, TTP/C [25, 47] offers services for

immediate mode changes (i.e., the change is performed at the end of the transmission

window where it was requested) as well as deferred mode changes (i.e., the change

is performed at the end of the current message schedule or cluster cycle in the TPP/C

terminology).

3 Fault-tolerant communication systems

Among communication protocols that are considered for being used in safety-critical

automotive systems, one can distinguish three main types:

• Protocols that have been designed from scratch to provide all the main fault-

tolerant services. The prominent representative of this class is the TTP/C proto-

col [47].

• Protocols which offer the basic functionalities for fault-tolerant systems among

which global time and bus guardians. The idea is to allow a scalable depend-

ability on a per network or even on a per node basis. Missing features are to

be implemented in software layers above the communication controllers. The

representative of this class in the automotive context is FlexRay [11].

• Protocols not initially conceived with the objective of fault-tolerance to which

missing features are added. This is the case with CAN [19], current de-facto

standard in production cars, which is being considered for use in safety-critical

applications (see, for instance, [15]) with the condition of additional features.

3.1 Dependability from scratch : TTP/C

The TTP/C protocol, which is specified in [47], was designed and extensively studied at

the Vienna University of Technology. TTP/C is a central part of the Time-Triggered Ar-

chitecture (TTA - see [23]) which is a complete framework for building fault-tolerant
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distributed applications according to the time-triggered paradigm. Hardware imple-

mentations of the TTP/C protocol, as well as software tools for the design of the appli-

cation, are commercialized by the TTTech company and available today.

On a TTP/C network, transmission support is replicated and each channel trans-

ports its own copy of the same message. TTP/C can be implemented with a bus topol-

ogy or a more resilient single star or dual star topology. At the Medium Access Control

level, the TTP/C protocol implements a synchronous TDMA scheme: the stations (or

nodes) have access to the bus in a strict deterministic sequential order and each station

possesses the bus for a constant period of time called a “slot” during which it has to

transmit one frame. The sequence of slots such that all stations have accessed the bus

one time, is called a “TDMA round”. The size of the slot is not necessarily identical for

all stations in the TDMA round, but a slot belonging to one station is the same size in

each round. Consecutive TDMA rounds may differ according to the data transmitted

during the slots, and the sequence of all TDMA rounds is the “cluster cycle” which

repeats itself in a cycle.

TTP/C possesses numerous features and services related to dependability along

with time-triggered communication. In particular, TTP/C implements a clique avoid-

ance algorithm (the stations that belong to a “minority” in their understanding of the

state of the system will eventually be excluded) and a membership algorithm that also

provides data acknowledgment (one knows after a bounded time whether a station has

received a message or not). Bus guardian, global clock and support for mode changes

are also parts of the specification.

The algorithms used in TTP/C are by themselves intricate and interact in a very

complex manner but most of them have been formally verified (see [6, 33, 40]). The

fault hypothesis used for the design of TTP/C is well specified, but also quite restric-

tive (two successive faults such as transmission errors must occur at least two rounds

apart). Situations outside the fault hypothesis are treated using “never give up” (NUP)

strategies which aim to continue operating in a degraded mode. From the point of view

of the set of available services, TTP/C is a mature solution. In our opinion, future re-

search should investigate whether the fault hypothesis considered in the TTP/C design
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are pertinent in the context of automotive embedded systems where the environment

can be very harsh (e.g., bursts of transmission errors may happen). This can be done

starting from measurements taken on board of prototypes which would help to estimate

the relevance of the fault-hypothesis. Other research could study the behavior of the

communication system outside the fault-hypothesis and the impact on the application;

this could be undertaken using fault-injection.

3.2 Scalable dependability : FlexRay

A consortium of major companies from the automotive field is currently developing

the FlexRay protocol. The core members are BMW, Bosch, Daimler-Chrysler, General

Motors, Motorola, Philips and Volkswagen. The first publicly available specifications

of the FlexRay Protocol have already been released [11].

The FlexRay network is very flexible with regard to topology and transmission sup-

port redundancy. It can be configured as a bus, a star or multi-star and it is not manda-

tory that each station possess replicated channels nor a bus guardian, even though this

should be the case for critical functions. At the MAC level, FlexRay defines a com-

munication cycle as the concatenation of a time-triggered (or static) window and an

event triggered (or dynamic) window. In each communication window, whose size is

set statically at design time, a different protocol is applied. The communication cycles

are executed periodically. The time-triggered window uses a TDMA MAC protocol;

the main difference with TTP/C is that a station might possess several slots in the time-

triggered window, but the size of all the slots is identical.

