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Abstra
tAutomotive embedded systems are distributed ar
hite
tures of 
omputer-based ap-pli
ations. These automotive embedded systems have brought many bene�ts su
has repla
ement of old me
hani
al system with wired ones and new appli
ations oneslike adaptive suspensions. These repla
ements or enhan
ements 
ould be of 
rit-i
al nature and therefore providing guarantees that these embedded systems willto perform, even in harsh environments, is of utmost importan
e. Besides, these
omputer-based appli
ations demand timeliness, imposed by a physi
al pro
ess. Forexample, braking subsystem is usually spread over many embedded nodes whi
h are
ommuni
ating with ea
h other over a shared resour
e and has time 
onstraints thatneed to be met. Therefore, it is important that time 
onstraints are met individu-ally and 
olle
tively in the 
omposition of these embedded nodes. That is the timebetween the brake appli
ation at brake pedal to the brake a
tuation at the wheelsof an automobile, the time duration should be less than the deadline. Moreover,su
h a proliferation has also 
ome with an in
reasing heterogeneity and 
omplexityof the embedded ar
hite
ture.Therefore, there is a need to ensure that these automotive embedded systemsmeet temporal 
onstraints, and provide safety guarantees during normal operationor 
riti
al situations. This thesis aims at developing the s
hedulability analyses forautomotive systems and embedded networks, with the aim to fa
ilitate 
ost-e�e
tiveand reliable design and analysis of automotive embedded systems. The analysesare applied/developed in the automotive domain, to redu
e the risk of deadlinefailure due to hardware limitations, implementation overheads and interferen
e dueto probabilisti
 tra�
.Keywords: 
ontroller area network, CAN, real-time 
ommuni
ation, real-timeanalysis, s
heduling, probabilisti
 analysis, 
omponent based system
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tion
Contents1.1 Introdu
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1.1 Timing budget . . . . . . . . . . . . . . . . . . . . . . . . . . 21.1.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.1.3 Analyti
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 analyses . . . . . . . . . . . . . . . . . . . . . . 61.2.3 Compositional performan
e analysis . . . . . . . . . . . . . . 61.2.4 Probabilisti
 performan
e analysis . . . . . . . . . . . . . . . 71.3 Resear
h questions and Contributions . . . . . . . . . . . . . 81.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.1 Introdu
tionAutomotive embedded systems are distributed ar
hite
tures of 
omputer-based ap-pli
ations with physi
al pro
esses (me
hani
al, hydrauli
) that they have to 
ontrol.The growth in proliferation of 
omputers (ECU, Ele
troni
 Control Unit) has animpa
t on the safety. The in
reased use of ECUs in modern automotive systemshas brought many bene�ts su
h as the merging of 
hassis 
ontrol systems for a
tivesafety with passive-safety systems. Most of the automotive appli
ations are safety
riti
al and therefore providing guarantees for these appli
ations is an importantrequirement. Moreover, su
h a proliferation has 
ome with an in
reasing hetero-geneity and 
omplexity of the embedded ar
hite
ture. Therefore, there is a growingneed to ensure that automotive embedded systems have reliability, availability andsafety guarantees during normal operation or 
riti
al situations (e.g. airbags dur-ing 
ollision), taking into a

ount harsh environment (heat, humidity, vibration,ele
tro-stati
 dis
harge ESD and ele
tro-magneti
 interferen
e EMI).To provide guarantee on safety property, model based approa
hes, and analyt-i
al methods during the design a
tivity are required. These approa
hes should beable to model these systems, whi
h are heterogeneous by nature: dis
rete and 
on-tinuous systems, deterministi
 and probabilisti
 variables. In parti
ular, to validatetiming properties imposed by the time 
onstraints of the physi
al systems and their



Chapter 1. Introdu
tion
ontrol laws is of utmost importan
e. The distribution of su
h systems in
reases thevalidation of these safety properties.Ele
troni
 systems in the automobiles are required to respond in a predi
tablemanner, i.e. timely manner. The predi
tability of these systems is ensured, amongothers, by timing veri�
ation on system models, whi
h 
he
ks if performan
e re-quirements like deadlines, jitters, throughput et
. are being met.The timing 
onstraints veri�
ation analyses has to be 
arried out as soon aspossible in the development life-
y
le. Moreover, su
h analyses may be mandatoryfor 
erti�
ation issues.However, developing timing veri�
ation models 
an be 
omplex to build. Wehave to �nd a trade-o� between a

ura
y/
omplexity/
omputing time. First, it isdi�
ult to have a detailed model at the earliest step and therefore rough assumptionshave to be done on the hardware performan
es for example. However, su
h trade-o�s should not over-simplify the models thus making the analyses unsafe for use.Analyti
al timing models, whi
h tend to overlook/oversimplify the system model,may lead to optimisti
 results that may not �t to the 
on
rete system.1.1.1 Timing budgetThe automotive Original Equipment Manufa
turers (OEMs) de
omposes the overallend-to-end laten
y to the timing budget of individual the ECUs, the 
ommuni
ation
hannels, and negotiate these timing budgets with the suppliers. The OEMs need toassign these timing budgets to the suppliers. Therefore, the OEMs must properlyde
ide the time budgets for ea
h ECU and 
ommuni
ate the spe
i�
ation at theinitial stage of the automotive development. The OEMs may revise the initialtiming estimates of the individual "timing budget" of vehi
ular fun
tions, to a
hieveoptimal performan
e or 
ost of the entire vehi
le as the suppliers re�ne the solution(OEMS may ask suppliers to adjust or improve the time budget). Therefore, OEMsshould be able to do better estimates for allo
ating timing budgets at the initialstages of the proje
ts. The OEMs in pra
ti
e, therefore, may 
arry-over from theexisting (proven in use) systems with domain-spe
i�
 rules to estimate the timingbudgets, like:1. The load on an automotive CAN network must not be higher than 30 per
ent.2. A frame pending for transmission for more than 30ms is 
an
eled out.However, su
h an approa
h has potential problems like being sub-optimal andbeing unsafe design, with problems that 
an be hard to reprodu
e and are 
ostly torepair later in the development 
y
le. However, we 
an use the timing informationfrom previous design (of an automotive system) to infer the timing properties of asystem in the early stage of design, when very little timing information is availableand thus help in better dimensioning of a system. We propose one su
h modelin this thesis, whi
h uses the probabilisti
 model of aperiodi
 tra�
 from previousdevelopment run of a vehi
le to adjust the aperiodi
 tra�
 on a 
urrent developmentrun of a vehi
le. 2



1.1. Introdu
tion1.1.2 SimulationsSimulation is a tool for 
he
king the validity of a system. However, even if the designpasses all the tests su

essfully, it is not ne
essary that the safety properties willbe met. In order to verify worst-
ase (for safety 
riti
al systems) we must performexhaustive simulations of the design. The simulations utilizes a logi
al model ofsystem (physi
al) to imitate state 
hanges in response to random or deterministi
events at simulated points in time. The system state 
hanges based on the givensystem des
ription. For example, in a network to measure the end-to-end responsetime of messages a
ross the network. In pra
ti
e software simulations are used inthe early stages of development 
y
le. The simulations are also used to validateanalyti
 models : laten
ies, bu�er o

upation, et
. telling us about how long westay in the worst-
ase situation. Moreover, the simulations are also performed in
onjun
tion with the ECUs as they be
ome available, HiL (Hardware in the Loop)1,to validate the system.However, simulations only 
annot be used to do timing veri�
ation for the sys-tems with safety and 
riti
ality requirements. The reason being the di�
ulty toas
ertain the worst-
ase from the simulation tra
es, as they do not provide anybound on the performan
e results.1.1.3 Analyti
al modelsThe analyti
al models of automotive systems have been developed and are used toperform timing veri�
ations. These models 
ombine the 
ommuni
ation 
onstraintsand message spe
i�
ations (e.g., a
tivations) to do timing veri�
ation. The ana-lyti
al models of the automotive system often 
onsider the periodi
 and sporadi
tasks a
tivations only. For example, analyti
al models developed for CAN are usedto perform timing veri�
ation of the messages on CAN bus based on periodi
 orsporadi
 a
tivations.The analyti
al models have to guarantee that the timing requirements of alltasks are met, i.e. the 
ommuni
ations delay between a sending task queuing amessage, and a re
eiving task being able to a

ess that message, must be bounded.This total delay is termed the end-to-end 
ommuni
ations delay. The end-to-end
ommuni
ation delay is then used to 
on
lude about the feasibility of the system.Therefore, it is of paramount importan
e, parti
ularly for safety 
riti
al systems,that the upper bound returned by these analyses is a true upper bound.However, some the analyti
al models have been prove to be optimisti
 and thuswrong (espe
ially unpublished 
omplex ones), [Davis 2007℄, and ignore the impa
tof hardware limitations and error-proneness of embedded software. Some of themodels do the overestimation, whi
h is pessimisti
 for soft real-time automotiveappli
ations.Moreover, the timing veri�
ation models fall short in modeling a

urately every-thing, for example, taking in the a

ount the queuing poli
y used in devi
e driver,1We do not 
onsider other simulation methods like HiL in this thesis.3
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tion
opy-time of messages from devi
e driver to 
ommuni
ation hardware, limited trans-mit bu�ers in a hardware et
. and unfortunately the standards do not say everythingabout this, e.g., AUTOSAR CAN driver spe
i�
ation.Moreover, these analyti
al models do not 
hara
terized the network tra�
 verywell e.g. aperiodi
 tra�
. These analyses models usually rely on periodi
 orsporadi
 tra�
 models for pessimisti
 analysis, based on 
riti
al-instan
e of thetasks/messages in order to �nd the worst-
ase timing properties and test the s
hedu-lability requirements of the tasks/messages. Even if it is appropriate in some spe
i�
appli
ation areas, this approa
h does not allow to address many of the appli
ations inan heterogeneous systems like automobiles; be
ause, when the arrival times are ape-riodi
 with high varian
e, it may lead to a signi�
ant over-provisioning of resour
esat the design time. Thus for real-time systems (RTS) in whi
h the task/messagesset exhibit substantial variability in arrivals (aperiodi
), it is pra
ti
al to developan approa
h taking into a

ount the sto
hasti
 nature of arrivals of tasks/messages.Su
h approa
hes 
an lead to a drasti
 redu
tion in the amount of resour
e provi-sioning. Thus leading a system, 
on
eived to be analyzable in temporal domain, tobe a potentially unsafe design, whi
h is una

eptable parti
ularly for safety 
riti
alautomotive systems.1.2 State of the artTiming enables an early analysis of whether a system 
an meet the desired timingrequirements, and avoid over- or under- dimensioning of systems and also save fromunne
essary iterations in the development pro
ess. The result is a shortened devel-opment 
y
le with in
reased predi
tability/timeliness, whi
h is of greater interest insafety-
riti
al systems.Today, during the automotive development pro
ess the designers �rstly fo
uson the fun
tional behavior of the system and, therefore, the temporal propertiesof the systems may be veri�ed late in the pro
ess. Besides, when the temporalproperties are veri�ed, it is usually through testing and measurements and if atiming error is dete
ted it is late in the pro
ess. Therefore, resulting in the 
ostlydesign re-iterations. Thus, we need the analyti
al models whi
h we 
an use from theearly stages of the design (not just testing and measurements at the end) to verifytiming properties. These analyti
al models should be detailed enough (for bothhardware and software) to 
he
k the temporal properties, parti
ularly for safety-
riti
al systems. There are various methods for temporal analyses, whi
h 
an bebroadly grouped into four 
ategories based on the modeling framework they use,and are explained below.1.2.1 SimulationThe simulations utilizes a logi
al model of system (physi
al) to imitate state 
hangesin response to random or deterministi
 events at simulated points in time. Thesystem state 
hanges based on the given system des
ription. In RTS the Dis
rete4



1.2. State of the artEvent simulation is used to analyze the performan
e of the system, for example, ina network to measure the end-to-end response time of messages a
ross the network.The transfer time is determined for di�erent bus loads, priorities of the messagesand arrangement of the devi
es. Simulations are often used when an analyti
alapproa
h is not possible or is 
omplex and expensive. There are various simulationframeworks available for real-time systems and some of whi
h have been des
ribedhereafter.Modeling and Analysis Suite for Real-Time Appli
ations(MAST),see [Gonzalez Harbour 2001℄ is mixed system providing worst-
ases
hedulability analysis for hard timing requirements, and dis
rete-event simulationfor soft timing requirements. In MAST a system representation is analyzablethrough a set of tools that have been developed within the MAST suite. Thesetools des
ribes a model for representing the temporal and logi
al elements of real-time appli
ations. MAST allows a very ri
h des
ription of the system, in
luding thee�e
ts of event or message-based syn
hronization, multipro
essor and distributedar
hite
tures as well as shared resour
e syn
hronization. MAST 
urrently in
ludesonly �xed priority s
heduling, but, it is 
on
eived as an open model and is easilyextensible to a

ommodate s
heduling algorithms.Ptolemy, see [Bu
k 2002℄, is another framework whi
h 
an provide simulationand prototyping of heterogeneous systems. The models in Ptolemy are des
ribedusing obje
t-oriented software te
hnology (C++). Ptolemy has been applied tonetworking and transport, 
all-pro
essing and signaling software, embedded mi
ro-
ontrollers, signal pro
essing (in
luding implementation in real-time), s
hedulingof parallel digital signal pro
essors, board-level hardware timing simulation, and
ombinations of these.True-Time is toolbox for MATLAB, see [Henriksson 2003℄, for simulating net-worked and embedded real-time 
ontrol systems. One of its main features involvesthe possibility of 
o-simulation of the intera
tion between the real-world 
ontinuousdynami
s and the 
omputer ar
hite
ture in the form of task exe
ution and network
ommuni
ation. It supports various 
ommuni
ation proto
ols for both wireless andwired networks.DRTSS, see [Stor
h 1996℄, is another framework whi
h allows its users to easily
onstru
t dis
rete-event simulators of 
omplex, heterogeneous distributed real-timesystems. The framework allows simulation of initial high-level system designs togain insight into the timing feasibility of the system. Whi
h at later stages of designpro
ess 
an be expanded into a detailed hierar
hi
al designs for detailed analysis.Cheddar, see [Singho� 2004℄, is an Ada framework whi
h provides tools to 
he
ktemporal 
hara
teristi
 of real time appli
ations. The framework is based on thereal time s
heduling theory. Cheddar model de�nes an appli
ation as a set of pro-
essors, tasks, bu�ers, shared resour
es and messages. It has a �exible simulationengine whi
h allows the designer to des
ribe and run simulations of spe
i�
 systems.The 
heddar framework is open and extension 
an be easily designed for tools andsimulators.RTaW-Sim, see [rts ℄, for CAN network is a �ne-grained dis
rete event simulator5
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tionproviding performan
e analysis, bu�er usage, thereby helping make 
orre
t imple-mentation 
hoi
e e.g. queueing poli
y. It has features to perform fault-inje
tion interms of frame transmission errors, ECU reboots, 
lo
ks drifting.Besides these frameworks, simulations in RTS have been used to evaluate therobustness of a system for example, see [Nilsson 2009℄, where Nilsson et al. 
reatedand simulated atta
ks in the automotive 
ommuni
ations proto
ol FlexRay andshowed that su
h atta
ks 
an easily be 
reated. These atta
ks 
an result in safetyin-vehi
le network and lead to serious injury for the driver.However, it is di�
ult to as
ertain the worst-
ase from the simulation tra
es asthey do not provide any bound on the performan
e results. Thus simulations donot qualify for 
he
king temporal properties of hard real-time systems.1.2.2 Deterministi
 analysesThe idea of holisti
 s
heduling is to extend well-known results of the 
lassi
al s
hedul-ing theory to distributed systems. These analyses 
ombines the s
hedulability anal-yses of pro
essor and 
ommuni
ation bus to 
ompute the end-to-end response timein a distributed real-time system. Tindell and Clark in [Tindell 1994a℄ used thisapproa
h to analyze distributed hard real-time system where tasks with arbitrarydeadlines 
ommuni
ated by message passing and shared data obje
ts and the nodes
ommuni
ated via TDMA bus. The developed analysis provided bounds on the
ommuni
ation delays and overheads at the destination pro
essor.In [Yen 1995, Yen 1998℄ presented holisti
 analysis approa
h for distributed sys-tems where in the des
ribed methodology to 
o-synthesize 
ommuni
ation to avoidbottlene
k in many embedded systems. They used a bus model for 
ommuni
ationwith arbitrary topologies in a point-to-point manner. Sin
e, 
ommuni
ation linksadd both 
hip and board 
osts, and designers frequently underestimate peak load.In [Pop 2002℄ presented a holisti
 analysis for emerging distributed automotiveappli
ations spe
i�
ally dealing with the issues related to mixed, event-triggeredand time-triggered task sets, whi
h 
ommuni
ated over bus proto
ols 
onsisting ofboth stati
 and dynami
 phases.However, the problem with holisti
 s
heduling is that it is tailored towards a�parti
ular 
ombination� of input event model, resour
e sharing poli
y and 
ommu-ni
ation arbitration. Therefore, for the large heterogeneous systems it results inthe large and heterogeneous 
olle
tion of analyses methods, whi
h makes holisti
s
heduling analysis di�
ult to use in pra
ti
e.1.2.3 Compositional performan
e analysisIn 
ontrast to holisti
 methods that extend 
lassi
al s
heduling analyses, the 
ompo-sitional analyses te
hniques are modular in nature (
omponents). The 
omponentsof a system are analyzed with 
lassi
al algorithms and the lo
al results are prop-agated in the system through appropriate 
omponent interfa
es relying on eventstream models for propagation between 
omponents. That is for ea
h 
y
le of sys-6



1.2. State of the arttem level 
ompositional analysis, lo
al analysis on ea
h 
omponent is performed.The output event models resulting from the lo
al analysis of 
omponents are thenpropagated through the 
omponent interfa
e to the 
onne
ted 
omponents. There
eiving 
omponent uses the output event model from the previous 
omponent asits input model.Thiele et al. in [Thiele 2000℄ presented Modular Performan
e Analysis (MPA) asone su
h analysis method of RTS. The method uses Real-Time Cal
ulus, whi
h is anextension of Network Cal
ulus [Le Boude
 2001℄, to analyze the �ow of event streamsthrough pro
essing and 
ommuni
ation elements of the system. The importantfeature of MPA is that it is not limited to only 
ertain input event models andthe 
omponent interfa
es, see [Henzinger 2006℄, but 
an also spe
ify the 
omponent
ompatibility and relationships depending on assumptions about input event modeland allo
ated resour
e 
apa
ities.SymTA/S (Symboli
 Timing Analysis for Systems) is another 
ompositionalanalysis approa
h similar to MPA, see [Henia 2005℄. The SymTA/S is based onthe te
hnique to 
ouple lo
al s
heduling analysis algorithms using event streams.Where the event streams des
ribe the possible task a
tivations. For the 
omposi-tional analysis, the input and output event streams are des
ribed by standard eventmodels, for example, a periodi
 with jitter event model having two parameters 
anbe des
ribed as (P, J). SymTA/S 
ompositional approa
h also has an ability, likegreedy shapers in MPA, to adapt the possible timing of events in an event stream.1.2.4 Probabilisti
 performan
e analysisThe worst-
ase evaluation may not be su�
ient or needed as there are not manystri
t hard real-time systems. Therefore, for these system probabilisti
 performan
eanalyses are performed. The motivation being that not many appli
ations are time-
riti
al, but nonetheless they are sensitive to laten
ies. For example, for 
ontrolappli
ations the quality of the 
ontrols depends also on the average response time,besides the deadline, whi
h needs to be minimized. Moreover, the a
tivation oftasks and messages 
an be aperiodi
 (probabilisti
) in 
ertain system. Importantly,not all of the design parameters may be available at the initial phase of automotivesystem design and a designer 
an start with a probabilisti
 model of a system whi
h
an provide an important dire
tion for future phase of the proje
t. Moreover, formany safety 
riti
al system the 
onstraints on 
riti
ality are represented in terms ofthe probability thresholds (e.g. mean-time to failure probability).Sto
hasti
 Network Cal
ulus (SNC), see [Jiang 2008℄, is one su
h method whi
hfo
uses on performan
e guarantees. It is similar to network 
al
ulus, a theory deal-ing with queuing systems found in 
omputer networks, but works with sto
hasti
arrival 
urves and provides probabilisti
 guarantees of timing and ba
klog informa-tion. Besides SNC many automotive systems have been analyzed using probabilisti
approa
h, be
ause of problem being expli
itly probabilisti
 in nature. For example,in [Navet 2000℄, Navet et al. introdu
e the 
on
ept of worst 
ase deadline failureprobability (WCDFP), the probability that too many errors o

ur su
h that a mes-7
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tionsage 
an not meet its deadline. Nolte et al. in [Nolte 2001℄ extend the worst-
ase re-sponse time analysis for message with random message transmission times due to bitstu�ng. Whi
h depends on the probability distribution of a given number of stu�edbits due to the me
hanism in CAN proto
ol, su
h that a frame 
ontaining a sequen
eof �ve 
onse
utive identi
al bits are �bit-stu�ed� to 
hange polarities. Gardner et al.in [Gardner 1999℄ analyzed a sto
hasti
 �xed priority RTS su
h that an o

asionalmissed deadline is a

eptable, but at de
reased performan
e. They presented ananalysis te
hnique in whi
h they bound (lower) the per
entage of deadlines that aperiodi
 task meets and 
ompared that with the lower bound with simulation re-sults. Diaz et al. in [Díaz 2002℄ provided a sto
hasti
 analysis method for generalperiodi
 real-time systems, a

urately 
omputing the response time distribution ofea
h task in the system. Whi
h made it possible to determine the deadline missprobability of individual tasks, even for systems with maximum utilization fa
torgreater than one. Bernat et al. in [Bernat 2002℄ devised an approa
h for 
omputingprobabilisti
 bound on exe
ution time by 
ombining the measurement and analyti-
al approa
hes into a model. There method 
ombined, probabilisti
ally, worst-
asee�e
ts seen to formulate the exe
ution time model of the worst 
ase path of theprogram.1.3 Resear
h questions and ContributionsThis thesis address the timing veri�
ation issues for the automotive systems andprovides the analyti
al models and implementation guidelines to address these prob-lems in a safety 
riti
al automotive environment. We investigate and provide tighterworst-
ase bound in a mixed 
ommuni
ation paradigm based on aperiodi
 (proba-bilisti
) and periodi
 messages, thus helping in better dimensioning of the systemsat the development time. We also investigate the impli
ation of diverse 
ommuni-
ation 
ontrollers (when message abortion is not possible) on response time of themessages that are assumed to be en-queued by the middle-ware-level task beforebeing ex
hanged on a CAN network and provide a tighter bound on response timeof the messages. We also integrate implementation over-heads, su
h as 
opy-time,into the s
hedulability analysis of CAN network. We also develop a probabilisti
system-level analysis for 
omponent based RTS in a mixed 
ommuni
ation paradigmi.e. having both probabilisti
 and deterministi
 arrivals. Most of the analyses de-veloped in thesis integrate the 
on
ept of fun
tional safety based on Safety IntegrityLevels into response time analyses, in order to guarantee the required safety levels.Ea
h 
hapter provides a 
ase-study whi
h is evaluated using the developed analy-sis to provide an understanding about improvements and innovations our analyseshave brought about. Spe
i�
ally, this thesis tries to answers the following resear
hquestion:
• Q1 How to perform mixed (probabilisti
 and deterministi
) timing analysisof an automotive 
ommuni
ation network in order to dimension the systemproperly? 8



1.3. Resear
h questions and Contributions� Q1a How to model the aperiodi
 data probabilisti
ally?� Q1b How to integrate the model of aperiodi
 data in the s
hedulabilityanalysis?� Q1
 How to ensure that the analysis guarantees the required level ofsafety?Answer: We provide a probabilisti
 approa
h to model the aperiodi
 tra�
 andintegration of it into response time analysis along with the deterministi
 part,modeled by periodi
 a
tivations. The approa
h allows the system designerto 
hoose the safety level of the analysis based on the system's dependabilityrequirements. Compared to existing deterministi
 approa
hes the approa
hleads to more realisti
 WCRT evaluation and thus to a better dimensioning ofthe hardware platform.
• Q2 How 
an di�erent hardware and software implementations a�e
t the tem-poral behavior in an automotive network?� Q2a How to integrate the implementation over-heads in the s
hedulabilityanalysis?� Q2b How to integrate a�e
t of limited transmission bu�ers in the s
hedu-lability analysis?� Q2
 What are the guidelines for devi
e driver implementations?Answer: We provide analysis of the real-time properties of message in a CANnetwork having hardware 
onstraints and implementation over-heads (
opy-time of messages). Whi
h, if not 
onsidered, may result in a deadline violationin
urred due additional laten
ies. We explain the 
ause of this additionallaten
y and extend the existing CAN s
hedulability analysis to integrate it.We also provide some guidelines that 
an be useful for the implementation ofCAN devi
e drivers.
• Q3 How 
an we perform a mixed (deterministi
 and probabilisti
) 
omponentbased performan
e analysis, for system dimensioning and 
omponent reuse, ofan automotive system?� Q3a How to model the probabilisti
 
omponent and its interfa
e?� Q3b How to 
ompose the mixed (deterministi
 and probabilisti
) 
om-ponents together in a system?� Q3
 How to do the performan
e analysis of this mixed 
omponent system?� Q3d How to ensure that the analysis guarantees the required level ofsafety?Answer: We provide an analysis of 
omplex real-time systems involving
omponent-based design and abstra
tion models. We developed an abstra
-tion whi
h provides both deterministi
 and probabilisti
 models for 
ompo-nent interfa
es based on 
urves and probability thresholds asso
iated with9
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tionthose 
urves, resulting in an analysis for real-time systems whi
h has bothdeterministi
 and probabilisti
 
omponents, based on an extension of real-time 
al
ulus to probabilisti
 domain. The analysis 
an o�er either hard orsoft real-time guarantees a

ording to the requirements and the spe
i�
ationsof the system. We also show the �exibility of the analysis to 
ope with therequired safety 
riti
ality level of a system.1.4 Thesis outline
• Chapter 2: Periodi
 and Aperiodi
 (mixed) analysis of CAN based on inte-grating safety requirements.
• Chapter 3: CAN 
ontroller hardware and software limitations and modelingthe analysis to in
lude those limitations for tighter bounds on response time.
• Chapter 4: System level response time analysis for 
omponent based analysis,in a mixed (probabilisti
 and deterministi
) analysis for system level perfor-man
e with guarantees for safety and real-time 
onstraints.
• Chapter 5: Gives the perspe
tive of this thesis.

10



Chapter 2Probabilisti
 CAN S
hedulabilityAnalysis
Contents2.1 Introdu
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112.1.1 Problem de�nition . . . . . . . . . . . . . . . . . . . . . . . . 122.1.2 Handling aperiodi
 tra�
 . . . . . . . . . . . . . . . . . . . . 122.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 132.3 Modeling aperiodi
 tra�
 . . . . . . . . . . . . . . . . . . . . 142.3.1 Approximating arrival pro
ess . . . . . . . . . . . . . . . . . . 142.3.2 Errors in approximation . . . . . . . . . . . . . . . . . . . . . 162.3.3 Finding distribution . . . . . . . . . . . . . . . . . . . . . . . 172.3.4 Threshold based work-arrival fun
tion . . . . . . . . . . . . . 222.3.5 Handling priority . . . . . . . . . . . . . . . . . . . . . . . . . 282.4 S
hedulability analysis . . . . . . . . . . . . . . . . . . . . . . 322.5 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38In this 
hapter a probabilisti
 approa
h to model the aperiodi
 tra�
 and in-tegration of it into response time analysis is dis
ussed. The approa
h allows thesystem designer to 
hoose the safety level of the analysis based on the system'sdependability requirements. Compared to existing deterministi
 approa
hes the ap-proa
h leads to more realisti
 WCRT evaluation and thus to a better dimensioningof the hardware platform.2.1 Introdu
tionIn the �eld of real-time systems, methods to assess the real-time performan
es ofperiodi
 a
tivities (tasks, messages) have been extensively studied. Response times,worst-
ase or average, and jitters 
an be evaluated by simulation or analysis for awide range of s
heduling poli
ies provided that the a
tivation patterns of the tasksand messages are well identi�ed. The problem is more intri
ate for aperiodi
 a
tivi-ties sin
e, in many pra
ti
al 
ases, it is di�
ult to have a pre
ise knowledge of their
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tivation pattern and be
ause deterministi
 WCRT analysis have not been 
on-
eived to handle aperiodi
 a
tivities. For example, the arrival pattern of aperiodi
frames in the body network of a vehi
le is hard to predi
t, as it is dependent on theuser intera
tions. However aperiodi
 frames of higher priority ex
hanged among theEle
troni
 Control Units (ECUs) in the body network of a vehi
le 
an delay periodi
tra�
. Indeed, most often the Controller Area Network (CAN) priority bus is usedand the aperiodi
 frames do not ne
essarily get the lowest priority levels 1assignedto them.2.1.1 Problem de�nitionIn this 
hapter, we address the problem of evaluating response times when bothperiodi
 and aperiodi
 a
tivities are taken into a

ount. A
tivities are termed framesin rest of the 
hapter, be
ause the approa
h will be developed and illustrated on theCAN bus, but our approa
h equally holds for tasks. The in
rease in the WCRT of theperiodi
 frames whi
h may be 
aused by the higher priority aperiodi
 frames 
ouldbe 
riti
al for hard real-time systems as it 
ould lead to the violation of the deadlines.Besides, large response times of aperiodi
 frames may jeopardize the exe
ution ofa fun
tion or may even raise safety 
on
erns in some 
ases (e.g. headlights �ashesin a vehi
le). In addition, low responsiveness is negatively per
eived by the user.It is worth mentioning that a
tivities that are periodi
 by essen
e are sometimesimplemented in an aperiodi
 manner in order to save resour
es.Whatever the exa
t approa
h, one of the main steps is to derive a model ofthe arrival patterns for aperiodi
 a
tivities, what will be 
alled in the followingthe aperiodi
 Work Arrival Fun
tion (WAF). Then, this aperiodi
 WAF has to beintegrated into the response time analysis. There are however di�
ulties:
• obtaining aperiodi
 data (i.e., by measurements or simulation),
• modeling aperiodi
 data,
• integrating the model into s
hedulability analysis.What we are dis
ussing in this 
hapter is not how to obtain data but how to modelit and integrate it into s
hedulability analysis.2.1.2 Handling aperiodi
 tra�
There are two 
lassi
al approa
hes to handle the aperiodi
 tra�
:
• worst-
ase deterministi
 approa
h:aperiodi
 frames are 
onsidered as periodi
frames with their periods equal to the minimum inter-arrival times, this is the1Be
ause of the in
remental design pro
ess, in-house usages or 
onstraints of the 
ooperationpro
ess between 
ar-makers and suppliers, priorities on the CAN bus do not ne
essarily re�e
t the
riti
ality of the frames (i.e., importan
e from a fun
tional point of view, deadline 
onstraint).12



2.2. System Modelwell known sporadi
 model [Spuri 1996℄. However, in many 
ases, the mini-mum inter-arrival time is so small that the resulting workload is unrealisti
,and often greater than 100% [Zhang 2008℄.
• An average-
ase probabilisti
 approa
h: the aperiodi
 tra�
 is modeled a
-
ording to a probabilisti
 inter-arrivals pro
ess, the next step is then to es-timate the 'probable' number of arrivals in a given interval of time. Thisapproa
h is 
learly not suited to real-time systems be
ause it largely underes-timates the arrivals of aperiodi
 tra�
 whi
h 
an o

ur in small time intervals2A basi
 probabilisti
 framework was set for in
lusion of aperiodi
 frames in a 
on-trolled manner using a threshold value in [Burns 2003℄. This 
hapter builds uponthis framework and dis
usses pre
isely the me
hanism of deriving the aperiodi
WAF, as well as it removes some assumptions pla
ed in [Burns 2003℄. In parti
ular,we show that in our spe
i�
 
ontext it is not ne
essary that the di�erent streams ofaperiodi
 frames are modeled individually.Overview of approa
hWe do not assume any prior knowledge of the aperiodi
 frame a
tivation pattern,however we assume that it is possible to monitor the system, or a simulation modelof it, and gather data about the arrival times of aperiodi
 frames. Then, from themeasurements, we build a probabilisti
 model of the aperiodi
 inter-arrival timesunder the form of an empiri
al frequen
y histogram or a distribution obeying a
losed-form equation whenever possible. The next step is to derive a deterministi
WAFs from the probability distribution of the aperiodi
 frame inter-arrival times.A general me
hanism is provided enabling to derive the deterministi
 WAF fromthe underlying probabilisti
 distributions of the aperiodi
 tra�
 even given in formof empiri
al histograms, whi
h is worthy in pra
ti
e sin
e aperiodi
 arrivals do notne
essarily obey a 
losed-form equation. Another advantage is that the te
hniqueis independent of the s
heduling and 
an be used whatever the poli
y (preemptive,non-preemptive, �xed priority, dynami
-priority, et
) and whatever the task model.All in all, we believe that our proposal o�ers a better solution for taking into a

ountaperiodi
 tra�
 in systems with dependability 
onstraints, 
ompared to worst-
aseand average 
ase probabilisti
 approa
hes.2.2 System ModelThe tra
e of aperiodi
 events is 
hara
terized by a set D = E1, E2, ..., En where

Ei is an ith aperiodi
 event su
h that E1 is re
orded before E2 on the bus. Theevents in D are re
orded in orders of their arrivals on the bus. Ea
h aperiodi
2A

ording to the prin
iple of large deviations: the smaller the interval, the larger (in propor-tion) the deviation to the mean [Navet 2007℄. 13
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hedulability Analysisa ρ C (mse
)0.5 341 0.7600.5 878 0.6960.5 2000 0.7609 33 0.63212 256 0.632(a) Approximated tra
e
a ρ C (mse
)0.500 341 0.7601.250 878 0.6961.954 2000 0.7609 33 0.63212 256 0.632(b) A
tual tra
e1a' ρ' C' (mse
)0.5 341 0.7601.260 878 0.6961.956 2000 0.7609 33 0.63212 256 0.632(
) A
tual tra
e2Figure 2.1: Approximated tra
e against tra
e1 and tra
e 2event is 
hara
terized by a set Ei = {ai, ρi, Ci} where ai is an arrival time (a′

i isthe estimated arrival time), ρi is a priority of the aperiodi
 frame and, Ci is theworst-
ase exe
ution time of the frame. The length of set D depends on the timewhen tra
e 
apture was stopped, but it should be su�
iently large to dedu
e theprobabilisti
 model of inter-arrivals.2.3 Modeling aperiodi
 tra�
The data used in this work 
omes from measurements taken on-board of a PSAvehi
le but be
ause of 
on�dentiality reasons we have obs
ured the 
hara
teristi
swhi
h 
ould re�e
t about the design at PSA Peugeot Citröen.What was measured are the times at whi
h the frames started to be transmittedand not the times at whi
h the transmission requests were issued. Espe
ially whenthe network is loaded, the two 
an be signi�
antly di�erent be
ause of frames trans-missions being delayed by higher priority frames. This 
ould be taken into a

ountby studying the busy periods on the bus and 
onstru
ting a worst-
ase a
tivationpro
ess, and is being dis
ussed in se
tion 2.3.1.2.3.1 Approximating arrival pro
essThe modeling pro
ess of the aperiodi
 tra�
 involves estimating the probabilisti
distribution of aperiodi
 inter-arrivals from the 
aptured data tra
e of a simulationmodel of a vehi
le or from a real vehi
le. The 
aptured data tra
e of bus a
tivity givesus the arrival times of frames on the bus, priorities of frames and size of the frames.The di�
ulty in using this 
aptured data tra
e lies in the fa
t that the measuredarrival time of the frames on the bus may not 
oin
ide with the a
tual release times14
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Figure 2.2: Gant 
hart for tra
e1: bla
k arrows are a
tual release times and redarrows are observed arrival times in data tra
e.The blue arrows will be the approx-imated arrival times.
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Figure 2.3: Gant 
hart for tra
e2: bla
k arrows are a
tual release times and redarrows are observed arrival times in data tra
e. The blue arrows will be the approx-imated arrival times.
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x1 x2a2

0 5 10 15 20Figure 2.4: Approximation error when approximating the arrival of a frame. Theframe arrives at time x1, observed at arrival time x2 in data tra
e and approximatedarrival time is at a2.of the frames. This requires us to approximate an a
tual arrival pro
ess from the
aptured data tra
e. The a
tual arrival time for some frame i 
an be approximatedby subtra
ting the level-i busy period seen by the frame. The level-i busy period seenby frame i on bus 
an be easily 
omputed from a tra
e. The simple subtra
tion ofthe level-i busy period give us the worst-
ase arrival pro
ess of the aperiodi
 frames,whi
h is what is required. The approximated arrival pro
ess for the aperiodi
 framesgives us the worst-
ase arrival pro
ess whi
h 
an lead to burstiness in lower priorityframes as they are the ones whi
h are pushed ba
k when the aperiodi
 tra�
 arrives.Assumption:
• No inter-frame sequen
e for frame separation. Otherwise all frames after �rstframe will be equally shifted by three bit time.
• The data tra
e is sorted a

ording to arrival times then priorities; su
h thatif two frames arrive at same time then highest priority frame will pre
ede thelower one in the table, whi
h is natural for a 
aptured data tra
e.Therefore, for some frame i the level-i busy period seen by it will be equal to thesummation of transmission time of all higher priority frames pre
eding ith frame indata tra
e; see algorithm 1.2.3.2 Errors in approximationWhen approximating the arrival pro
ess from 
aptured data tra
e e.g. arrival timesof table 2.1 we will have an approximation error for the approximated arrival pro
essif the a
tual arrival pro
ess was not the worst-
ase arrival pro
ess e.g. for the tra
eof �gure 2.3 we will get an approximation error as blue and bla
k arrows do not
oin
ide.Suppose that an aperiodi
 event o

urs at time x1 and bus is busy transmitting theframes of higher priority. When the level-i busy period for frame released at time x1is over it begins transmitting at time x2 whi
h is observed and re
orded in a datatra
e. When the approximating the time a
tual arrival time (x1) of frame from theobserved arrival time from tra
e (x2) we get a wost-
ase arrival time of a2 for theframe whi
h is earlier than x1 and thus we have an error in the approximation. The16
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approximation error ǫ is given by: ǫ = |x1 − a2| and is dire
tly dependent upon thelength of busy period seen by the frame as a2 = x2 − l, where l is the length oflevel-i busy period. The maximum approximation error will o

ur when the framearrives near observed arrival time from tra
e (x2 − x1 ≈ 0) and therefore maximumapproximation error is ǫ = |x2 − l|.However, we are not 
on
erned by this approximation error as we are interestedin the worst-
ase arrival pro
ess.Algorithm 1 Algorithm for estimation of worst-
ase arrival time for frame arrivingat ai from 
aptured data tra
e.while(!EndOfTra
e)
k = i− 1

j = iwhile(ρi > ρk && k > 0)if(ak + Ck == aj)
ontinueelse
a
′

i = ajbreakend
j = k

k = k − 1endif(k > 0)
a
′

i = akelse
a
′

i = aiendend
2.3.3 Finding distributionIn order to model the inter-arrival times of the aperiodi
 tra�
, we �rst analyzesome important stru
tural properties of the data (e.g., linear and non-linear 
or-relation) then �nd out the probability distribution that best �ts our data. Thepresen
e of linear and non-linear dependen
ies in the data would impa
t its model-ing be
ause it would imply a departure from the i.i.d. property (independent andidenti
ally distribution). To test these two kind of dependen
ies, as 
lassi
ally donein exploratory data analysis, we make use of some visual 
on�rmatory tests, the�run sequen
e plot� and �lag plot� here, as well as the auto-
orrelation and BDS test(Bro
k, De
hert, S
heinkman, see[Broo
k 1996℄).17
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Figure 2.5: Visual analysis of 
aptured data tra
e. The upper graphi
 is a runsequen
e plot where the x-axis is the index of the data points and the y-axis is thetime till the next aperiodi
 arrival expressed in se
onds. In the lower graphi
s, a lagplot, both axes indi
ates the time till the next aperiodi
 arrival in se
onds.Run sequen
e plotThe run sequen
e plot displays an observed univariate data in a time sequen
e. Ithelps to dete
t outliers and shifts in the pro
ess. Figure 2.5(upper) is a run sequen
eplot of our data tra
e where the data points are indexed by their order of o