In the event-triggered part of the communication cycle, the protocol is FTDMA

(Flexible Time Division Multiple Access): the time is divided into so-called mini-

slots, each station possesses a given number of mini-slots (not necessarily consecutive)

and it can start the transmission of a frame inside each of its own mini-slots. The

bus guardian is not used in the dynamic window to control wether transmissions take

place as specified. A mini-slot remains idle if the station has nothing to transmit. An

example of a dynamic window is shown in Figure1: on channel B, frame m has started

being transmitted in mini-slot n while mini-slots n+1 and n+2 have not been used. It is
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Channel A
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Frame ID n+1
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n+1

Frame ID n+2

n+3

MiniSlot

n+4

Frame ID n+4

n+3

Frame ID n+4

n+5
n+4

n+6

Slot Counter

n+7

Figure 1: Example of message scheduling in the dynamic segment of the FlexRay
communication cycle

noteworthy that frame n+4 is not received simultaneously on channels A and B since,

in the dynamic window, transmissions are independent in both channels.

The FlexRay MAC protocol is more flexible than the TTP/C MAC since in the

static window nodes are assigned as many slots as necessary (up to 4095 for each

node) and since the frames are only transmitted if necessary in the dynamic part of

the communication cycle. Compared to TTP/C, the structure of the communication

cycle is not statically stored in the nodes, it is indeed revealed during the startup phase.

However, unlike TTP/C, mode changes with a different communication schedule for

each mode are not possible.

From the dependability point of view, FlexRay specifies solely time-triggered com-

munication with bus guardian and clock synchronization algorithm on dual wires (shielded

or unshielded - see [10] for the specifications of the physical layer). Should we consider

the example of Brake-by-Wire in §2.2.1, the protocol offers no way offered for a node

to know that one of the wheel ECUs is no longer operational, which would be needed to

take the appropriate decision (e.g., redistribution of the brake force). Features that can

be necessary for implementing fault-tolerant applications, such as membership and ac-

knowledgment services or mode management facilities, will have to be implemented in

software or hardware layers on top of FlexRay with the drawback that efficient imple-

mentations might be more difficult to achieve above the Data Link Layer level. There is

indeed in literature individual solutions for each of the missing services but these pro-

tocols might have very complex interactions when used jointly, which requires that the
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whole communication profile is carefully validated by tests, simulation, fault-injection

and formal proof under a well defined fault-hypothesis.

In automotive systems, critical and non-critical functions will increasingly co-exist

and interoperate. In the FlexRay specification ([11] page 8), it is argued that the pro-

tocol provides scalable dependability i.e., the “ability to operate in configurations that

provide various degrees of fault tolerance”. Indeed, the protocol allows for mixing sin-

gle and dual transmission supports (interconnected though a star) on the same network,

sub-networks of nodes without bus-guardians or with different fault-tolerance capa-

bility with regards to clock synchronization, nodes that do not send or receive time-

triggered messages, etc. This flexibility can prove to be efficient in the automotive

context in terms of cost and re-use of existing components if missing fault-tolerance

features are provided in a middleware layer such as OSEK FTCom (see introduction

of section2 and reference [31]) or the one currently under development within the

automotive industry project AUTOSAR (seehttp://www.autosar.org).

3.3 Adding missing features to an existing protocol: CAN

Controller Area Network has proved to be a very cost and performance effective so-

lution for data exchange in automotive systems during the last 15 years. However, as

specified by the ISO standards [19, 20], CAN lacks almost all the features and services

identified in section2 as important for the implementation of fault-tolerant systems:

no redundant medium, no time-triggered communication, no global time, no atomic

broadcast (even in the “weak form” described in §2.1.4, due to the well-known in-

consistent message omission [39]), no reliable acknowledgment, no bus-guardian, no

group membership, no functioning mode management services, etc.

Some authors advocate that “CAN can be used as a base and missing facilities

can be added as needed” [15] and, over the last years, there was in fact a number of

studies and proposals aimed at adding fault-tolerant features to CAN (see, for instance,

[21, 13, 26, 27, 37, 12, 38, 4, 43, 35]). In the rest of this section, we discuss some such

proposals of possible interest for automotive systems.
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3.3.1 TTCAN : Time-triggered communications on top of CAN

Two main protocols were proposed to enable TT transmissions over CAN: TT-CAN

(Time-Triggered Controller Area Network - see [21, 36]) and FTT-CAN (Flexible

Time-Triggered CAN - see [13]). In the following, we consider TT-CAN, which has

received much attention in the automotive field since it was proposed by Robert Bosch

GmbH, a major actor in the automotive industry.

TT-CAN was developed on the basis of the CAN physical and data-link layers.

The bus topology of the network, the characteristics of the transmission support, the

frame format, as well as the maximum data rate - 1Mbits/s - are imposed by CAN

protocol [36]. In addition to the standard CAN features, TT-CAN controllers must have

the possibility to disable automatic retransmission and to provide the application with

the time at which the first bit of a frame was sent or received [36]. Channel redundancy

is possible, but not standardized, and no bus guardian is implemented in the node.