urren
e.The plot indi
ates that data does not have any long term shifts in heights over time.Lag plotA lag plot helps to gain some insight into whether a data set or time series is randomor not. Random data should not exhibit any visually identi�able stru
ture in thelag plot. Figure 2.5(lower) is a lag plot of our data tra
e (here the lag is 
hosenequal to 1: x = Xk+1 and y = Xk, where Xk is the kth observation). Sin
e the lagplot appears to be stru
tureless, the randomness assumption 
annot be reje
ted.18
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Figure 2.6: Auto-
orrelation of 
aptured data tra
e.2.3.3.1 Auto
orrelation analysisThe auto
orrelation analysis dete
ts the existen
e of serial 
orrelations in a datatra
e. Pre
isely the 
orrelation of order k indi
ates the linear relationship thatmay exist between data values separated by k positions. The �rst 100 
orrelation
oe�
ients of the data tra
e are shown in �gure 2.6 asso
iated with the thresholdsbeyond whi
h the values are statisti
ally signi�
ant (1% signi�
an
e level here). Thegraphi
 visualization of the 
orrelation 
oe�
ients makes it possible to evaluate theimportan
e and the duration of the temporal dependen
ies. Here, serial 
orrelationsin the aperiodi
 tra�
 are relatively limited:
• limited in frequen
y: on the entire aperiodi
 tra�
, there are only 19 signi�-
ant auto-
orrelations 
oe�
ients until a lag of 100,
• limited in intensity: the few signi�
ant auto-
orrelations are below 0.2 whi
his insu�
ient to be used at ends of predi
tions.These auto
orrelations 
an probably be explained by the fa
t that the a
tivationof 
ertain fun
tions of the vehi
le requires the transmission of several 
onse
utiveframes, but, the instants of a
tivations of the fun
tions have small 
orrelations.Also, the spike that 
an be observed around the lag 50 is likely due to a periodi
frame that has not been properly �ltered out in the data tra
e.2.3.3.2 BDS analysisAuto-
orrelation has the limitation that it 
an only test the linear dependen
y inthe data. In order to test for non-linear dependen
ies a more general statisti
al test19
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Figure 2.7: Probability plots for 3 
andidate distributions, from top to bottom, theexponential law, the log-normal law and the Weibull Law.than the auto-
orrelation must be used. One su
h test is the BDS test [Broo
k 1996℄whi
h employs the 
on
ept of spatial 
orrelation from 
haos theory to test the hy-pothesis that the values of a sequen
e, in this 
hapter inter-arrival times, are inde-pendent and identi
ally distributed (i.i.d.). Deviation from the i.i.d. 
ase will be
aused by the non-stationarity of the pro
ess (e.g., existen
e of trends), or the fa
tthat there are linear or non-linear dependen
ies in the data.We 
arried out the BDS test for various 
ombinations of its parameters m and
δ (for example for m = 2 and δ = 3 as re
ommended by the authors of the test. For
ertain 
ombinations we 
ould not reje
t the hypothesis that the data points arei.i.d. at the 1% 
on�den
e level. The results of auto-
orrelation analysis and BDStest enable us to 
on
lude that it is possible in our spe
i�
 
ontext to model the ape-riodi
 inter-arrival tra�
 by a random variable obeying a memory-less probabilisti
distribution without diverging from reality.2.3.3.3 Distribution �ttingWe now need to �nd the probability distribution and its parameters whi
h mod-els the experimental data the most a

urately. After having drawn aside 
ertainpossibilities for obvious reasons (for example, the normal law be
ause its densityfun
tion of density is not monotonously de
reasing), we tested distributions iden-ti�ed by adjusting their parameters a

ording to the prin
iple of the maximum oflikelihood (MLE). Spe
i�
ally, we have su

essively 
onsidered the exponential law,the log-normal law and the Weibull law. The exponential law was plausible a priori20
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 tra�
taking into a

ount the de
rease of the density whi
h one 
an observe in the datatra
e, the two other laws have been 
hosen for their well-known �exibility.2.3.3.4 Probability plots for visual sele
tionThe distribution of the observed data is plotted against a theoreti
al distribution insu
h a way that the points should form approximately a straight line. Departuresfrom this straight line indi
ate departures from the spe
i�ed distribution. If theprobability plot is approximately linear, the underlying distribution is 
lose to thetheoreti
al distribution. What 
an be observed in �gure 2.7 is that the Weibull lawis the distribution that best �ts the data. This visual 
on
lusion is 
on�rmed bystatisti
al a

eptan
e tests dis
ussed in the next paragraph.2.3.3.5 A

eptan
e testIn previous se
tion evaluation of the quality of results was done visually. In thisse
tion we use the statisti
al tests to verify the assumption that data tra
e follow aparti
ular distribution. Spe
i�
ally, we are using the χ2 and Kolmogorov-Smirnov"goodness-o�-�t� tests" [Millard 1967, Brumba
k 1987℄. The best results were ob-tained using the Weibull law, followed at some distan
e by the log-normal law. The
on
lusion of the two tests is that one 
annot reje
t the assumption that the datafollows a Weibull distribution at a signi�
an
e level of 1%. For a broad data sample
olle
ted on a real system, and not arti�
ially generated data, it is a 
on
lusiveresult.Figure 2.8 presents the real data tra
e and an "arti�
ial" tra
e generated bya Weibull law with MLE-�tted parameters. It is observed that some "patterns"present in the real tra
e disappear and that the simulated tra
e is more homogeneousin time, but overall adequa
y of the modeling seems good. From the analysis,
arried out in this se
tion, we 
an 
on
lude that in our spe
i�
 
ontext the Weibulldistribution provides a satisfa
tory model for the aperiodi
 tra�
 inter-arrival times,followed by log-normal and exponential distributions at some distan
e.2.3.3.6 Using two parameter distributionsThe 
hoi
e of a distribution is often di
tated by the nature of the empiri
al datawhi
h is often over-dispersed and heterogeneous in pra
ti
e. The sele
tion of adistribution from the family of distributions whi
h are likely to model the empiri
aldata is often governed by the �exibility of the distribution to handle dispersionand heterogeneity. For example the Poisson and exponential distributions are singleparameter distribution whi
h impli
itly assume simple parametri
 models and la
kin the freedom to adjust the varian
e independent of the mean, bringing in thehandi
ap to model the dispersed data. A model with additional parameter to take
are of dispersion independent of mean may provide a better �t. The weibull andgamma distributions are two parameter distributions whi
h have this �exibility ofhandling varian
e independent of mean. Besides these two-parameter distributions21
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Figure 2.8: Comparison between the 
aptured data tra
e and a random tra
e gen-erated by a Weibull model with MLE-�tted parameters.will 
onverge to the simple parametri
 distribution depending on the values of theparameters used. For these reason in rest of the work weibull distribution will beused.2.3.4 Threshold based work-arrival fun
tion
S(t) is the aperiodi
 work arrival fun
tion whi
h gives us the number of aperiodi
frames in a time interval t and that will be used in the response time analysis.
S(t) is an in
reasing "stair
ase" fun
tion su
h that the "jumps" in the fun
tion
orrespond to the arrival of an aperiodi
 frame. To 
onstru
t this fun
tion, wepropose to dis
retize the time and 
al
ulate the value taken by S(t) for ea
h valueof t between 1 and n where n, expressed in millise
onds, is the largest value that wemay reasonably require during the 
omputation of a response time. For example,one 
an set n = 1000ms if the largest period of a
tivity on the bus (i.e., the largestbusy period) does not ex
eed a se
ond.2.3.4.1 Safety threshold α for S(t)We denote by X(t) the sto
hasti
 pro
ess whi
h 
ounts the number of aperiodi
frames in time interval t. For example, in the data tra
e whi
h we studied in thepre
eding se
tions, inter-arrivals would be 
ontrolled by a Weibull law. The idea isto �nd the �smallest� Ŝ(t) su
h that the probability of X(t) introdu
ing aperiodi
22
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Figure 2.9: Graphi
al representation of algorithm for 
omputation of S(5). It 
on-sists in �nding the smallest value of k using the CDF of the inter-arrival distributiona

ording to equations 2.1 and 2.2.frames equal to n is lower than a threshold value α �xed by the designer. where n isthe number of aperiodi
 frames introdu
ed by S(t). Formally, we are looking for:
Ŝ(t) = min{S(t) |Pr[X(t) ≥ n] ≤ α} (2.1)For example, if one sets α = 0.01 it means that in no more than 1% of its traje
toriesthe sto
hasti
 pro
ess X(t) indu
es more aperiodi
 tra�
 than Ŝ(t). If X(t) modelsthe real aperiodi
 tra�
 a

urately, the number of aperiodi
 frames integrated in the
al
ulation of the response time of a periodi
 frame will have more than 99 per
ent
han
es to be higher than what ea
h instan
e of the frame will undergo. Of 
ourse,the 
hoi
e of α depends on the dependability obje
tives of (SIL, System IntegrityLevel, for example) but α = 10−4 seems a reasonable value in the 
ontext of a bodynetwork that will be 
onsidered in the experiments hereafter.23



Chapter 2. Probabilisti
 CAN S
hedulability Analysis

Figure 2.10: WAF using monte-
arlo simulations2.3.4.2 Computation of S(t)We need a way to evaluate Pr[X(t) = n] ≤ α at ea
h time instant t. Let Fn(t) bethe Cumulative Distribution Fun
tion (CDF) of interarrivals.
Pr[X(t) = n] = Pr[X(t) ≥ n]− Pr[X(t) ≥ n+ 1] (2.2)

Pr[X(t) = n] = Fn(t)− Fn+1(t)Two 
ases arise:
• Distribution for whi
h we have a 
losed-form expressions and 
an evaluate

Pr[X(t) = n] e.g poisson distribution.
• Distribution for whi
h we have no 
losed-form expression e.g. weibull distri-bution.The �rst 
ase is easy to evaluate using 
losed-form expression and for the se
ond 
asewe 
ould either resort to numeri
al or simulation methods to evaluate the equation2.1.2.3.4.3 Graphi
al illustrationFigure 2.9 illustrates the 
omputation of S(t) for a spe
i�
 value of t, here t = 5:

Ŝ(5) = min{S(5) |Pr[X(5) ≥ n] ≤ α} (2.3)The probability Pr[X(5) ≥ n] 
an be found using values of n = 1, 2, 3, ... andfor t = 5 in equation and terminating when probability is more than α.24
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 tra�
2.3.4.4 Monte-Carlo simulation approa
hWe do not always have a dis
rete distribution modeling the data nor a 
ontinu-ous distribution su
h that equation 2.1 
an be evaluated analyti
ally. We need analternate method to evaluate equation 2.2 in su
h 
ases. This 
an be done withnumeri
al integration te
hniques or using Monte Carlo simulation method. Thelatter approa
h is des
ribed in algorithm 2 where α is the safety level, ∆ is thedis
rete time step, θ is the set of parameters of the aperiodi
 frame arrival distri-bution, T is the time horizon, N is the number of random samples3to be drawnfor the Monte-Carlo simulation. Basi
ally, S(t) is 
omputed for ea
h time unit bydrawing N values from the probabilisti
 distribution modeling the aperiodi
 framearrival pro
ess and 
he
king if the a

umulated probability value smaller than theprobability value for whi
h we are evaluating S(t).Algorithm 2 Deriving S(t) by Monte-Carlo simulation.Input:{T, α,∆, θ,N}Output:{S(t): The work arrival fun
tion}index = 0;Data=random(θ,N);for{IDX ∈ 0 : ∆ : T}for{i ∈ 1 : N}A

Time = 0;k = 0;While {A

Time<IDX }A

Time = A

Time+Data[index℄;index=index+1 ;k = k+1 ;endendend
S(IDX) = k;As an illustration of the approa
h, we derived S(t) in the 
ases where the ape-riodi
 inter-arrival distribution obeys 1) an exponential law 2) a Weibull law 3) alog-normal law. The number of random draws of the Monte-Carlo simulations (pa-rameter N in algorithm 2) is set to 5 million for ea
h distribution. For all threedistributions, the parameters are �tted using MLE against the data tra
es and thethree distributions lead to the same average intensity. What 
an be observed is thatthe distribution, and not only the average intensity of the aperiodi
 tra�
, plays amajor role in the shape and height of the aperiodi
 WAF, see �gure 2.10.3Central Limit Theorem tells us that the 
onvergen
e rate is of order N1/2 where N is thenumber of random draws, whi
h means that adding one signi�
ant digit requires in
reasing N bya fa
tor 100. The value of N should be set depending on the threshold α and a

ura
y obje
tives.25
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al approa
hThe WAF is a monotoni
ally in
reasing stair
ase 
urve whi
h returns the number ofaperiodi
 events that have o

urred in an interval of time measured from the origin,also know as 
ount model. Let X(t) denote the number of events that have o

urredup until time t, X(t)|t > 0. Let In be the time from the origin to the measurementpoint where nth event o

urred. The relationship between inter-arrival times In andthe number of events X(t) is :
In ≤ t ⇔ X(t) ≥ nWe 
an restate this relationship by saying that the amount of time at whi
h the

nth event o

urred from the time origin is less than or equal to t if and only ifthe number of events that have o

urred by time t is greater than or equal to n.Therefore, following relationship allows us to derive the 
ount model Cn(t), whi
hreturns the number of aperiodi
 events that have o

urred in an interval of timemeasured from the origin:
Cn(t) = Pr[X(t) = n] = Pr[X(t) >= n]− Pr[X(t) >= n+ 1]

=⇒ Cn(t) = Pr[In <= t]− Pr[In+ 1 <= t]If we let the 
umulative density fun
tion (
df) of In be Fn(t), then Cn(t) =

P [X(t) = n] = Fn(t) − Fn+1(t). In the 
ase where the measurement time origin(and thus the 
ounting pro
ess) 
oin
ides with the o

urren
e of an event, then
Fn(t) is simply the n-fold 
onvolution of the 
ommon inter-arrival time distributionwhi
h may (e.g. poisson distribution) or may not (e.g. weibull distribution) have a
losed-form solution. For the distributions4 whi
h do not have a 
losed-form we 
anget a 
losed-form approximation using monte-
arlo simulation [Khan 2009℄ or use apolynomial expansion of F (t) e.g. for weibull distribution we have [M
Shane 2008℄:

P [X(t) = n] = Cn(t) =

∞
∑

j=n

(−1)j+n(λtc)jαn
j

Γ(cj + 1)
n = 0, 1, 2... (2.4)where

α0
j =

Γ(cj + 1)

Γ(j + 1)
j = 0, 1, 2, . . .and

αn+1
j =

j−1
∑

m=n

αn
mΓ(cj − cm+ 1)

Γ(j −m+ 1)
n = 0, 1, 2, . . . j = n+ 1, n+ 2, n + 3, . . .4Most likely distribution for aperiodi
 arrivals are exponential, weibull and gamma. And 
ountmodels for all are available weibull and gamma distribution are of parti
ular interest for their twoparameter �exibility. Parti
ularly gamma as the 
omputation of mean and varian
e is easier in its
ase as 
ompared to weibull. 26
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Figure 2.11: Numeri
al WAF with MLE adjusted parameters and α = 10−4Where the Gamma fun
tion is an extension of the fa
torial fun
tion to thereal and 
omplex numbers. To build the arrival 
urves we wish to minimize theprobability number of events o

urring in an interval in a parametri
 manner (safetylevel) for weibull distribution we use equation 2.4 with MLE adjusted parameters,see �gure 2.11, su
h that:
S(t) = min{Pr[X(t) = n] ≤ α}2.3.4.6 Parameter estimation without data tra
eBe
ause of 
ost and design time 
onstraints, it is not always possible to derive theinter-arrival model from a real data tra
e, or tra
es of simulation. This is often the
ase in automobile proje
ts. In su
h a situation, as an approximation, a solutionis to set the parameters of the distribution based on already known parameters
orresponding to another ele
troni
 ar
hite
tures. In the following, we show how toadapt a Weibull5 model to a new intensity of the aperiodi
 tra�
.The expe
ted value of a random variable obeying a Weibull law is:

E(X) = λΓ(1 +
1

k
) (2.5)5The 
ase of single parameter distribution su
h as the exponential law is trivial, a similarapproa
h 
an be used for the log-normal law. 27
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ale parameter, k is the shape parameter of the Weibull law and theGamma fun
tion is an extension of the fa
torial fun
tion to the real and 
omplexnumbers. There exist many, more or less pre
ise, approximations to 
al
ulate thegamma fun
tion. One good approximation is given by the following formula:
Γ(z) ≈

√

2π

z
(
1

e
(z +

1

12z − 1
10z

))2 (2.6)To adjust the expe
ted value of the Weibull law for a new vehi
le proje
t, onesimply has to 
hange the s
ale parameter λ to the targeted intensity of the aperiodi
tra�
. The larger the s
ale parameter, the more spread out the distribution is i.e.if λ is large, then the distribution will be more spread out and if λ is small thenit will be more 
on
entrated. The shape parameter k simply a�e
ts the shape of adistribution and is independent of other distribution parameters. In �rst approxi-mation, we assume here that the shape of the distribution should not 
hange veryimportantly from proje
t to proje
t and so set the parameter k. This assumptionshould be veri�ed in the light of the analysis of additional data tra
es but this isleft as a future work. The network load of the aperiodi
 tra�
, denoted ρ, obeysthe relation:
ρ = (

1

E(X)
).Ā (2.7)where Ā is the average transmission time of an aperiodi
 frame. From equations2.5, 2.6 and 2.7, one obtains:

λ = (
1

Γ(1 + 1
k
).ρ

).Ā (2.8)By repla
ing the values of network load, ρ, and average transmission time, Ā, bythe values whi
h 
orrespond to the automotive network that one wants to model,one obtains the new value of λ.2.3.5 Handling priorityA priority assignment poli
y assigns a priority ρi to ea
h frame. The priority assign-ment fun
tion whi
h maps the priorities to these frames from a �nite set of values(e.g. 1-2048) depends on the s
heduling algorithm. For example in 
ase of RateMonotoni
 (RM) s
heduling the priorities are mapped based on the periods. Here,we are 
onsidering �xed priority s
heduling. In order to integrate 
orre
t amountof aperiodi
 tra�
 we have to take into a

ount the priorities of arriving framesin a work arrival fun
tion. The me
hanisms to handle priority in a probabilisti
framework have been dis
ussed in subsequent subse
tion.28
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2.3.5.1 Modeling ea
h priority levelIn order to model ea
h priority level individually we will have to �lter set of aperiodi
events from tra
e D into subsets D̂i su
h that ea
h subset 
ontains aperiodi
 eventsof one priority level only, formally:
D̂i = {∀Ej ∈ D|ρj = i} (2.9)Ea
h D̂i is used to �nd the WAF against it, assume Sα,M

i (I) is the WAF for D̂i. Inorder to �nd the higher priority aperiodi
 load seen by some frame of priority m wewill integrate all WAFs for D̂i's of higher priority than m as:
Wm(I) =

∑

∀i≤m

Sα,M
i (I) (2.10)The equation 2.10 returns the number of aperiodi
 frames of higher priority than min an interval I.The solution dis
ussed above is an ideal solution, but in realisti
 problems we willnot have enough data points to 
orre
tly model the distributions for ea
h prioritylevel, and thus we will have to look for alternate approximate solutions to thisproblem.2.3.5.2 Modeling priority using intensity levelAnother approa
h for modeling priorities in s
hedulability analysis is model all ape-riodi
 tra�
 as one distribution and 
ontrol the intensity of tra�
 for di�erentpriority levels using ρ and then re-estimating the λ parameter using equation 2.8,whi
h 
ontrols the s
ale of the distribution and thus governs the intensity of theaperiodi
 tra�
. The higher priority frames 
ould take into a

ount work-arrival
urves with larger ρ and lower priorities frames 
ould take into a

ount work-arrival
urves with smaller ρ.2.3.5.3 Modeling priority using groupsReusing the notation of subse
tion 2.3.5.1 let D̂i be a set su
h that it 
ontains frameof priorities between 1& i. Formally:

D̂i = {∀Ej ∈ D|ρj ∈ {1..i}} (2.11)
D̂i from equation 2.11 is then used to �nd work arrival fun
tion for ea
h i , i.e. forea
h priority, using the me
hanism dis
ussed in in subse
tion 2.3.4. In order to �ndhigher priority interferen
e for frame with priority m we will use D̂m to �nd WAFwhi
h returns the number of frames to integrate into s
hedulability analysis as:

Wm(I) = Sα,M
m (I) (2.12)29
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Figure 2.12: Work-arrival 
urves from weibull distribution for di�erent values of αThe above equation return the number of higher priority frames seen by frame m inan interval I. This seems to be most re�ned approa
h among dis
uss above in termsthat it provides intuitive approximation me
hanism for integrating aperiodi
 tra�
based on priorities. However it may be sus
eptible to loss in a

ura
y for higherpriority frames when we do not have enough data points to model the distribution
orre
tly.2.3.5.4 Comparison of two approa
hesThis se
tions presents the 
omparison between two approa
hes outlined in subse
-tions 2.3.5.2&2.3.5.3 above. The data tra
e was �ltered to extra
t various prioritygroups and then the distribution parameters for ea
h priority group was adjustedusing MLE. And for the �intensity level� approa
h the distribution parameters werefound for the whole data tra
e using MLE and then using equation 2.8 a new inten-sity parameter was estimated by retaining the value of shape parameter found �rsttime and 
hanging the aperiodi
 load.The trends in the work arrival fun
tions of the two approa
hes is almost same.However, intensity level is introdu
ing more aperiodi
 work as 
ompared to thepriority group approa
h. The reason for that is when 
hanging the aperiodi
 loadon the network for �intensity level� approa
h we are basi
ally in
reasing the intensityparameter of the distribution while retaining the shape of the distribution. Whi
h30
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Figure 2.13: Work-arrival 
urves from weibull distribution for di�erent prioritygroups

31
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Figure 2.14: Comparison of 'priority group' depi
ted by solid lines in �gure and'intensity level' depi
ted by dotted lines in the �gure.essentially means that more tra�
 is arriving in given interval of time, so for twointensity level one with more aperiodi
 load will exhibit higher aperiodi
 tra�
 thanthe other level for same interval. The priority group approa
h is a re�ned approa
h,however it may su�er from the la
k of data for some priority value.2.4 S
hedulability analysisClassi
ally, s
hedulability analysis for real-time 
ommuni
ation networks assumeperiodi
 or sporadi
 streams of frames [Tindell 1995, Davis 2007℄. In this 
hapter,for the sake of simpli
ity, we make use of a su�
ient but not ne
essary s
hedulabilitytest6 presented in [Davis 2007℄ as the framework to in
lude aperiodi
 WAF intothe s
hedulability analysis. However, the approa
h would remain similar with thesu�
ient and ne
essary test proposed in the aforementioned paper.In the following, we re-use the 
on
epts and notations from [Davis 2007℄. Theworst-
ase response time of frame m is made up of several elements:1. An upper bound on the queuing jitter Jm,2. The longest transmission time Cm,6This test is appli
able when deadlines do not ex
eed their periods.32



2.5. Case study3. The waiting delay wm at the sending end, that is the longest time that theframe 
an wait before it starts being su

essfully transmitted (i.e., before itwins the arbitration on the CAN bus). This delay is given by equation 2.14,The waiting delay wm in
ludes the interferen
e due to the aperiodi
 frames of higherpriority than m, whi
h is given by the fun
tion Nα,M
m (t) de�ned as follow:

Nα,M
m (t) = Sα,M

m (t). max
j∈HpAf(m)

Cj (2.13)where M is the aperiodi
 interarrival model, α the 
hosen safety threshold, Sα
M(t)the 
orresponding aperiodi
 WAF and HpAf(m) is the set of aperiodi
 frameshaving higher priority than frame m. It has to be pointed out that the de�ni-tion of Nα,M

m (t) 
an use any priority modeling approa
hes dis
ussed in se
tions2.3.5.1 to 2.3.5.3.As 
lassi
ally done, the waiting delay wm 
an be determined with the followingre
urren
e relation:
wn+1
m = Nα,M

m (wn
m) + max(Bm, Cm)

+
∑

∀k∈hp(m)

⌈w
n
m + Jk + τbit

Tk
⌉Ck (2.14)where hp(m) is the set of frames with priority higher than m, and max(Bm, Cm)
orresponds to the longest possible time for whi
h an invo
ation of frame m 
anbe blo
ked either by lower priority messages or due to the previous invo
ation ofthe same frame. The re
urren
e relation goes on until Jm + wn+1

m + Cm > Dm or
wn+1
m = wn

m . In the former 
ase, the frame is not s
hedulable while in the latter
ase the worst-
ase response time of the frame is given by:
Rm = Jm + wm + Cm (2.15)2.5 Case studyIn this se
tion, we illustrate the analysis of nine typi
al 125Kbit/s automotive bodynetworks with. We used Net
arben
h [Braun 2007℄, a GPL-li
ensed software thatgenerates sets of messages a

ording to parameters de�ned by the user. The 
har-a
teristi
 that a user 
an des
ribe are network load, number of ECUs, distributionof the periods of the frames, et
. The 
hara
teristi
s used to generate test networkswere 
hosen by setting the details listed in table 2.1 for Net
arben
h.The properties of resulting set of networks that were generated are having 
har-a
teristi
s as des
ribed in the table 2.2. These networks will be used to analyze thee�e
t of aperiodi
 tra�
 by integrating the aperiodi
 WAFs.33
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(a) The weighted distribution of periods with random priority assign-ment of priority from the spe
i�ed range for test network generation.SNo. Period(mse
) weight Priority Range Margin1. 50 2 1-200 12. 100 15 1-600 33. 200 15 1-1000 34. 500 30 200-1000 55. 1000 25 300-1500 56. 2000 5 500-1500 1(b) The weighted distribution of frame sizesfor test network generation.SNo Size(bytes) Weight Margin1. 1 1 12. 2 1 13. 3 1 14. 4 1 15. 5 2 16. 6 2 17. 7 2 18. 8 8 2(
) Chara
teristi
 of load and ECUrange for generating body networks us-ing Net
arben
hSNo. Parameter Range1. Load 40 to 452. ECUs 15 to 20

(d) Designating loaded ECUs, i.e. theper
entage of overall bandwidth sent bya parti
ular ECUSNo. ECU ID Load(%age)1. 1 302. 2 153. 3 10Table 2.1: Chara
teristi
s for generating test networks
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2.5. Case studySNo. Test 
ase ECUs Load(periodi
) frames1. Net1 15 44.24% 1102. Net2 17 41.42% 1203. Net3 16 43.99% 1424. Net4 17 42.04% 1055. Net5 19 43.68% 1206. Net6 19 43.61% 1317. Net7 19 41.94% 1178. Net8 19 41.97% 1159. Net9 19 40.49% 110Table 2.2: Test networks generated for body networks of a 
ar.S.No. Analysis# Remarks1. WCRT0 without any aperiodi
 tra�
2. WCRT1 with aperiodi
 tra�
 in the priority levels (1-100)3. WCRT2 with aperiodi
 tra�
 in the priority levels (1-500)4. WCRT3 with aperiodi
 tra�
 in the priority levels (1-1500)5. WCRT4 with aperiodi
 tra�
 in the priority levels (1-2048)6. WCRT5 with aperiodi
 tra�
 in intensity levels (2)7. WCRT6 with aperiodi
 tra�
 in intensity levels (3)8. WCRT7 with aperiodi
 tra�
 in intensity levels (4)9. WCRT8 with aperiodi
 tra�
 in intensity levels (5)Table 2.3: For ea
h generated network we are going to perform above listed analysis;whi
h have been tuned a

ording to the priority distribution.The aperiodi
 WAFs used to test the a�e
t on the worst-
ase response timesof all generated test networks are shown in �gures 2.12 and 2.13. The aperiodi
WAFs are generated for designated priority ranges and for various aperiodi
 loadsto study the a�e
t of aperiodi
 frame priorities and of 
hanging aperiodi
 load onthe periodi
 message sets. The WAFs are generated from the numeri
al model ofWeibull distribution with a safety threshold α = 10−4.The WCRT of the frames are 
omputed with the software NETCAR-Analyzerfrom RealTime-at-Work whose purpose is to analyze the performan
es of CAN-based 
ommuni
ation systems and optimize their design and 
on�guration (e.g.,
hoi
es for the message priorities and o�sets, waiting queue poli
y and length, et
).Ea
h message set was analyzed for all aperiodi
 arrival 
urves in �gures 2.12 and2.13. The resulting response times are shown in �gure 2.15 (for message set 3 oftable 2.2) are againts all arrival 
urves listed above. Figure 2.16 shows the relativein
rease, with respe
t to no aperiodi
 tra�
 
ase, in the worst-
ase response times ofperiodi
 frames for message set 3 in presen
e of aperiodi
 frames, for message set 3,a

ording to WAFs listed above. Figure 2.17 shows the relative in
rease, with respe
t35
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Chapter 2. Probabilisti
 CAN S
hedulability Analysisto no aperiodi
 tra�
 
ase, in the worst-
ase response times of periodi
 frames forall message sets using just one work arrival 
urve (ID=1-500) from �gure 2.13.Even in this 
ontext where the periodi
 load is moderate (e.g. 43.99%) and theaperiodi
 tra�
 is limited, one observes that aperiodi
 tra�
 rather signi�
antlyimpa
ts the worst-
ase response times of the periodi
 frames. For instan
e, theWCRT for the frame with id 107 raises from 98.66ms without aperiodi
 tra�
 to122.7ms with �rst 
urve WCRT1 in table 2.3 (+24%). We observe that other WCRT
urves also give somewhat similar results. However, the lo
ation of aperiodi
 tra�
is di�erent and thus the per
entage in
rease see by frames over experiments may notbe same, thus aperiodi
 tra�
 plays some role and thus 
annot be overlooked. Whi
h
an also be veri�ed from the results of other message sets depi
ted in �gure 2.17.2.6 SummaryIn this 
hapter, we developed a new approa
h for integrating the aperiodi
 tra�
 inresponse time analysis. The main interest of the proposal is that the overestimationof the aperiodi
 tra�
 is kept to the minimum that still enables the system to meetsome 
hosen dependability requirements.However, the resulting response time estimation 
an be pessimisti
 espe
iallyfor lower priority frames when there is a large volume of aperiodi
 tra�
, as wehave assumed worst-
ase arrival pro
ess when estimated the release times from datatra
e. The estimated arrival pro
ess is bursty in nature and will be seen more by thelower priority frames. It is possible to be less pessimisti
 by modeling ea
h aperiodi
stream individually and integrate only the higher priority aperiodi
 WAFs into thes
hedulability analysis. However, we believe that this more �ne-grained approa
hwill not be always pra
ti
al sin
e it requires signi�
ant modeling e�orts and largequantity of data tra
es. We have provided few s
hemes whi
h would minimizethe pessimism due to priority issues and still respe
ting the safety threshold whilebeing as a

urate as possible (i.e., dis
ard as mu
h as possible of the lower priorityaperiodi
 tra�
).
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ase . . . . . . . . . . . . 503.4.1 Case 1: safe from any priority inversion . . . . . . . . . . . . 513.4.2 Case 2: messages undergoing priority inversion . . . . . . . . 513.5 Optimized implementation and 
ase-study . . . . . . . . . . 523.6 Response time analysis: non-abortable 
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hmark . . . . . . . . . . . . . . . . . . . . . . . . . 633.7.2 Automotive body network . . . . . . . . . . . . . . . . . . . . 633.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65The analysis of the real-time properties of an embedded 
ommuni
ation systemrelies on �nding upper bounds on the Worst-Case Response Times (WCRT) ofthe messages that are to be ex
hanged among the stations. The 
lassi
al WCRTanalysis of Controller Area Network (CAN) impli
itly assumes an in�nite number oftransmission bu�ers and negligible 
opy-time. However, in reality, CAN 
ontrollermay have some 
hara
teristi
s, su
h as non-abortable transmissions, whi
h maysigni�
antly in
rease the WCRT. Whi
h, if not 
onsidered, may result in a deadline



Chapter 3. S
hedulability analysis with hardware limitationsviolation due to an additional delay. In this work, we explain the 
ause of thisadditional delay and extend the existing CAN s
hedulability analysis to integrateit. Finally, we suggest implementation guidelines that minimizes both the run-timeCPU overhead and the additional delay due to priority inversion.3.1 Introdu
tionController Area Network (CAN) was spe
i�
ally designed for use in the automotivedomain and has be
ome a de-fa
to standard. Today, high-end 
ars 
an 
ontainas many as 70 CAN 
ontrollers [Navet 2005℄. CAN has been extensively used inother areas as well, in
luding industrial automation, espe
ially networked 
ontrolsystems [Marti and 2010℄, be
ause of its interesting real-time properties and low-
ost. Whatever the domain, existing s
hedulability analyses of real-time appli
ationsdistributed over CAN assume that:1. If a CAN node has to send out a stream of messages having the highestpriority on the bus, it should be able to do so without releasing the bus between two
onse
utive messages, despite the arbitration pro
ess that takes pla
e at the end ofea
h transmission.2. If on a CAN node more than one message is ready to be sent, the highestpriority message will be sent �rst. This means that the internal organization andmessage arbitration of the CAN node is su
h that this is possible.These assumptions put some 
onstraints on the ar
hite
ture of the CAN 
on-trollers and on the whole proto
ol sta
k. Sometimes, be
ause of the CAN 
ontrolleror proto
ol layers, priority inversion among messages 
an o

ur. This 
an happenwhen the 
ontroller sends more distin
t messages than the number of transmissionbu�ers available and transmission requests (for low-priority messages) 
annot be
an
elled. Indeed, some CAN 
ontroller hardware implementations have internalorganization su
h that they send messages independent of CAN message ID (Mi-
ro
hip MCP2515, Frees
ale MC68HC912), send messages in a FIFO order (In�neonXC161CS), or do not have enough transmit bu�ers (Philips SJA1000). Moreover, thetransmit bu�ers may be managed without abortion (Philips 82C200) [Natale 2006℄,or the support for abort me
hanisms may be missing at the devi
e driver level or,�nally, the 
ommuni
ation sta
k may be 
on�gured su
h that it does not support
an
elling transmission (see �transmit 
an
ellation� in an AUTOSAR sta
k, page 37in [AUTOSAR 2009℄). As a result, a message 
an be delayed for a longer time thanis expe
ted by 
lassi
al analyses [Tindell 1995, Davis 2007℄ and the response timein
reases a

ordingly.Problem with 
urrent analysisTiming analyses of CAN developed over the years model the network as an in�nitepriority queue where ea
h node is inserting its messages a

ording to their priority.It is then assumed that the highest priority message in the queue wins the arbitra-tion, be it in the deterministi
 [Tindell 1995, Davis 2007, Grenier 2008℄ or sto
hasti
40



3.1. Introdu
tion
ase [Zeng 2010, Hansson 2002℄. However, this model does not hold when hardwareand software 
onstraints, like limited numbers of transmission bu�ers in the CAN
ontroller and 
opy-time1 of messages from devi
e drivers, are 
onsidered Then theWorst-Case Response Time (WCRT) in
reases as 
ompared to the traditional anal-yses. To the best of our knowledge, this issue was �rst identi�ed and analysedin [Mes
hi 1996℄.Some work has already been 
arried out to identify and analyse the e�e
tsof limited transmission bu�ers, in [Mes
hi 1996, Natale 2006, Natale 2008℄ and[Khan 2010℄. In [Natale 2008℄, Natale 
lassi�es and explains all the 
ases lead-ing to priority inversion due to hardware and software limitations, that were not
overed by the existing analyses. In [Mes
hi 1996℄ Mes
hi et al. show that at leastthree transmission bu�ers are needed to avoid priority inversions when the 
opy-time of a message from the queue to the 
ontroller is negle
ted. However, analysisin [Mes
hi 1996℄ only addresses the 
ase when transmission requests are abortable.In [Khan 2010℄, Khan et al. address the 
ase of priority inversion in an abortableCAN 
ontroller when 
opy-time of messages and the ar
hite
ture of a devi
e driveris taken into a

ount. In [Davis 2011a℄, Davis et al. provide s
hedulability analysiswhen devi
e drivers use FIFO2 transmission queues. However, the analyses providedin [Khan 2010, Davis 2011a℄ do not investigate the non-abortable CAN 
ontroller
ase. In [Natale 2006℄ Natale provides an analysis for integrating the in
rease inWCRT due to priority inversion in non-abortable CAN 
ontrollers. However, theanalysis provided in [Natale 2006℄ takes into a

ount the interferen
e of all lowerpriority messages for the message whi
h su�ers from priority inversion, whi
h maynot be the 
ase as is shown in this paper. Furthermore, it does not 
onsider the fa
tthat the in
rease in the WCRT (additional delay) of a message manifests itself as ajitter for lower priority messages.Contributions of this workThe e�e
ts of a limited number of transmission bu�ers have been identi�edin [Tindell 1994
℄, [Natale 2006℄ and [Mes
hi 1996℄. In [Natale 2006℄ the authorgives the analysis for the 
ase when it is not possible to 
an
el transmission andin [Mes
hi 1996℄ the authors show that at least 3 transmission bu�ers are needed toavoid priority inversions when the 
opying time of a message from the queue to the
ontroller is negle
ted. Here, we address the 3 or more bu�er 
ase with two s
enarios.First is the 
ase when it is possible to 
an
el a transmission request and when the
opying overhead 
an take any reasonable value and the se
ond 
ase is when it isnot possible to 
an
el a transmission request. We derive a worst-
ase response timeanalysis that integrates these two 
ases in this 
hapter.1This time 
ould be worst-
ase exe
ution time of an interrupt servi
e routine plus interruptlaten
y for interrupt based system. For polling based systems it 
ould be worst-
ase exe
utiontime of task putting message in transmission bu�er plus polling ti
k duration.2At least one 
ommer
ial tool, namely NETCAR-Analyzer from RTaW (seehttp://www.realtimeatwork.
om/?page_id=396) , addresses the FIFO 
ase.41
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Chapter 3. S
hedulability analysis with hardware limitationsCANController # TxBu�ers Priority for transmissionMi
ro
hipMCP2515 3 Independent of CAN ID. For example, if twobu�ers have same priority(11 is highest and 00is lowest) settings the bu�er with highest bu�ernumber will be sent �rst. Aborting a frame in aTx bu�er is possible.Frees
aleMC68HC912 3 Independent of CAN ID, A 8-bit lo
al priority�eld is managed by appli
ation software.Aborting a frame in a Tx bu�er is possible.In�neonXC161CS 32,(Tx/RX) S
alable FIFOPhilipsSJA1000 1 Aborting a frame in a Tx bu�er is possible.Table 3.1: Chara
teristi
s of di�erent CAN 
ontrollers.Besides, we provide guidelines for an optimized CAN driver implementation. The
ase addressed here is meaningful be
ause in pra
ti
e most CAN 
ontrollers havemore than 3 bu�ers and possess the ability to 
an
el a transmission request may ormay not be supported by them, the devi
e drivers or the higher level 
ommuni
ationsta
k.These assumptions put some 
onstraints on the ar
hite
ture of the CAN 
on-trollers and on the whole proto
ol sta
k. Sometimes, be
ause of the CAN 
on-troller or proto
ol layers, priority inversion among messages do o

ur. This happensin parti
ular when the 
ontroller sends more distin
t messages than the numberof transmission bu�ers available and when transmission requests (for low-priorityframes) 
annot be 
an
eled. Indeed, some CAN 
ontrollers do not allow to 
an
ela transmission request, or the support for abort me
hanisms is missing at the de-vi
e driver level or, �nally, be
ause the 
ommuni
ation sta
k does not support it(see �transmit 
an
ellation� in an AUTOSAR sta
k, page 37 in [AUTOSAR 2009℄).As result, a frame 
an wait for a longer time what is expe
ted by 
lassi
al analy-sis [Tindell 1995, Davis 2007℄ and the response times would in
rease a

ordingly.This work provides tighter bounds on the WCRT by identifying more pre
iselythe interferen
e brought by lower priority frames and it also identi�es and integratesthe jitter due to this interferen
e in the analysis, whi
h may in
rease the responsetimes for some frames.3.2 Working of a CAN 
ontrollerThe 
on�guration and management of the peripheral transmit and re
eive obje
tsis of utmost importan
e in the evaluation of the priority inversion at the adapterand of the worst 
ase blo
king times for real-time messages.42



3.2. Working of a CAN 
ontroller

Figure 3.1: AUTOSAR CAN driver message transmit �ow.There is a variation among CAN 
ontrollers in terms of ar
hite
ture for examplethe variation in terms of number of transmission and re
eption bu�ers, �exibilityof designating a register as transmission bu�er or re
eption bu�er in some CAN
ontrollers. Further, when CAN 
ontroller bu�ers are �lled with multiple messages,most CAN 
ontrollers sele
t a message for transmission with the lowest identi�er,not ne
essarily the message with the lowest CAN ID. Furthermore, Most CAN
ontrollers, a message that is 
urrently in transmission bu�ers 
an be aborted, unlessthe transmission is a
tually taking pla
e, see table 3.1 for details.3.2.1 AUTOSAR CAN driver implementationThe requirement that the highest available message at ea
h node is sele
ted for thenext arbitration round on the bus 
an be satis�ed in several ways. The simplestsolution is when the CAN 
ontroller has enough transmission bu�ers to a

ommo-date all the outgoing messages. This solution is possible in 
ases as in some CAN
ontrollers the transmission and re
eption bu�ers 
ould be as high as 32 and theCAN devi
e driver 
an assign ea sh outgoing message a bu�er.However, this is not always possible in 
urrent automotive appli
ations where arelatively large number of bu�ers must be reserved for messages in order to avoid43