The key idea is to propose, as with FlexRay, a flexible time-triggered/event-triggered

protocol. TTCAN defines a basic cycle (the equivalent of the FlexRay communication

cycle) as the concatenation of one or several time-triggered (or “exclusive”) windows

and one event-triggered (or "arbitrating") window. Exclusive windows are devoted

to time-triggered transmissions (i.e., periodic messages) while the arbitrating window

is ruled by the standard CAN protocol: transmissions are dynamic and bus access is

granted according to the priority of the frames. Several basic cycles, that differ in

their organization (exclusive and arbitrating windows) and in the messages sent inside

exclusive windows, can be defined. The list of successive basic cycles is called the

system matrix and the matrix is executed in loops. Interestingly, the protocol enables

the master node, the node that initiates the basic cycle through the transmission of the

“reference message”, to stop functioning in TTCAN mode and to resume in standard

CAN. Later, the master node can switch back to TT-CAN mode by sending a reference

message.
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3.3.2 Improving error confinement

CAN protocol possesses fault confinement mechanisms aimed at differentiating be-

tween short disturbances caused by electromagnetic interferences (EMI) and perma-

nent failures due to hardware dysfunctioning. The scheme is based on error counters

that are increased and decreased according to particular events (e.g., successful recep-

tion of a frame, reception of a corrupted frame, ...). The relevance of the algorithms

involved is questionable (see [16]) but the main drawback is that a node has to diag-

nostic itself which can lead to the non detection of some critical errors such as the node

transmitting continuously a dominant bit (one manifestation of the “babbling idiot”

fault known as “stuck-at-dominant”, see §2.1.5and reference [4]). Furthermore, other

faults such as the partitioning of the network into several sub-networks may prevent all

nodes from communicating due to bad signal reflection at the extremities.

To address these problems, several solutions were proposed among which the vari-

ant of RedCAN discussed in [43] and CANcentrate [4]. The latter proposal is an active

star that integrates some fault-diagnosis and fault-confinement mechanisms that can in

particular prevent a stuck-at-dominant behaviour. The former proposal relies on a ring

architecture where each node is connected to the bus through a switch that possesses

the ability to exclude a faulty node or a faulty segment from the communication. These

two proposals are promising but developments are still needed (e.g., test implementa-

tion, fault-injection, formal proofs) before they can be actually used in safety-critical

applications. Furthermore, some faults such as a node transmitting correct frames more

often than specified at design time are not covered by these proposals.

Many other mechanisms were proposed for increasing the dependability on CAN-

based networks (see [26, 27, 37, 12, 38, 35]), but as pointed out in [37], if each proposal

solves a particular problem, they have not been thought to be combined. Furthermore,

the fault-hypothesis used in the design are not necessarily the same and the interactions

between protocols remains to be studied in a formal way.
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4 Conclusion

In the current state of practice, automotive embedded systems make widely use of fault-

prevention (e.g., shielded ECU or transmission support), fault-detection (e.g., watch-

dog ECU that monitors the functioning state of the engine controller, check whether a

data is obsolete or out-of-range) and fault confinement techniques (e.g., missing crit-

ical data are reconstituted on the basis of other data and more generally, specification

and implementation of several degraded functioning modes). Redundancy is used at

the sensor level (e.g., for the wheel angle) but seldom at the ECU level because of

cost pressure and because the criticality of the functions does not absolutely impose

it. Some future functions, such as brake and steer-by-wire, are likely to require active

redundancy in order to comply with the acceptable risk levels and the design guidelines

that could be issued by certification organisms.

For critical functions that are distributed and replicated throughout the network,

the communication system will play a central role by providing the services that will

simplify the implementation of fault-tolerant applications. The networks that are candi-

dates are TTP/C, FlexRay and CAN-based time-triggered solutions. TTP/C is a mature

technology that provides the most important services for supporting fault-tolerant ap-

plications. Moreover, TTP/C was designed under a well specified fault-hypothesis and

the committees of most of its algorithms was formally proven. In our opinion, future

research should investigate the relevance of the TTP/C fault-hypothesis in the context

of automotive embedded systems and the behavior of the protocol outside the fault-

hypothesis. At the time of writing, FlexRay, which is developed by the major actors of

the European automotive industry, seems in a strong position for becoming a standard

in the industry. The main advantage of FlexRay is its flexibility; in particular, it pro-

vides both time-triggered and event-triggered communications and nodes with different

fault-tolerance capabilities can co-exist on the same network. The services provided by

FlexRay do not fulfill all the needs for fault-tolerance and higher level protocols will

have to be developed and validated before FlexRay can be used in very demanding ap-

plications. The major issue is that higher level implementations tend to be less efficient
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(e.g., bandwidth overhead for acknowledgment, maximum time needed for detecting

faulty nodes). Finally, the solutions based on the TT-CAN protocol will require addi-

tional low-level mechanisms for fault-confinement as well as higher-level services such

as atomic broadcast and membership. Many proposals exist for more dependability on

CAN-based network but much work remains to be done to come up with a coherent

and validated communication stack that includes all necessary services.
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