Chapter 3. S
hedulability analysis with hardware limitationsmessage loss by overwriting. Furthermore, for some ECUs, the number of outgoingmessages load 
an be very large, su
h as, for example, gateway ECUs. Besides, inthe development of automotive embedded solutions, the sele
tion of the 
ontroller
hip is not always an option and designers should be ready to deal with all possibleHW 
on�gurations.Too over
ome these problems solutions exist whi
h give implementation guide-lines from devi
e drivers, e.g. AUTOSAR CAN driver spe
i�
ation. To over
omethe limited bu�er issue these advo
ate implementing queues in drivers and for pre-serving the priority order would require that:
• The queue is sorted by message priority (message CAN identi�er)
• When a transmission bu�er be
omes free, the highest priority message in thequeue is immediately extra
ted and 
opied in pla
e of emptied bu�er.
• If, at any time, a new message is pla
ed in the queue, and its priority is higherthan the priority of any message in the transmission bu�ers, then the lowestpriority message holding a transmission bu�er needs to be aborted, pla
edba
k in the queue and the newly en-queued message 
opied in its pla
e and,
• Messages in the transmission bu�ers must be sent in order of their CAN iden-ti�ers.The AUTOSAR transmit request API is a 
ommon interfa
e for upper layers tosend messages on the CAN network, see �gure 3.1. The upper 
ommuni
ation layersinitiate the transmission only via the CAN Interfa
e servi
es without dire
t a

ess tothe CAN driver. The initiated transmit request is su

essfully 
ompleted, if the CANdriver 
ould write the message into the CAN hardware. However, if no transmissionbu�ers were available at the time of initiation, the state of the transmit requestobtains the state "pending" and the message is temporarily stored in the CANInterfa
e. When the previous transmission is 
ompleted and transmission bu�ersare released the subsequent transmit requests are 
arried out. If no hardware andalso no software bu�ers are available the transmit request is reje
ted immediately.All pending transmit requests are transmitted in priority order, impli
itly de-�ned by the CAN ID. The abort of pending messages within the transmit bu�ersis ne
essary to avoid inner priority inversion. The me
hanism of the transmit pro-
essing di�ers, whether hardware 
an
ellation is supported or not. If the hardware
an
ellation is not supported and the message initiated has higher priority and if allavailable transmission bu�ers are busy, this message is delayed until a transmissionbu�er is released, this may result in a priority inversion.However, if the transmit 
an
ellation is supported and used (as this 
an be
on�gured to be TURNED OFF in AUTOSAR) at time of a new transmit requestthe CAN driver 
he
ks for the availability of the transmission bu�er. If all bu�ersare in use, the CAN ID of the requested message transmission is 
ompared with theCAN ID of all pending messages in the transmission bu�ers of CAN 
ontroller. Ifthe requested message transmission has a higher priority 
ompared to the pending44



3.2. Working of a CAN 
ontroller

Figure 3.2: Priority inversion due to 
opy-time. In state(a) frame with ID=1 getsreleased and sin
e it has highest priority the driver de
ides to remove the lowestpriority frame (ID=313 ) from the 
ommuni
ation 
ontroller. In state(b) the driverstarts to 
opy frame with ID=1 in pla
e of frame with ID=313. In state(
), whiledriver is 
opying frame ID=1, the arbitration starts and frame with ID=4 wins thearbitration and begins to be transmitted. As frame ID=1 has already been released,we have a priority inversion.ones, the lowest priority message not under transmission in the transmission bu�ersis aborted and the new message is put in the transmission bu�ers. The messageto be transmitted is stored in the transmit bu�ers. The CAN Driver 
on�rms thetransmit 
an
ellation by the 
allba
k servi
e and passes the old message ba
k to theCAN Interfa
e's priority queue, see �gure 3.1 for details.When any of these 
onditions does not hold, priority inversion o

urs and theworst 
ase timing analysis fails, meaning that the a
tual worst-
ase 
an be largerthan what is predi
ted by existing analysis. However, a more subtle 
ause of priorityinversion that may happen even when all the previous 
onditions are met. Thisproblem arises be
ause of the ne
essary �nite 
opy time between the queue and thetransmission bu�ers.3.2.2 Implementation overhead(
opy-time)When all the transmission bu�ers in a CAN 
ontroller are �lled and a message isreleased; assuming the newly released message is of lower priority than the messagesin transmission bu�er, then the newly released message waits in the priority queue45



Chapter 3. S
hedulability analysis with hardware limitationsfor the availability of one transmission bu�er. However, if this newly released mes-sage is of higher priority than those in transmission bu�ers then - to respe
t thehighest priority �rst (HPF) prin
iple underlying CAN - it should be swapped withthe lowest priority message in transmission bu�ers that is not undergoing transmis-sion. Moreover, if the bus arbitration starts anytime during the swapping pro
ess(i.e., lower priority message put ba
k in the queue, higher priority message 
opiedinto the freed bu�er), it may happen that a lower priority message, be it on the samestation or elsewhere on the network, win the arbitration, as explained in �gure 3.2,resulting in a priority inversion. The priority inversion su�ered by the higher prior-ity messages leads to the in
rease in the WCRT of those messages and this in
reasein WCRT is modeled by a fa
tor 
alled the Additional Delay (AD) in the rest of the
hapter. An example of how AD o

urs is shown in �gure 3.1.3.2.3 Single bu�er with preemption.Some CAN 
ontrollers have single transmit bu�er, see table 3.1, whi
h 
ould beproblemati
.This 
ase was dis
ussed �rst in[Tindell 1994
℄. Suppose on an ECU E1with single transmission bu�er a message, µ2, arrives at the queue right when mes-sage µ3 started its transmission. The message µ2 will have to wait for message µ3 to
omplete its transmission before message µ2 
an be put in CAN 
ontroller transmis-sion bu�er for parti
ipation in an arbitration. This is unavoidable and 
onsidered aspart of the blo
king term B1 . The 
opying of message µ2 into transmission bu�erwill start when message µ3 �nishes its transmission.However, if the message 
opy time message µ2 is larger than the inter-framebits (whi
h 
an be further redu
ed be
ause of 
lo
k skew on the CAN network), anew transmission of some lower priority message µ4 on some other node 
an startwhile µ2 is being 
opied. While µ4 is transmitting, a new higher priority message
µ1arrives on the same E1 su
h that priority of µ1 > µ2 and the transmission requestof µ2 is thus aborted.The message µ1 
an su�er same fate, des
ribed above, as that of message µ2and thus this priority inversion 
an happen multiple times, until the highest prioritymessage from the ECU E1, is written into the bu�er and eventually transmitted.3.2.4 Dual bu�er with preemptionIn [Mes
hi 1996℄ the dis
ussion of the 
ase of single bu�er management with pre-emption was extended to the 
ase of two bu�ers. Suppose on an ECU E1 withtwo transmission bu�ers a message, µ2, arrives and is put in a transmission bu�erwhile message µ3 started its transmission from other transmission bu�er. Beforethe end of transmission for the message µ3 another message µ1 is released. Sin
ethe message µ3 is under transmission and hen
e 
annot be aborted, the message µ2will have to be aborted from its transmission bu�er (sin
e the priority of µ1 > µ2).However, during the time messages µ2 and µ1 are being swapped the transmissionof message µ3 
an end and a lower priority message from some other node 
an win46



3.2. Working of a CAN 
ontrollerarbitration, resulting in a priority inversion. This priority inversion s
enario 
an re-peat itself multiple times 
onsidering the fa
t that a new message of higher priority
{µk|k < 1} 
an preempt message µ2 right before message µ1ends its transmission,therefore multiple priority inversions.It is argued in [Mes
hi 1996℄ that the only way to avoid having no bu�er avail-able at the time a new 
ontention starts, whi
h is ultimately the 
ause of priorityinversion from lower priority messages, is to have at least three bu�ers availableat the peripheral and sorted for transmission priority a

ording to the priority ofthe messages 
ontained in them. However, we will show in this work that su
hassumption may not ne
essarily be true.3.2.5 FIFO message queue in a CAN driverThe limited number of transmission bu�ers inside a CAN 
ontroller was 
ompen-sated by idea of using queues inside a CAN devi
e driver to hold frames whi
h didnot �nd any available transmission bu�er. However, these queues might follow FIFOqueuing poli
y, for its simpli
ity, ease of implementation, easier queue management.However, when the queuing poli
y inside CAN driver is FIFO a higher priority mes-sage released will have to wait for the lower priority message at the head of thequeue to 
opy itself �rst into emptied CAN transmission bu�er. This is be
ausewith FIFO queues, preemption of the makes very little sense. In this 
ase, a highpriority message that is en-queued after lower priority messages will wait for thetransmission of all the messages in front of it, see [Davis 2011a℄. The delay su�eredby a message in the queue will be dire
tly proportional to the number of messagein front of it in the queue, i.e. the messages en-queued before it. This 
an resultsin a priority inversion, and the substantial in
rease in the WCRT.3.2.6 CAN 
ontroller message indexIdeally what we would have wanted for these CAN 
ontrollers was to transmit a
-
ording to CAN ID. As 
an be seen in table 3.1 some CAN 
ontrollers may notprovide most desirable behavior. These 
hips provide at least three transmissionbu�ers (with an ex
eption of Philips SJA1000) and the priority me
hanism is inde-pendent from the CAN ID. This 
ould lead to problem of priority inversion if thedevi
e drivers are not implemented in su
h a way to over
ome this problem. Forexample in 
ase of Mi
ro-
hip's MCP2515 assume the 2 bu�ers are �lled with mes-sages of priority 7 and 8, the CAN 
ontroller will assign the index of (11)b and (10)brespe
tively to these message. If a new message of priority 6 is released the indexesof messages have to be 
hanged su
h that 6 := (11)b, 7 := (10)b, 8 := (01)b. Theassignment of indexes is not automati
 and has to be handled by the devi
e driver,and if not take 
are of 
an result in a priority inversion. For example in 
ase of aboveexample if the message released in the end ( message of priority 6) were assignedan index of (01)b , it would have su�ered priority inversion (as MCP2515 transmitshighest index �rst). Some what similar issues exist in Frees
ale MC68HC912, but47
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hedulability analysis with hardware limitationsunlike Mi
ro-
hip's MCP2515 it has an 8 bit index.Moreover,these issue do not o

ur in Philips SJA1000 CAN 
ontroller as it hasonly one bu�er, but it still retains the limitations of its prede
essor, that is, asingle output bu�er and hen
e the sus
eptibility of priority inversion as dis
ussed insubse
tion 3.2.3.To over
ome the issue of priority inversion be
ause of CAN 
ontrollers own pri-ority me
hanism a proper 
are must be taken while implementing the devi
e driversto map the CAN ID to CAN 
ontrollers indexing and vi
e-versa, su
h messages gettransmitted as lowest CAN ID �rst. Devi
e drivers will also have to 
onsult thismap when pla
ing or aborting a message in the CAN transmission bu�ers.3.2.7 Impossibility to 
an
el message transmissionsIn 
ase the message 
an
ellation is not possible, due to CAN 
ontroller not support-ing it or devi
e driving not supporting it, the higher priority messages released on anECU may get blo
ked by the lower priority messages when all the bu�ers are �lledresulting in a priority inversion [Khan 2011℄. The priority inversion su�ered by thehigher priority messages leads to the in
rease in the WCRT of those messages andthis in
rease in WCRT is modeled by a fa
tor 
alled the Additional Delay (AD) inthe rest of the 
hapter. An example of how AD o

urs is shown in �gure 3.5.This 
ase arises when pending messages are sorted a

ording to priority in asingle queue. In addition, the transmission bu�ers 
annot be aborted, that is, whena message is 
opied into it, the other messages in the queue need to wait for itstransmission. The reason for non-abortion, as mentioned earlier, 
an be the driverdoes not support it or the CAN 
ontroller does not support it. In this 
ase, thebehavior is of the system be
omes similar to that of a FIFO queue. As the messagesin the priority queue may be blo
ked by a lower priority message waiting for trans-mission in the transmission bu�ers. This type of priority inversion 
learly violatesthe rules on whi
h were established in subse
tion 3.2.1.3.3 System modelWe assume a set M of m messages µ1, µ2, . . ., µm, where m ∈ N. Ea
h message
µi is 
hara
terized by a period Ti ∈ R

+, an a
tivation jitter Ji ∈ R
+, a worst-
ase transmission time Ci ∈ R

+, and a (relative) deadline Di ∈ R
+, where Di ≤

Ti. Moreover, one de�nes the maximum 
opying time CTi for µi as the maximumbetween the time needed to 
opy the message from the queue to the transmissionbu�er and the time to 
opy from the bu�er to the queue3. Here, we make thereasonable assumption that the 
opy-time is less than the transmission time of thesmallest frame. Furthermore, we are assuming that multiple transmission bu�ers onCAN 
ontrollers are not o

upied by messages of the same priority.3Both delays 
ould be distinguished but in pra
ti
e we expe
t them to be very similar.48



3.3. System model
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Figure 3.3: Message µi is released while a lower priority frame is being sent (blo
kingdelay B). The transmission bu�ers on ECU1 are full, the devi
e driver then abortslower priority message µk and 
opies it into queue taking time CTk. Then µi is
opied into the freed transmission bu�er taking time CTi. However, while µi isbeing 
opied the arbitration is lost to message µj and µi su�ers an additional delayof AD = CTk +Cj −B as 
ompared to initial B. It should be pointed out that thisadditional delay of µi appears as an additional jitter to lower priority message µk.For notational 
onvenien
e, we assume that the messages are given in orderof de
reasing priority, i.e. µ1 has highest priority and µm has the lowest priority.Moreover, we assume a set C of n CAN 
ontrollers CC1, CC2, . . ., CCn, where n ∈ N.Ea
h CAN 
ontroller CCc has a �nite number of transmission bu�ers kc ∈ N.A total fun
tion CC : M → C de�nes whi
h message is sent by whi
h CAN
ontroller. The set of messages Mc sent by 
ontroller CCc is de�ned as
Mc = {µ ∈ M|CC(µ) = CCc}. (3.1)Similarly, Mc de�nes the set of messages not sent by CCc, i.e.

Mc = {µ ∈ M|CC(µ) 6= CCc} = M\Mc. (3.2)Let Hc be the set of highest priority messages in Mc ex
luding the kc lowest prioritymessages. Similarly, let HEc be the set of highest priority messages in Mc ex
ludingthe kc−1 lowest priority messages. We use µLc to denote the lowest priority messagein message set HEc, where Lc is its priority. Furthermore, we assume that multipletransmission bu�ers on CAN 
ontrollers are not o

upied by messages with thesame priority. The assumption is made that nodes 
an always �ll empty bu�erswith ready messages in time for the next arbitration.The WCRT Ri of a message is de�ned as the maximum possible time takenby a message to rea
h the destination CAN 
ontroller, starting from the time ofan initiating event responded to by the sending task. A message µi is said to bes
hedulable if and only if its WCRT Ri is less than or equal to the message relative49
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hedulability analysis with hardware limitationsdeadline Di and the system is s
hedulable if and only if all of the messages ares
hedulable.Priority inversion A message µi on a CAN 
ontroller CCl without abort me
h-anism is said to su�er from priority inversion when µi is released, if all of the kltransmission bu�ers are o

upied by the messages with lower priority than that of
µi.Limited number of bu�ers For any CAN 
ontroller CCl with kl transmissionbu�ers the kl lowest priority messages in the message set Ml will not su�er anypriority inversion. As a 
orollary, for any CAN 
ontroller CCl with kl transmissionbu�ers, if the number of messages mapped onto it is less or equal to kl then nomessage on CCl 
an su�er from priority inversion.3.4 Response time analysis: abortable 
aseThis se
tion provides the method to 
ompute the worst-
ase response time ofmessages on the CAN network, when priority inversion due to 
opy-time is 
on-sidered. The 
omputed values are then used to 
he
k the s
hedulability of thesystem by 
omparing the WCRTs against the deadlines. The analysis given inthis 
hapter provides a simple and non-ne
essary s
hedulability 
ondition dire
tlyinspired from [Davis 2007℄. It assumes no errors on the bus but they 
an bein
luded as 
lassi
ally done in [Tindell 1995℄. Following the analysis given in[Tindell 1995, Davis 2007℄ the worst-
ase response time 
an be des
ribed as a 
om-position of three elements:1. the queuing jitter Ji, the longest time it takes to queue the message startingfrom initiating event,2. the queuing delay wi, the longest time for whi
h a message 
an remain in thedriver queue or transmission bu�ers before su

essful transmission,3. the worst-
ase transmission time Ci, the longest time a message 
an take tobe transmitted.A bound on the worst-
ase response time of a message µi is therefore given as:

Ri = Ji + wi + Ci (3.3)The queuing delay wi is 
omposed as follows:1. blo
king delay whi
h is the delay due a lower priority frame that has startedto be transmitted before µi 
an parti
ipate to the arbitration, plus possiblythe time needed to free a bu�er on the ECU of µi (see se
tion 3.4.2),2. the delay due to interferen
e of higher priority messages whi
h may win thearbitration and transmit one or several times before µi.50



3.4. Response time analysis: abortable 
aseWhen 
omputing bound on the response times, we 
an distinguish two 
ases i)messages whi
h are safe from priority inversion ii) messages whi
h su�er from prior-ity inversion and will be swapped with the lowest priority message in transmissionbu�ers not in transmission.3.4.1 Case 1: safe from any priority inversionWe note that the higher priority messages on ea
h CAN 
ontroller CCl are moresus
eptible to priority inversion than lower priority messages on the same CAN
ontroller. Indeed, the kl lowest priority messages on CCl will not su�er fromany priority inversion as not all of the transmission bu�ers 
an be o

upied bymessages with lower priority than any if these kl messages, thus these messages arenot su�ering from any additional delay . However, these messages are still a�e
ted bythe additional delay of higher priority messages, as it is seen by them as additionaljitter. For these messages or the CAN 
ontrollers whi
h support abort me
hanisms,the worst-
ase queuing delay, using the model in [Davis 2007℄, is given by:
wn+1
i = max(Bi, Ci) +

∑

∀k<i∧µk∈M

⌈

Ĵk + wn
i + τbit
Tk

⌉

Ck (3.4)where Ĵk is 
omputed using (3.12) and Bi is the maximum blo
king time due tolower priority messages whi
h o

urs when a lower priority message of the largestsize has just started to be transmitted when µi arrives, i.e.
Bi = max

∀k>i∧µk∈M
{Ck} (3.5)A suitable starting value for the re
urren
e relation given above is w0

i = Ci. Thisrelation keeps on iterating until wn+1
i = wn

i or Ji + wn+1
i + Ci > Di, whi
h is the
ase when the message is not s
hedulable. If the message is s
hedulable its WCRTis given by (3.14).3.4.2 Case 2: messages undergoing priority inversionMessages not belonging to the kl lowest priority messages 
an su�er from prior-ity inversions when all the kl transmission bu�ers are �lled up with lower prioritymessages. We 
onsider here the 
ase where the 
ommuni
ation driver will abort atransmission request whenever a message that possesses a higher priority than thosealready in the transmission bu�ers arrives, let's say µi. Spe
i�
ally, the CAN driverwill abort the lowest priority message on CCc not 
urrently under transmission andstart 
opying µi in pla
e. The swapping of µi will indu
e some delay and if arbitra-tion starts during the swapping pro
ess a lower priority message than µi may winarbitration and starts to transmit. This may introdu
e an additional delay ADi for

µi whi
h is equivalent to the di�eren
e between the transmission time of the messagewhi
h won arbitration and the original blo
king delay Bi, plus the time needed to
opy a message from the 
ommuni
ation bu�er to the queue. The worst-
ase ADi is51
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hedulability analysis with hardware limitationsobtained by taking the maximum of the worst-
ase transmission times for all valuesof k su
h that i < k ≤ j where µj is the highest priority message of the lowest klpriority messages on CCl:
ADi = max

(

0, max
{∀k∈MC |k>i}

(CTk) + max
i<k≤j

(Ck)−Bi

) (3.6)where CTk is the 
opy time of the message whi
h is repla
ed by µi. Then, theworst-
ase queuing delay for message µi is given by:
wn+1
i = max(B̂i, Ci) + CTi +

∑

∀j∈hp(µi)

⌈ Ĵj + wn
i + τbit
Tj

⌉Cj (3.7)where Ĵj is given by (3.12) and B̂i is given by Bi+ADi. A suitable starting value forthe re
urren
e relation give above is w0
i = Ci. This relationship keeps on iteratinguntil wn+1

i = wn
i or Ji +wn+1

i +Ci > Di, whi
h is the 
ase when the message is nots
hedulable. And if the message is s
hedulable its WCRT will be given by (3.3).3.5 Optimized implementation and 
ase-studyIf we a

ept the overhead of keeping a 
opy of the messages 
urrently in the trans-mission bu�ers in the priority queue, we 
an suppress an extra 
opy time and removethe quantity max{∀k∈MC |k>i}CTk in (3.6). This 
an be done by maintaining an ex-tra status �eld along with the priority queue. For instan
e, for the messages in thetransmission bu�ers this �eld 
ould be set to one and for the messages in priorityqueue but not in any transmission bu�er this �eld 
ould be set to zero. Upon thesu

essful transmission of a message its 
orresponding 
opy along with its status�eld will be removed from the priority queue.Upon a full transmission bu�ers, for any new message with priority greater thanany message in the transmission bu�ers, it will be �rst put in the priority queuethen the status �eld of message in transmission bu�ers with lowest priority and nottransmitting will be set to zero. Then the message will over-write the message intransmission bu�er whose �eld was just set to zero and �nally for the message whi
hrepla
ed the message in the transmission bu�er, the status �eld is set to one. Thispro
edure will remove the need for swapping whi
h takes more time as 
ompared tosimple overwrite and thus 
han
es of priority inversion are redu
ed. However, thedownside of this is that we have to re-arrange the priority queue not only ea
h timea message be
omes available but also ea
h time a message is su

essfully sent bythe station (upon the a
knowledgment).We illustrate the analysis on an typi
al 125Kbit/s automotive body network. Togenerate a realisti
 test network we used Net
arben
h [Braun 2007℄. The generatedperiodi
 message sets under study 
onsists of 105 CAN messages mapped over 17ECUs with deadlines equal to periods and data payload ranging from 1 to 8 bytes.The total periodi
 load is equal to 42.04%.52
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ase
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Figure 3.4: Worst-
ase response time with and without taking into a

ount priorityinversion. Only frames starting from ID 40 are shown.Figure 3.4 shows the worst-
ase response times of the CAN messages with andwithout priority inversion. We observe the impa
t on the WCRT of messages whenpriority inversion is taken into a

ount. For instan
e in �gure 3.4, the WCRT forthe message with id 101 raises from 100.8ms without priority inversion to 120ms(i.e. 19% in
rease).3.6 Response time analysis: non-abortable 
aseThis se
tion provides the method to 
ompute the worst-
ase response time of mes-sages on the CAN network, when priority inversion due to non-abortion of messagesis 
onsidered. The 
omputed values are then used to 
he
k the s
hedulability ofthe system by 
omparing the WCRTs against the deadlines. The analysis givenin this 
hapter provides a simple and non-ne
essary s
hedulability 
ondition di-re
tly inspired from [Davis 2007℄. It assumes no errors on the bus but they 
anbe in
luded as 
lassi
ally done in [Tindell 1995℄. Following the analysis given in[Tindell 1995, Davis 2007℄ the worst-
ase response time 
an be des
ribed as a 
om-position of three elements:1. the queuing jitter Ji, is the maximum time between a task being released anda message being queued. 53
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Figure 3.5: The message µi su�ers a priority inversion as, being the highest prioritymessage, it should have been transmitted earlier than µk and µj sent by nodes
CCm and CCl respe
tively. This was not possible be
ause here the transmissionrequest for µj 
annot be aborted on CCl and all bu�ers were full. This results in anadditional delay for message µiand thus in
reased WCRT as 
ompared to existinganalyses. The arrows indi
ate the message release times.2. the queuing delay wi, the longest time for whi
h a message 
an remain in thedriver queue or transmission bu�ers before su

essful transmission,3. the worst-
ase transmission time Ci, the longest time a message 
an take tobe transmitted.A bound on the worst-
ase response time of a message µi is therefore given byequation (3.3)When 
omputing bound on the response times, we 
an distinguish three 
asesi) messages whi
h are safe from priority inversion ii) messages whi
h su�er frompriority inversion due to non-abortion of the messages in transmission bu�ers and iii)message whi
h su�er from priority inversion due to 
opy-time and message swappingissue. We are analyzing se
ond 
ase here and the �rst and third 
ase has been alreadyanalyzed in se
tion 3.4.3.6.1 Additional DelayFigure 3.5 illustrates the 
ase in whi
h a message µi sent by CAN 
ontroller CClshould have been transmitted after B, the blo
king time of a lower priority frame.Here the message µj blo
ks µi due to the non-availability of a transmission bu�er in
CCl, whi
h only be
omes available after µj �nishes its transmission. However, themessage µj has to wait for the higher priority message µk on CAN 
ontroller CCmto be transmitted before it 
an begin its transmission. Therefore, the WCRT for µi54



3.6. Response time analysis: non-abortable 
asegiven by the existing analyses in
reases by an amount, 
alled the Additional Delay(AD), whi
h in this example is equivalent to the sum of the worst-
ase transmissiontimes of µk and µj .Let µi be a high priority message in Mc and let the number of messages in Mcwith a lower priority than i be at least kc. Moreover, let µj be the highest prioritymessage in the CCc transmission bu�ers, su
h that j > i (i.e. j is of lower prioritythan i). When all the transmission bu�ers of CCc are full, the longest delay for µio

urs when none of the messages in the transmission bu�ers of CCc are 
urrentlybeing transmitted and µi has to wait until µj has been transmitted for the release ofa bu�er on CCc. Moreover, µi also experien
es the normal interferen
e from higherpriority messages sent by CAN 
ontrollers other than CCc.Algorithm 3 Algorithm for �nding additional delay and additional jitter. Theinputs to the algorithm are the number of CAN 
ontrollers (c), the number oftransmission bu�ers on ea
h CAN 
ontroller c (kc), and the set of all messages onthe CAN network (M). The algorithm returns the additional delay and additionaljitter for all messages.Input: c, k = {kl|l = 1 . . . c}, MOutput: AD = {ADi|i = 1 . . . size(M)}, Ĵ = {Ĵi|i = 1 . . . size(M)}
AD = 0 //initialization of AD for all messages
Ĵ = J //initialization of AJ for all messagesfor ea
h CCl| l ∈ {1, 2 . . . , c}

K = size(Ml) //size(Ml) returns # of messages in Ml

Hl = {∀µi ∈ M |CC(µi) == l ∧ i ≤ K − kl} //set of messages with ADif K ≤ kl //more bu�ers available than the # of messages
AD = 0else
HEl = {∀µi ∈ M |CC(µi) == l ∧ i ≤ K − kl +1} //message set Hl in
luding

µLl 
ompute R∗
j∀µj ∈ HEl //using equations (3.8 & 3.10)

∀µi ∈< Hl �nd ADi //using equation (3.11)
∀µi ∈< Hl �nd Ĵi = Ji +AJi //using equations (3.12 & 3.13)endendreturn(AD and Ĵ)Before transmission (i.e. when µj is in the CAN 
ontroller transmission bu�erblo
king µi), µj 
an be dire
tly blo
ked by at most one message µlj with lj > jsent by another CAN 
ontroller, or alternatively, subje
t to indire
t or push-throughblo
king due to at most one message µlj with lj > j sent by the same CAN 
ontroller.Similarly, µj 
an experien
e interferen
e from higher priority messages µhj

with hj <

j. Message µj 
annot experien
e dire
t interferen
e from higher priority messages
µhj

with hj < j on 
ontroller CCc, be
ause µj is the highest priority message inthe transmission bu�ers of CCc and µj 
annot be aborted. However, su
h messages55
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ould if transmitted prior to the time at whi
h µj �lls the bu�er, 
ause indire
tinterferen
e by delaying the transmission of higher priority messages sent by othernodes, whi
h then in
reases the time taken for message µj to be sent. To a

ountfor this indire
t interferen
e, we �rst in
lude messages µhj
with hj < j on 
ontroller

CCc in the �xed point 
al
ulation of the queuing delay, so that the 
orre
t amountof interferen
e is obtained for messages from other nodes. Later, when 
omputingthe additional jitter, we subtra
t out the interferen
e from the messages sent by
ontroller CCc as these transmissions 
annot o

ur after µj �lls the transmissionbu�er.Therefore the time duration for whi
h µi has to wait depends on the responsetime of µj , 
alled the modi�ed response time4 and denoted by R∗
j for µj and 
om-puted as followŝ

wn+1
j = max(Bj , Cj) +

∑

∀µk∈M∧k<j

⌈

Ĵk + ŵn
j + τbit

Tk

⌉

Ck (3.8)where Bj is the maximum blo
king time of message µj given by:
Bj = max{0,max{Ck|k > i}}. (3.9)Where Ĵk is the jitter5 of higher priority messages 
omputed using equation (3.12)by algorithm 3. A suitable starting value for the re
urren
e relation given in equa-tion (3.8) is ŵ0

j = B̄j . This relationship keeps on iterating until ŵn+1
j = ŵn

j or
ŵn+1
j + Cj > Dj , whi
h is the 
ase when µj is not s
hedulable. The modi�edWCRT of µj is given by:

R∗
j = ŵj + Cj (3.10)There are some aspe
ts that need to be taken into a

ount in order to determinethe additional delay experien
ed by µi, due to the non-availability of a transmissionbu�er. First, the jitter Jj of µj should not be a

ounted for in the modi�ed WCRT

R∗
j of µj , be
ause that is irrelevant for the delay of µi as µj is already in thetransmission bu�er.Se
ond, be
ause the interferen
e of messages µhi

with 1 ≤ hi < i will re-appearwhen we 
ompute the worst-
ase response time of µi, we have to subtra
t thisinterferen
e from R∗
j , in order to prevent the double in
lusion of interferen
e fromthe messages µhi

with 1 ≤ hi < i sent by other CAN 
ontrollers (i.e. M̄c).The additional delay ADi of µi, due non-availability of transmission bu�er, istherefore found by subtra
ting the interferen
e of the messages µhi
with 1 ≤ hi < i4The modi�ed response time of message µj is not its a
tual response time be
ause the messagejitter is missing.5To begin with Ĵk = Jk for all messages, in order to �nd the �rst value of ADi. After 
omputing

ADi, it will appear as jitter to all messages {µk|k > i} ne
essitating re
al
ulation of ADi, whi
his done iteratively until it does not 
hange any more or a message be
omes uns
hedulable, foundusing algorithm 3. 56
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ase
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ted bythe additional jitter 
aused by priority inversion that is su�ered by a higher prioritymessage µ1.and µhk
with 1 ≤ hk < j 
ontained in R∗

j , i.e.
ADi = max

∀k>i∧µk∈HEc

(R∗
k −

∑

1≤hi<i∧µhi
∈M̄c

⌈

R∗
k −Ck + Ĵhi

+ τbit
Thi

⌉

Chi

−
∑

1≤hk<k∧µhk
∈Mc

⌈

R∗
k − Ck + Ĵhk

+ τbit
Thk

⌉

Chk
) (3.11)The reason for taking max in equation (3.11) is that the additional delay for themessage µi 
an be due to ea
h message µk ∈ HEc where i < k ≤ Lc, and it maybe di�erent due to ea
h of these messages. Moreover, for all messages µk, su
h that

i < k ≤ Lc , having similar higher priority interferen
e to that of µLc (i.e. R∗
k − Ckis equal to R∗

Lc
− CLc) the worst-
ase ADi is obtained by taking into a

ount themessage µk with the largest worst-
ase transmission time (i.e. Ck > CLc), as µk willgive more additional delay than µLc . Thus taking the maximum over all messageswhi
h 
ould blo
k µi enables us to �nd the message µk with i < k ≤ Lc whi
h givesthe worst-
ase additional delay to µi. The algorithm to �nd the additional delay is57
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ri

Ji

aQi ai

AJiFigure 3.7: The time line of message µi from its initiating event until it is able toparti
ipate in bus arbitration.des
ribed in algorithm 3. The algorithm will keep on iterating until AD 
onvergesor it is greater than the deadline, i.e. WCRT of the message be
omes greater thanits deadline (in whi
h 
ase the message set is not s
hedulable).3.6.2 Additional JitterThe release jitter (Ji) is de�ned traditionally as the time interval between the o
-
urren
e of an event that will trigger sending of the message (ri) and pla
ing themessage in a transmission queue (Q) or a transmission bu�er. However, with non-abortable transmit bu�ers, priority inversion o

urs, and the message µi triggeredby the event at ri is not able to parti
ipate in arbitration until the time ai, as itmay be blo
ked by messages with lower priority than i. Therefore, the messages onother nodes see the interferen
e of µi after time ai and the jitter of this message isnot limited to Ji. Instead, the total jitter seen for µi, by the messages with lowerpriority than the priority of µi, is given by:
Ĵi = Ji +AJi (3.12)where AJi is the time µi has to wait for the bu�er to be emptied, see �gure 3.7.Where AJi is 
omputed as:

AJi = max
∀k>i∧µk∈HEc

(R∗
k −

∑

1≤hk<k∧µhk
∈Mc

⌈

R∗
k − Ck + Ĵhk

+ τbit
Thk

⌉

Chk
) (3.13)where R∗

k is found using equation (3.10). Note that interferen
e from higher prioritymessages sent by the same node is subtra
ted out, as this interferen
e 
annot o

urafter message µk has �lled the transmit bu�er. The above equation upper boundsthe amount of time that a message µk 
an spend in a transmit bu�er, with all otherbu�ers �lled by lower priority messages; hen
e it upper bounds the additional delay
aused by message µk on message µi .Example Consider a system of two CAN 
ontrollers CC1 and CC2 with 5 messages,as des
ribed in table 3.2. Let CC1 have a single transmission bu�er and let CC2have an unlimited number of transmission bu�ers. Assume that µ5 is in the bu�erof CC1 and µ1 is released along with all other messages at time t = 0, see �gure 3.6.58



3.6. Response time analysis: non-abortable 
aseTable 3.2: Chara
teristi
s of messages.Frames CAN 
ontroller T J C
µ1 CC1 5C 0 C

µ2 CC2 6C 0 C

µ3 CC2 6C 0 C

µ4 CC2 6C 0 C

µ5 CC1 4C 0 CSin
e CC1 has a single bu�er, µ1 is blo
ked until µ5 releases the bu�er at time t = 4.The messages with lower priority than that of µ1 on CC2 are not aware of release at
t = 0 of µ1, as they do not see it parti
ipating in arbitration from t = 0 to a1 whenit o

upies the bu�er in CC1. On
e µ1 is in the bu�er it is able to parti
ipate inarbitration at time t = 4 and wins. The release of the se
ond instan
e of message µ5su�ers interferen
e from two instan
es of message µ1, between time t = 4 and t = 6.The inter-arrival time expe
ted for µ1 was 5C, however, be
ause µ1 su�ered anadditional delay of 4C due to priority inversion, the interval between two instan
esof message µ1 being sent on the bus is redu
ed to 1C. The additional delay su�eredby µ1 is seen as a jitter of 4C by µ5. The WCRT of µ5 given by existing analyses is
5C, but if we in
lude the jitter of 4C for µ1 we obtain the WCRT of 6C for µ5 asseen in �gure 3.6.3.6.3 Response time analysisThis se
tion provides a method for 
omputing the worst-
ase response time of mes-sages on the CAN network. The 
omputed values are then used to 
he
k the s
hedu-lability of the system by 
omparing the WCRTs against the message deadlines. Theanalysis given in this se
tion provides a simple and non-ne
essary s
hedulability
ondition dire
tly inspired by [Davis 2007℄. It assumes no errors on the bus butthey 
an be in
luded as done in [Tindell 1995℄. Following the analyses given in[Tindell 1995, Davis 2007℄ the worst-
ase response time 
an be des
ribed as a 
om-position of three elements:1. the queuing jitter Ji, is the maximum time between the sending task beingreleased and a message being queued.2. the queuing delay wi, is the longest time for whi
h a message 
an remain inthe devi
e driver queue or transmission bu�ers before su

essful transmission,3. the worst-
ase transmission time Ci, is the longest time a message 
an take tobe transmitted.A bound on the worst-
ase response time of a message µi is therefore given by:

Ri = Ji + wi + Ci (3.14)59
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Figure 3.8: This �gure shows the WCRT of messages from SAE ben
hmark
omputed using analysis whi
h does not a

ount for priority inversion, analysisin [Natale 2006℄ and the analysis developed in this se
tion. Our analysis assumesea
h CAN 
ontroller has 3 transmission bu�ers. Some of the messages have lowerWCRT with Di Natale's analysis (for example IDs 13, 15 and 17) be
ause the equa-tion used in [Natale 2006℄ to 
ompute the WCET is slightly di�erent.The queuing delay wiis 
omposed of:1. blo
king delay6 B̂i, is either the delay Bi due to the non-preemptivity of lowerpriority messages in transmission when µi was ready for arbitration or theadditional delay ADi, 
omputed using equation (3.11), due to the priorityinversion i.e.
B̂i = max(max(Bi, Ci), ADi) (3.15)2. the delay due to interferen
e of higher priority messages whi
h may win arbi-tration and be transmitted before µi.3.6.3.1 Case 3: not safe from priority inversionOn
e we have the additional delay of message µi, sus
eptible to priority inversion,we 
an 
ompute its WCRT. The worst-
ase queuing delay for message µi is givenby:6The additional delay ADi of a message µi appears as an additional blo
king delay due tomessages with lower priority than that of µi. 60
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Figure 3.9: WCRT on a typi
al 125 kbits/s automotive body network (assuming ea
hCAN 
ontroller has 12, 16 and 20 transmission bu�ers and 
an
ellation of transmitrequest is not possible) 
omputed using analysis whi
h does not a

ount for priorityinversion (lower 
urve) and analysis developed in this se
tion (se
tion 3.6.3.1).
wn+1
i = B̂i +

∑

∀k<i∧µk∈M

⌈

Ĵk + wn
i + τbit
Tk

⌉

Ck (3.16)where Ĵk is 
omputed using (3.12) and B̂i is 
omputed using (3.15). A suitablestarting value for the re
urren
e relation given above is w0
i = Ci + ADi. Thisrelation keeps on iterating until wn+1

i = wn
i or Ji + wn+1

i + Ci > Di, whi
h is the
ase when the message is not s
hedulable. If the message is s
hedulable its WCRTis given by (3.14).However, as we established in se
tion 3.6.2 the 
omputed additional jitter for µinow impa
ts all the messages with lower priority than i and therefore we have tore-
ompute the WCRT7 for all lower priority messages as well.The pro
ess used to re-
ompute WCRT for the messages remains the same asdes
ribed in se
tions 3.4.1 and 3.6.3.1. A simple pro
edure is used to �nd the WCRTby 
omputing additional delay �rst (for all messages sus
eptible to priority inversion)and then 
omputing the WCRT for all of the messages, as shown in algorithm 4.Example In se
tion 3.6.2 we showed, with the aid of an example, how the addi-tional delay of a message manifests itself as a jitter for lower priority messages and7It is important to note that the additional delays e�e
tively in
rease the jitter of a�e
tedmessages, and this then leads to higher interferen
e and a larger 
omputed response time. However,in pra
ti
e, the messages 
annot obtain their maximum jitter (additional delays) all at the sametime and therefore the analysis 
an be pessimisti
. An improvement to the analysis is to upperbound the WCRT by the longest busy period at the lowest priority level, sin
e no response time
an be larger than that with any non-idling poli
y.61



Chapter 3. S
hedulability analysis with hardware limitationshow existing analyses fail to integrate the same. We return to the same exampleto illustrate how the analysis developed in this se
tion integrates the additional de-lay and the additional jitter. The message µ1 is blo
ked by µ5 and therefore theadditional delay for µ1 
al
ulated using equation (3.11) is 4C. The WCRT for µ1
omputed by equation (3.16) is 5C. Similarly, the WCRT of message µ5 when 
om-puted using equation (3.4) (by a

ounting for the additional jitter of message µ1)is 6C, whi
h 
an be veri�ed from �gure 3.6.We observe that the existing priority assignment algorithms, see [Davis 2011b℄,may not be optimal in this 
ase as they require that the relative order among thehigher priority messages does not matter while assigning priorities to lower prioritymessages. However, su
h a 
ondition is not satis�ed, for the s
enario dis
ussed inse
tion 3.6.3.1, as the order among the higher priority messages may impa
t theiradditional delay, i.e. the jitter Ĵ seen by lower priority messages, thus have animpa
t on the response time of lower priority messages.Algorithm 4 Algorithm for �nding WCRT. The inputs to the algorithm are thenumber of CAN 
ontrollers (c), the number of transmission bu�ers on ea
h CAN
ontroller c (i.e. kc), and the set of all messages on the CAN network (M). Thealgorithm returns the WCRT of message set.Input: c, k = {kl|l = 1 . . . c}, MOutput: WCRT of message set M
AD, ADold = 0 // initialization of AD for all messages
ADnew = C

Ĵ = J // initialization of jitter for all messageswhile(ADnewnot equal to ADold)
ADold = ADnewCompute Ĵ , ADnew via algorithm 3if(ADnew is greater than deadlines)return(uns
hedulable)endend

AD = ADnewif(J + wn+1 + C ≤ D) //for 
ase 1 and 
ase 2 using equations (3.14, 3.4 & 3.16)return(J + wn+1 + C)elsereturn(uns
hedulable)end3.7 Comparative EvaluationThe analysis developed in se
tion 3.6.3.1 is 
ompared against the existing anal-yses whi
h do not a

ount for priority inversion, and the analysis developed62



3.7. Comparative Evaluationin [Natale 2006℄ whi
h a

ounts for priority inversion. The 
ase-study assumes 3or more transmission bu�ers on ea
h CAN 
ontroller, with non-abortable transmis-sion requests.3.7.1 SAE ben
hmarkThe evaluation of the analysis developed in se
tion 3.6.3.1 is done by 
omparingagainst SAE ben
hmark results published in [Natale 2006℄ and in [Tindell 1994b℄.The SAE ben
hmark, see [Tindell 1994b, Natale 2006℄ for details, des
ribes a mes-sage set mapped on to seven di�erent CAN 
ontrollers in a prototype 
ar and therequirements for the s
hedulability of the messages. The network 
onne
ting the
ar subsystems handles 53 periodi
 and sporadi
 real-time signals. The signals havebeen grouped and the entire set has been redu
ed to 17 messages (for details, referto [Tindell 1994b℄). To analyse the s
hedulability of the message set at 250 kbps we
ompute the worst-
ase transmission time for this bus-speed, whi
h for 
onsisten
yis 
omputed as in [Natale 2006℄. The results of the 
omparative WCRT analyseshave been depi
ted in �gure 3.8. The message set is s
hedulable with the analysisgiven in [Natale 2006℄ and with the analysis provided in se
tion 3.6.3.1. However, asigni�
ant di�eren
e in the response time 
omputed by the analysis in se
tion 3.6.3.1and the analysis in [Natale 2006℄ 
an be observed in �gure 3.8. The reason for su
ha di�eren
e is that the analysis in [Natale 2006℄ does not 
onsider the number oftransmission bu�ers and 
omputes the additional delay of the messages using thelowest priority message from the message set mapped onto that CAN 
ontroller, thusresulting in a pessimisti
 WCRT. Moreover, it has been established in [Khan 2010℄and [Khan 2011℄ that the number of transmission bu�ers does have an e�e
t on theWCRT. Applying the 
riteria developed for priority inversion in se
tion 3.6.3.1 we�nd only one message in the ben
hmark may su�er from priority inversion (ID = 1),sin
e there is only one CAN 
ontroller that has more than three messages mapped toit (see message mapping details in [Natale 2006℄). Thus, the WCRT only in
reasesfor the message with ID = 1 as the rest of the messages are safe from priorityinversion and they only take into a

ount the additional jitter of the message with
ID = 1. The worst-
ase of message ID = 1 is when the transmission bu�ers are�lled with messages of ID = 8, 12, 15. The �rst message to transmit from thebu�ers is then ID = 8, whi
h 
ontributes towards the worst-
ase additional delayfor message ID = 1, as in the worst-
ase it may have to wait for higher prioritymessages from other CAN 
ontrollers to be transmitted �rst (i.e. ID = 2, 3, 4, 5, 6, 7
ontribute additional delay, 
omputed using equation (3.11)).3.7.2 Automotive body networkThe limitation of the SAE ben
hmark is that it is outdated with respe
t to 
ur-rent in-vehi
le systems. Moreover, the SAE ben
hmark has only one node withmore than 3 messages mapped onto it, thus making it di�
ult to 
ompare theanalyses. Therefore, we illustrate the new analysis on an typi
al 125Kbit/s auto-63
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Figure 3.10: Figure showing number of messages mapped onto ea
h CAN 
ontroller.The CAN 
ontrollers with more messages than the number of transmission bu�ersare sus
eptible to priority inversion.motive body network. To generate a realisti
 test 
on�guration we used the Net-
arben
h [Braun 2007℄ ben
hmark generator. The generated periodi
 message setunder study 
onsists of 79 CAN messages mapped over 17 ECUs with deadlinesequal to periods and data payload ranging from 1 to 8 bytes. The total periodi
load is equal to 64.26%. Figure 3.10 shows the message load distribution over theECUs highlighting the ECUs with more than three messages sus
eptible to priorityinversion, in the 
ase where ea
h node has three bu�ers. Figure 3.9 shows the worst-
ase response time of the CAN messages with and without priority inversion. Weobserve the impa
t on the WCRT of messages when priority inversion is taken intoa

ount. For instan
e, the message set is uns
hedulable when 3 transmission bu�ersper node is 
onsidered. Moreover, in �gure 3.9, the WCRT for the message withID=32 when 
onsidering 12 transmission bu�ers raises from 30.64ms without prior-ity inversion to 66.29ms. The underlying reason for su
h an in
rease in the WCRTis the additional delay of 19.46ms en
ountered by frame ID=32. This is be
ause theframe whi
h is blo
king message ID=32 in the worst-
ase s
enario has ID=69 andthe number of frames on other ECUs having ID between ID=69 and ID=32 is 27.Therefore, in the worst-
ase additional delay s
enario, 27 messages may be trans-mitted before message ID=69 
ould be transmitted and then subsequently releasethe bu�er for message ID=32.We also note that the 
hoi
e of priorities greatly in�uen
es the amount of ad-ditional delay. For example, if the priorities were su
h that the message blo
kingthe message with ID=32 in worst-
ase had ID=44, then the number of messageson other ECUs blo
king message ID=32 would have been redu
ed to 10 from 27,resulting in a smaller additional delay. 64



3.8. Summary3.8 SummaryThe aim of the 
hapter is to understand and analyze the 
onsequen
es of ar
hite
-tural limitations in CAN. The 
hapter provides a model of s
hedulability analysis forCAN 
ontrollers when �nite 
opy-time of messages is 
onsidered and when the trans-mission bu�ers 
an not be aborted. The model developed in this 
hapter providesvery important understanding of the 
onsequen
es due ar
hite
tural limitations inCAN. Here, we derive a more realisti
 response time analysis in the typi
al 
asewhere 
ontrollers have three or more transmission bu�ers and the ability to 
an
eltransmission requests is absent. This analysis is of parti
ular interest to automotivese
tor where multiple Tier 1 suppliers provide ready to use ECUs in an automobile.And the la
k of knowledge at system design level about the limitations of CAN
ontroller used or devi
e driver provided by tier 1 suppliers 
an have serious 
onse-quen
es. A �rst follow-up to this work is to 
ome up with an analysis valid in thearbitrary deadline 
ase. Another dire
t follow-up to this study is to investigate the
ase where, due to a larger message 
opy time, the nodes are not always able to �llempty bu�ers with ready messages in time for the next arbitration. As seen in 
asestudy of se
tion 3.4 the implementation quality and the ar
hite
ture of the CANdevi
e driver 
an have 
onsequen
es on the WCRT of messages and we provide thesome guidelines to avoid the same. Also, as seen in the 
ase-study of se
tion 3.6 the
hoi
e of priorities has an e�e
t su
h that the additional delay gets redu
ed,thereforeas a future work we will study the priority mapping s
hemes whi
h 
ould redu
e theamount of additional delay in 
ase a message su�ers from priority inversion. Also,we will study the 
hoi
e of o�sets on ECUs so that messages are not released at thevery same moment, to redu
e the 
han
es of priority inversion in a CAN 
ontroller.
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hapter we present a novel analysis for 
omplex real-time systems in-volving 
omponent-based design and abstra
tion models. The abstra
tion that wedevelop allows us to analyze the system having mixed 
omponents (i.e., both deter-ministi
 and probabilisti
 
omponents). The deterministi
 and probabilisti
 modelsof the 
omponents are abstra
ted through the interfa
es based on the 
urves hav-ing probabilisti
 bounds asso
iated with them. The resulting 
omponent frameworkallows us to analyze the mixed (probabilisti
 and deterministi
) 
omponent system.The probabilisti
 bound of the interfa
e (abstra
ted by 
urves) allows us to di�eren-tiate between real-time guarantees (su
h as hard and soft) in the analysis (based onthe safety requirements and system spe
i�
ations). In the end we present a test 
aseto show how the proposed analysis framework 
an be used to address the di�erentsafety requirements while modeling the real-time systems.



Chapter 4. Probabilisti
 Analysis for Component-Based EmbeddedSystems4.1 Introdu
tionThe ECUs in an automotive systems are embedded and intera
ting with the physi
alsystem, forming the a system of 
omplex nature. Moreover, with the proliferation ofECUs in automobiles, the 
omplexity of the automotive embedded systems (AESs)has risen to the level never 
onsidered before, mostly be
ause of the 
omplex natureof operational environment and the large number of elements, exploiting fun
tionaland non-fun
tional aspe
ts, whi
h 
ompose the systems. The 
omplexity of AESsne
essitates the advan
ed design and analysis methods to assure temporal require-ments. The 
omplexity is, therefore, a key reason for �nding the alternative ande�
ient abstra
tions of AESs. The abstra
tion frameworks have been applied withthe purpose of analyzing 
omplex real-time systems (su
h as AESs) and their timingrequirements [Chakraborty 2003, Shin 2003, Mok 2001℄. Besides the abstra
tions,
omponent-based design has been widely a

epted as an approa
h to fa
ilitate thedesign of 
omplex real-time systems [Lorente 2006, Shin 2004b℄. It provides meansfor de
omposing a 
omplex system into simpler 
omponents, thus simpler designproblems. The 
omponents are then 
omposed into a system using interfa
es. The
omposition through the interfa
e guarantees that the analysis performed at the
omponent level holds for the system as well, i.e. when a system is 
omposable.Simply put, the 
omponent interfa
es abstra
t the 
omponent-level timing require-ments and allow to 
he
k 
omplian
e to non-fun
tional 
onstraints of systems at
omposition time. However, su
h abstra
tions work for deterministi
 systems or thesystems where we have all the modeling parameters (su
h exe
ution time, periodset
) available, in order to be able to analyze the system. Whi
h is not ne
essarilytrue at the beginning of the automotive developmental life 
y
le. Sin
e, all we mayhave at the early stage of development is the timing budget provided by the OEMsformed by de
omposing the end-to-end laten
y. Therefore, we need an analysisframework whi
h 
an handle 
omplexity, in terms of la
k of modeling data, su
hthat it allows the designer to do better dimensioning of the systems.The basi
 rationale for performing the probabilisti
 analysis of real systemsis that it is di�
ult to provide hard real time guarantees, sin
e the neither thebehavior of the design nor the hardware 
omponents 
an be 
ompletely guaran-teed [Hansson 2002℄. Nevertheless, the timing analysis of su
h systems has been ex-tensively studied by 
onsidering worst-
ase values that indu
e a 
ertain pessimism,like over dimensioning of the system, whi
h 
annot be a�orded in automotive do-main. Another rationale to be 
onsidered is that the hardware and software elements
omposing RTSs may usually experien
e or exhibit some randomness. For examplefailures due to Ele
tro Magneti
 Interferen
e (EMI), aging of hardware 
omponents,probabilisti
 exe
ution times, and 
hoi
es in randomized algorithms. Due to thesereasons, establishing the temporal 
orre
tness, the 
omposability and the s
alabilityof these systems under all 
ir
umstan
es is usually expensive, thus impra
ti
al. Forthese 
ases other approa
hes 
ould be taken into a

ount su
h as the probabilisti
approa
hes. Moreover, the unreliable nature of the system environment and thesystem elements may pose a serious problem in safety 
riti
al appli
ations, su
h as68



4.1. Introdu
tionthose in appli
ations for spa
e, military, automotive and medi
ine. The perform-ing probabilisti
 analysis be
ome more useful as the quanti�
ation of these measures(safety, reliability) given by various standard is done through probabilisti
 thresholdvalues. Thus developing a 
omponent probabilisti
 analysis framework serves thepurpose of redu
ing system 
omplexity and being able to perform better dimension-ing of the system, when not a lot of modeling data is available. Su
h an approa
his very interesting, as well, as it ensures re�ned results as we re�ne the modelingdata (as and when it be
ome available), without having to make any 
hanges to theanalysis framework.4.1.1 Deterministi
 
omponent modelsA 
omponent-based view of real-time systems is de�ned su
h that ea
h sys-tem element 
an be modeled as a 
omponent [Chakraborty 2003, Shin 2004b,Easwaran 2006, Lorente 2006℄. The 
omponent interfa
e des
ribes how the 
om-ponent relates to other 
omponents as well as the environment in terms of in-puts/outputs [de Alfaro 2001, de Alfaro 2005℄. In parti
ular, real-time interfa
es
odes the timing requirements of the 
omponent [Shin 2008a, Wandeler 2005℄. Thereare various te
hniques whi
h have been developed. However, here we are inter-ested in the real-time 
al
ulus (RTC) [Thiele 2000℄, derived from network 
al
ulus[Le Boude
 2001℄. Whi
h is a worst-
ase analysis framework for real-time systemsbased on deterministi
 bounds. The bounds model the system timing behavior.The RTC allows event o

urren
es to be related to the passage of quantitativedeterministi
 time: non-deterministi
 de
isions 
an be taken throughout bound-ing 
urves. The RTC supports 
omponent-based design and analysis of real-timesystems; where the s
hedulability analysis is 
arried out at design time throughreal-time interfa
es [Thiele 2006, Wandeler 2006a℄. Where as the Component de-sign paradigm [Shin 2004a, Shin 2008b℄ provides the me
hanism to 
ompose largeand 
omplex real-time systems from independent sub-systems.4.1.2 Probabilisti
 analysis of real-time systemsThe probabilisti
 approa
h [Burns 2003℄ allows probabilisti
 
hoi
es to be de�ned,rather than the simple deterministi
/non-deterministi
 
hoi
es. Consequently, thereis the need to extend abstra
tions and 
lassi
al analysis methods in terms of prob-abilisti
 parameters and bounds, i.e., a resour
e 
urve and a probability asso
i-ated representing a bound to the resour
e provided and the probability that the
urve bounds the resour
e a
tually provided, respe
tively. The probabilisti
 anal-ysis does not introdu
e any worst-
ase or restri
tive assumptions into the real-timeanalysis and its appli
able to general priority-driven systems. The probabilisti
models of real-time systems 
onsider the systems to have at least one parame-ter des
ribed by a random variable. Among the studies in this area, we men-tion [Navet 2000, Navet 1998, López 2008, Zeng 2009, Díaz 2002, Cu
u 2006℄, whi
hta
kle with di�erent random parameters of real-time systems.69



Chapter 4. Probabilisti
 Analysis for Component-Based EmbeddedSystemsIn this 
hapter we apply the probabilisti
 model to abstra
t the 
urves, whi
hde�nes the interfa
e of a 
omponents. Where the 
urves represent the 
umulativeamount of work to be performed or 
umulative pro
essing power available. The ab-stra
tion of 
urves have been performed made with the sto
hasti
 network 
al
ulus[Jiang 2006℄. However, the sto
hasti
 network 
al
ulus does not provide informationfor real-time analysis or any guarantees as su
h. Moreover, In [Santinelli 2011℄ au-thors have developed a probabilisti
 extension to the real-time 
al
ulus [Thiele 2000℄,for performing s
hedulability analysis of real-time systems (
onsidering the exe
u-tion time and period to be random). The work in [Santinelli 2011℄ was done inparallel with the work presented in this 
hapter. In 
omparison to [Santinelli 2011℄,this work develops the theory for task arrival 
hara
terization based on probabilis-ti
 model of aperiodi
 arrivals. Moreover, this work introdu
es the 
on
ept ofa probabilisti
 interfa
e and then developing 
ompositional framework thereafter.In [Santinelli 2011℄, the probabilisti
 bounds are modeled as fun
tions and requires
onvolution operation to �nd the residual probabilities. In 
omparison this workmodels the probabilisti
 bounds as simple values whi
h are easy to 
ompute usingsimple arithmeti
 operations. Besides, in this work we show how to �nd under-lying distribution of a pro
ess and then how to get 
urves from that. This workalso di�ers by the introdu
tion/integration of safety levels into the 
ompositionalframework developed.4.1.3 Safety 
riti
al systemsThe proliferation of 
riti
al embedded systems has an impa
t on the safety, as thesesystems inherit the safety properties of the me
hani
al system being repla
ed (forexample, brake-by-wire). Moreover, su
h a proliferation has resulted in the in
reasedsophisti
ation, heterogeneity and 
omplexity in the networks, besides in
reasing thelevels of subsystem integration. Therefore, there is a growing need to ensure thatAESs have reliability, availability and safety guarantees during normal operationor at 
riti
al instan
es (e.g. airbags during 
ollision), despite of being in harshenvironment with heat, humidity, vibration, ele
tro-stati
 dis
harge (ESD) andele
tro-magneti
 interferen
e (EMI). There are several well-established standardsthat provide guidelines and requirements for safety-
riti
al systems. Among thesestandards, standards su
h as IEC61508 (industrial systems), DO−178B (air
rafts)and EN50128/9 (railway transportation systems), assign a 
riti
ality level to a 
er-tain fun
tion/system based on the severity of a failure. The level of safety requireddepends on the 
riti
ality of the fun
tion to be performed by the system/fun
tionor a 
ertain reliability expe
ted from the system, expressed as a maximum proba-bility of 
riti
al failure per hour. This safety level must be guaranteed in-order tobe 
lassi�ed as the system of that guaranteed safety-level. We will illustrate howthese reliability levels 
an be handled and veri�ed with the framework developedin this 
hapter and this will be illustrated with the Safety Integrity Levels (SIL),de�ned in IEC61508. In this 
hapter, we use SIL whi
h assigns the probability offailure on demand to ea
h level of 
riti
ality; this probability is used as a threshold70
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Figure 4.1: Example of a 
omponent with input 
urves su
h that the amount ofwork to do represented is by α and the amount of servi
e available is represented by
β. Similarly, for the output 
urves the remaining servi
e is represented by β′ andthe output workload for subsequent 
omponent is represented by α′ .probability and will be simply 
alled probability bound in the rest of the 
hapter1.Contribution of the 
hapter. In this 
hapter we develop a 
omponent basedprobabilisti
 analysis framework for analyzing 
omplex AESs. The framework isbased on the development of a probabilisti
 real-time 
al
ulus. The approa
h isbased on the probabilisti
 bounds on the resour
e provisioning and resour
e de-mands for a generi
 real-time system. We then de�ne a probabilisti
 
omponent, interms of its probabilisti
 interfa
e, showing the 
onditions that are ne
essary for the
omposition of probabilisti
 
omponents (
omposability). We then introdu
e thenotion of safety with the probabilisti
 bounds. This provides a me
hanism to in-
lude the safety standards into the developed analysis, in order to provide guaranteeson the timing 
onstraints of ea
h real-time 
omponent and 
onsequently the wholereal-time system, in an safety 
riti
al paradigm. Finally, we also give the s
hedu-lability 
onditions for the probabilisti
 RTS. We also demonstrate the usefulness ofour framework by 
o-analyzing a system with both probabilisti
 and deterministi
properties, whi
h may be true in large diverse systems.4.2 Component modelThe 
omponent-based view of real-time systems models ea
h system element as a
omponent [Lorente 2006, Shin 2003℄, and the 
omponent interfa
e des
ribes how1This approa
h remains valid for other safety 
riti
al standards as well, and hen
e 
an be usedwith them. 71



Chapter 4. Probabilisti
 Analysis for Component-Based EmbeddedSystemsthe 
omponent relates to the other 
omponents and the environment in terms offun
tional and non-fun
tional aspe
ts. The behavior of a 
omponent 
an be mod-eled in terms of arrival and servi
e 
urves whi
h respe
tively abstra
t the resour
edemand and the resour
e provisioning for that 
omponent in the interval domain[Thiele 2000℄. The �gure 4.1 shows a generi
 
omponent with the input and output
urves (on an interfa
e of the 
omponent). The 
omponent may not ne
essarilyhave an output workload 
urves (i.e. no interfa
e on that side), i.e. α′, when the
omponent does not generate any resulting events against the input events, for ex-ample in a 
omponent abstra
ting a task whi
h 
onsumes the event but does notgenerate an output event on a pro
essing element. However, we 
an have outputworkload 
urves, for example, in 
ase of 
omponent abstra
ting a 
ommuni
ationresour
e whi
h pro
ess an input event and then transmits an output event for thesubsequent 
omponent. We also assume that the output events abstra
ted by resid-ual arrival 
urves α′ are of same size (unit size) as that of input events abstra
tedinput arrival 
urves, whi
h 
an be easily generalized to arbitrary 
hoi
es as is donein [Chakraborty 2003℄. The relationship between α, β, α′ and β′ depends on theinternal semanti
s of the 
omponent. For a generalized embedded system we assumethat a 
omponent abstra
ts a task whi
h is a
tivated by an event and greedily 
on-sume the resour
e [Chakraborty 2003, Chokshi 2008℄. We assume that the internalsemanti
s of the 
omponent does not introdu
e any random behavior.The 
on
ept of arrival and servi
e fun
tions 
ome for network 
al
ulus and 
anbe formalized as [Le Boude
 2001℄:Consider a fun
tion f : R → R
+
⋃{+∞} su
h that f(t) represents the amountof 
umulative workload or servi
e (available or requested) at given point of a 
om-ponent in the time interval [0, t). The system is 
onsidered to be empty at t = 0.Therefore, f(t) is a non-de
reasing fun
tion of t with f(t) = 0 for t < 0.De�nition We de�ne F as the set of all 
umulative non-de
reasing fun
tions su
hthat F = {f : f(t1) ≥ f(t2), if t1 ≥ t2, and f(t) = 0,∀t < 0}Therefore, if R and C represent 
umulative arrivals and 
umulative servi
e fun
tionsrespe
tively then R,C ∈ F.4.2.1 Workload modelWe model aperiodi
 events with a sto
hasti
 pro
ess whi
h 
ounts the number ofaperiodi
 events arrivals in a time interval. Let X be the 
umulative distributionfun
tion (CDF) of the sto
hasti
 pro
ess whi
h 
ounts/gives the number of arrivalsin the time interval [0, t). Following de�nitions follow from the work presented in
hapter 2. Where we modeled the aperiodi
 tra�
 as arrival 
urves. However, herewe extend the de�nitions to introdu
e two 
lasses of the 
urves. Whi
h are upperand lower binding the aperiodi
 arrivals.De�nition [Upper 
umulative arrival fun
tion℄ The �largest � 
umulative fun
tion

R+ ∈ F su
h that R(t)+ = sup{R(t)|P [X(t) ≥ R(t)] ≤ Ω}.72



4.2. Component modelWhere Ω is a probability bound guaranteeing that CDF X gives higher 
umulativearrivals with a probability of Ω.De�nition [Upper arrival 
urve℄ Given a non-de
reasing non-negative request 
urve
αu we say that R+ is 
onstrained by αu if and only if for all s ≤ t: R+(t)−R+(s) ≤
αu(t− s).Therefore, we 
an say R+ has αu as an arrival 
urve.De�nition [Lower 
umulative arrival fun
tion℄ The �smallest � 
umulative fun
tion
R− ∈ F su
h that R(t)− = inf{R(t)|P [X(t) < R(t)] ≤ Ω} 2.De�nition [Lower arrival 
urve℄ Given a non-de
reasing non-negative request 
urve
αl we say that R− is 
onstrained by αl if and only if for all s ≤ t: R−(t)−R−(s) ≤
αl(t− s).Therefore, we 
an say R− has αl as an arrival 
urve. The tuple α(∆) =

[αu(∆), αl(∆)] of upper and lower arrival 
urves provides an arrival 
urve model,representing all possible 
urves of an event stream, where ∆ is a time interval.Thus, for a time interval ∆ we are guaranteeing the maximum arrivals of αu andthe minimum arrivals of αl.The probabilisti
 arrival 
urve at an interfa
e of a 
omponent is represented bythe 
ouple 〈 
urve, probability bound 〉, su
h as γ = 〈α,Ω〉, as the 
urve α andits probabilisti
 bound Ω. The probability value Ω = 0 for a 
urve represents thedeterministi
 
ase or true bound. The pro
ess of �nding the underlying distributionand �nding the probabilisti
ally bound fun
tion, su
h as R(t), has been explainedearlier in 
hapter 2 (same is true for C(t) in resour
e model).4.2.2 Resour
e modelThe probabilisti
 servi
e (resour
e) is modeled by a sto
hasti
 pro
ess having CDF
Y, whi
h gives the amount of servi
e available in the time interval [0, t).De�nition [Upper 
umulative resour
e fun
tion℄ The �largest � 
umulative fun
tion
C+ ∈ F su
h that C(t)+ = sup{C(t)|P [Y(t) < C(t)] ≤ Λ}.Where Λ is a probability bound guaranteeing that CDF Y gives lower 
umulativearrivals with a probability of Λ.De�nition [Upper resour
e 
urve℄ Given a non-de
reasing non-negative resour
e
urve βu we say that C+ is 
onstrained by βu if and only if for all s ≤ t: C+(t) −
C+(s) ≤ βu(t− s).Therefore, we 
an say C+ has βu as an resour
e 
urve.2where R−(t) is found from Complementary Cumulative Distribution Fun
tion (CCDF), whereCCDF is de�ned as: Xc(t) = P [X(t) < R(t)] = 1−X(t).73



Chapter 4. Probabilisti
 Analysis for Component-Based EmbeddedSystemsDe�nition [Lower 
umulative resour
e fun
tion℄ The �smallest � 
umulative fun
-tion C− ∈ F su
h that C(t)− = inf{C(t)|P [Y (t) ≥ C(t)] ≤ Λ}.De�nition [Lower resour
e 
urve℄ Given a non-de
reasing non-negative request
urve βl we say that C− is 
onstrained by βl if and only if for all s ≤ t:
C−(t)− C−(s) ≤ βl(t− s).Therefore, we 
an say C− has βl as an arrival 
urve. The tuple β(∆) =

[βu(∆), βl(∆)] of upper and lower resour
e 
urves provides an resour
e 
urve model,representing all possible resour
e 
urves, where ∆ is a time interval. Thus, for atime interval ∆ we are guaranteeing the maximum resour
e of βu and the minimumresour
e of βl. The probabilisti
 servi
e 
urve is represented by the 
ouple 
urveand probabilisti
 bound as, η = 〈β,Λ〉. The probability value Λ = 0 for a 
urverepresents the deterministi
 
ase or true bound.4.2.3 Residual workload and resour
esThe �gure 4.1 shows a 
omponent whose input interfa
e is de�ned by the 
urves
α and β, entering the 
omponent. The 
omponent pro
esses workload α usingthe available resour
e β. The 
omponents generates the outputs, after pro
essinginputs, on the output interfa
es of the 
omponent. The resulting output 
urves aredes
ribed by α′ and β′ (also 
alled residual 
urves), The residual servi
e β′ is theremaining servi
e, i.e. servi
e remaining from β after serving the 
omponent. Whileas the residual arrival 
urve α′ may not be ne
essarily present in a 
omponent,for example in a 
omponent whi
h does not generate any output events against theinput events. However, if a 
omponent is abstra
ting a task whi
h greedily 
onsumesthe resour
e and generates output events against the input arrivals, we will abstra
tthe residual arrival 
urves of su
h a 
omponent with α′ [Chakraborty 2003℄.Therefore, given the probabilisti
 arrival 
urves and resour
e pro
essing thisrequest, we 
an �nd then residual arrival 
urve 〈α′,Ω′〉 and residual resour
e 
urve
〈β′,Λ′〉 of the pro
essing 
omponent as [Chakraborty 2003℄:

α
′l(∆) = min{ inf

0≤u≤∆
{sup
v>0

{αl(u+ v)− βu(v)} + βl(∆− u), βl(∆)}} (4.1)
α

′u(∆) = min{sup
v>0

{ inf
0≤u≤∆+v

{αu(u) + βu(v +∆− u)} − βl(v), βu(∆)}}. (4.2)
β

′l(∆) = sup
0≤v≤∆

{βl(v)− αu(v)} (4.3)
β

′u(∆) = min{inf
v>0

{βu(v) − αl(v)}, 0}. (4.4)The bound on the residual 
urves is obtained through min-plus alge-bra [Le Boude
 2001℄. These results are based on generalizing ideas from network
al
ulus and hold spe
i�
ally for in�nite event streams [Chakraborty 2003℄.The probability bounds Λ′, Ω′ of the output 
urves 
omes from the followinglemma 4.2.1, but �rst we de�ne the partial ordering among probabilisti
 
urves.74



4.2. Component modelTable 4.1: Probabilisti
 
hara
teristi
 of residual servi
e and arrival 
urves.
α(∆) β(∆) β′(∆) α′(∆)

Ω = 0 Λ = 0 Λ′ = 0 Ω′ = 0

Ω = 0 0 < Λ ≤ 1 Λ′ = Λ Ω′ = Λ

0 < Ω ≤ 1 Λ = 0 Λ′ = Ω Ω′ = Ω

0 < Ω ≤ 1 0 < Λ ≤ 1 Λ′ = Ω+ Λ−ΩΛ Ω′ = Ω+ Λ− ΩΛDe�nition [�Greater than or Equal to �(�)℄ The operator (�) is de�ned over twoprobabilisti
 
urves 〈ω,Ω〉 and 〈λ,Λ〉, with ω and λ the 
urves and Ω and Λ theirrespe
tive bounding probabilities, as 〈ω,Ω〉 � 〈λ,Λ〉 ⇐⇒ ω ≥ λ ∧ Ω ≤ Λ.Theorem 4.2.1 (Probability bound) Given the arrival 
urve 〈α,Ω〉 and the ser-vi
e 〈β,Λ〉 of a 
omponent, the residual arrival 
urve 〈α′,Ω′〉 and the residual ser-vi
e 
urve 〈β′,Λ′〉 of a 
omponent have probability bound of Ω + Λ − ΩΛ. That is,
Ω′ = Λ′ = Ω+ Λ− ΩΛProof From the de�nitions 4.2.1, 4.2.1, 4.2.2 and 4.2.2 we have P [X(t) ≥ R(t)] ≤ Ωand P [Y(t) < C(t)] ≤ Λ. Let P [A] = Ω and P [B] = Λ be the 
ase when thede�nitions 4.2.1, 4.2.1, 4.2.2 and 4.2.2 are violated. Sin
e, these two probabilitiesare not mutually ex
lusive (as both R(t) and C(t) 
an 
hange simultaneously) andare independent, with the probability of R(t) being larger and C(t) being smallerequal to Ω and Λ respe
tively. Hen
e,

P [A ∨B] = P [A] + P [B]− P [A]P [B] = Ω + Λ− ΩΛ,For example, let 〈α,Ω〉 be an arrival 
urve su
h that R(t)−R(s) ≤ α(t− s) andsu
h that P [X(t) ≥ R(t)] ≤ Ω. Therefore, for some other 
urve 〈α∗,Ω∗〉 su
h that
〈α∗,Ω∗〉 � 〈α,Ω〉, the probability of 〈α∗,Ω∗〉 being larger is equal to Ω. Similarly,for some servi
e 
urves we 
an reason that the probability 〈β,Λ〉 � 〈β∗,Λ∗〉 is givenby Λ. Therefore, the probability bound of the variations in the residual 
urves,
omputed using the 
urves α∗ and β∗, is equal to the probability of variation ineither of the interfa
es or both (given by Theorem 4.2.1).Theorem 4.2.1 provides the probability bound for the 
urves at the output in-terfa
e of a 
omponent. The theorem 4.2.1 
an be summarized using the table 4.1,whi
h gives the relationship between input and output probability bounds (assumingindependen
e among inputs). There are four possible 
ombinations of probabilitybounds for the two input 
urves 〈α,Ω〉 and 〈β,Λ〉. Where, as mentioned in previousse
tion, probability bound equal to zero indi
ates the deterministi
 
ase3. We 
annow analyze 
omponent systems with a mix of deterministi
 and probabilisti
 
om-ponents (i.e. the 
omponents with deterministi
 and probabilisti
 input interfa
es)
omposing it (di�erentiated by the probabilisti
 bounds); this makes the analysisri
her and suitable for better dimensioning.3 The o

urren
e of rare events 
an be handled using large deviation theory (see [Navet 2007℄).By rare events we mean those events that have the probability of appearan
e 
lose to zero.75
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 Analysis for Component-Based EmbeddedSystems
Ck

Cj

β′G = βG − αG

αGk

αAi

βGj βAi

α
′G
i

β
′A

βA = β′A − αG
αA = βG − β′A

α
′A

β
′G
i

Ci

Figure 4.2: A 
omponent and its interfa
e abstra
tion in the assume-guarantee form.Lemma 4.2.2 (Max probability) Given the arrival 
urve 〈α,Ω〉 and the servi
e
urve 〈β,Λ〉 of a 
omponent, the probability bounds Ω′ and Λ′ of the residual arrival
urve 〈α′,Ω′〉 and the residual servi
e 
urves 〈β′,Λ′〉 of a 
omponent is su
h that Ω′and λ′ is larger than or equal to max(Λ,Ω).Proof From Theorem 4.2.1 the residual probability bounds Ω′ and Λ′ is given by
Ω + Λ − ΩΛ. The proof is given by 
ontradi
tion by showing that following is notvalid:

Ω+ Λ− ΩΛ < max(Ω,Λ)Assuming Ω = max(Ω,Λ), sin
e both Ω and Λ are positive real number, we 
ansubtra
t Ω from both sides of the equation (4.5) obtaining Λ − ΩΛ < 0. Then, byadding ΩΛ to both sides of the former equation we get Λ < ΩΛ whi
h is false as Ω
annot be greater than one.From Lemma 4.2.2 we 
an 
on
lude that the output probability bound of the
urves either remains the same or in
reases, 
ompared to the probability bound ofthe input 
urves.4.3 Component-based probabilisti
 analysisHenzinger et al. [Henzinger 2006℄ proposed assume-guarantee interfa
es whi
h areparti
ular instan
es of real-time interfa
es and 
onsider a) the requirements of a
omponent in terms of resour
e or expe
ted arrivals in order to work properly,and b) the resour
e or arrivals a 
omponent provides. A

ording to the assume-guarantee abstra
tion, in a real-time 
omponent-based system there is a 
omponentrequesting for the 
omputational resour
e and another 
omponent providing su
hresour
e [Thiele 2006℄. For example in �gure 4.2, a 
omponent i whi
h s
hedulesan appli
ation of tasks Γi, assumes a minimum amount of resour
e, βA
i , in orderto work properly and expe
ts a maximum amount of work αA

i , su
h that βA
i is76



4.3. Component-based probabilisti
 analysisenough to handle workload of the assumed work αA
i by the 
omponent. A resour
eprovisioning 
omponent j guarantees a minimum amount of resour
e, βG

j . The loadgenerating 
omponent k guarantees a maximum workload of αG
k . The 
omponent iis 
ompatible with the 
omponent k on its arrival interfa
e if the workload generatedby 
omponent k is less than or equal to the workload assumed by the 
omponent

i, i.e. αG ≤ αA. The reason being that if αA 
an be s
heduled by the 
omponentthen so is αG. Similarly, the 
omponent i is 
ompatible with the 
omponent j if
βG ≥ βA. We 
an summarize these 
onditions into the predi
ate ϕ represents theassumptions on the arrival and servi
e 
urves by the 
omponent and de�nes the
omposability among 
omponent as: ϕ = {(αG ≤ αA) ∧ (βG ≥ βA), (β′A ≤ β′G)}.4.3.1 Probabilisti
 interfa
esWe now extend the 
omponent interfa
e model to the probabilisti
 model.De�nition [Probabilisti
 interfa
e℄ An interfa
e with probability bound basedprobabilisti
 guarantees on inputs 〈α(∆),Ω〉 and 〈β(∆),Λ〉)(respe
tively the arrivaland servi
e 
urves), and on outputs 〈α′(∆),Ω′〉 and 〈β′(∆),Λ′〉 is the probabilisti
interfa
e.The input/output interfa
es are de�ned as:

γ = 〈α,Ω〉; η = 〈β,Λ〉; γ′ = 〈α′,Ω′〉; η′ = 〈β′,Λ′〉.De�nition [Probabilisti
 Component℄ Components that have probabilisti
 inter-fa
es are probabilisti
 
omponents. A probabilisti
 
omponent Ci is de�ned as,
Ci = {γi, ηi, γ′i, η′i}.In terms of assume-guarantee real-time interfa
es, the probabilisti
 version, forthe predi
ate ϕ be
omes:

ϕ = {〈αG,Ω〉 ≤ 〈αA,Λc〉 ∧ 〈βG,Λ〉 ≥ 〈βA,Λc〉),
〈β′A,Λ′〉 ≤ 〈β′G,Λ′〉} (4.5)Where Λc probability threshold of the 
omponent, whi
h will be used later as asafety threshold.De�nition [Degree of 
ompatibility℄ Is the level of 
ertainty with whi
h interfa
esof the two 
omponents are 
ompatible (
an be joined together) with ea
h other,represented by the probabilisti
 value.For example, in �gure 4.2 for the 
omponents Ck and Ci if the assumed arrival 
urveis 〈αA, 0〉 and the guaranteed arrival 
urve is 〈αG,Ω〉 su
h that αA ≥ αG. Therefore,the degree of 
ompatibility on the interfa
e between the two 
omponents is Ω. Whi
his intuitive sin
e the guaranteed 
urve 
an be more only with the probability of Ω.We 
an now analyze the requirements on the 〈αG,Ω〉 ≤ 〈αA,Λc〉 and 〈βG,Λ〉 ≥

〈βA,Λc〉 of the predi
ate, using following lemmas.77



Chapter 4. Probabilisti
 Analysis for Component-Based EmbeddedSystemsLemma 4.3.1 [Arrival Predi
ate℄ The degree of 
ompatibility of the two 
omponentsinterfa
es (see �gure 4.2), i.e. 〈αG,Ω〉 ≤ 〈αA,Λc = 0〉, has the probabilisti
 boundof less than or equal to Ω.Proof In order to explain the requirements of the αG ≤ αA, we 
an divide it intotwo parts αG = αA and αG < αA. In the �rst 
ase αG = αA the arrival predi
atewill be true, but with a probability bound equal to Ω (as we may have a higher
αG with a probability of Ω) and for the se
ond 
ase the predi
ate will be true, butwith a probability failure of less than Ω. See �gure 4.3 for an explanation, Ω1 < Ω2thus the upper αG is more tighter and the probability of existen
e another tighter
αG than existing one will de
rease as Ω < Ω1, thus probability of failure for thepredi
ate will be lesser than existing Ω.

∆

α
(∆

)

〈αG,Ω1〉
〈αA,Ω = 0〉

〈αG,Ω2〉

Figure 4.3: Comparison of the arrival 
urves with di�erent probability bounds. Theprobability of αG de
reases going towards αA and is zero for in
reasing beyond αA,sin
e Ω1 < Ω2.Lemma 4.3.2 [Servi
e Predi
ate℄ The degree of 
ompatibility of the two 
omponentsinterfa
es (see �gure 4.2), i.e. 〈βG,Λ〉 ≥ 〈βA,Λc = 0〉, has the probabilisti
 boundof less than or equal to ΛProof See Figure 4.4 and applying the reasoning as in lemma 4.3.1.For the 
ase when Λc 6= 0 the degree of 
omposability is given by Theorem 4.2.1.Thus we see that the 
omponent interfa
e 
omposability a
quires a ri
her meaningwith the 
on
ept of degree of 
ompatibility, than the idea of the 
on
rete interfa
e
omposability, whi
h 
an help in better dimensioning of a system.78



4.3. Component-based probabilisti
 analysis
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Figure 4.4: Comparison of the servi
e 
urves with di�erent values of probabilitybound. The probability of βG de
reases going towards βA and is zero for de
reasingbeyond βA, sin
e Λ1 < Λ2.4.3.2 ComposabilityIn 
ase of real-time systems the resour
e 
omposability is equivalent to the 
lassi-
al s
hedulability 
riteria: the resour
e provided to a 
omponent by another 
om-ponent has to be enough to satisfy the timing requirements of the 
omponent it-self [Thiele 2006, Wandeler 2006a, Wandeler 2005℄. Two 
omponents are 
ompos-able if all internal 
onne
tions are 
ompatible and if all open input predi
ates andall output predi
ates are still satis�able.The following theorem gives the notion of 
omposability for 
omponent withprobabilisti
 interfa
es.Theorem 4.3.3 [Composability℄ The 
omposability of 
omponents is guaranteed if
〈αG,Ω〉 ≤ 〈αA,Ω〉 ∧ 〈βG,Λ〉 ≥ 〈βA,Λ〉) holds.Proof proof is a dire
t 
onsequen
e of lemma 4.3.1 and 4.3.2 as predi
ate of Equa-tion (4.5) whi
h has to be satis�ed in order to guarantee the 
omposability.The 
omposability of the 
omponents is a�e
ted by the s
heduling poli
y whi
hde�nes the resour
e distribution among the 
omponents. In 
ase of �xed prioritys
heduling the priority des
ribes the 
omposition order among the tasks. Figure 4.7depi
ts a �xed priority (FP) s
heduling, see [Leho
zky 1989℄, for n tasks ea
h ofthem modeled as a 
omponent with assume-guarantee interfa
e, where the βis arethe resour
es passed among the 
omponents.79
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Figure 4.5: Example of an arrival 
hain of 
omponents.The 
omposition of 
omponents being served by a 
ommon arrival 
urve orservi
e 
urve 
an be 
ategorized into two 
lasses su
h as servi
e 
hain and arrival
hain.De�nition [Servi
e 
hain℄ A servi
e 
hain, see �gure 4.7, is a 
hain of 
omponentswith one servi
e 
urve going to �rst 
omponent of the 
hain and the remaining
omponents being served by the residual servi
e from previous 
omponent in the
hain and all the 
omponents have di�erent arrival 
urves.Therefore, in a servi
e 
hain {C1, C2, . . . , Ck, . . . Cn} of n 
omponents with β1 asan input servi
e to C1 and β′
1 as an input servi
e to C2 and likewise for rest of the
omponents in the servi
e 
hain. The probability bounds for the output interfa
eof the 
omponent C1 is P1 = Ω1 + Λ1 − Ω1Λ1 (see Table 4.1) and the probabilitybound for the output interfa
e of the 
omponent C2 is P2 = P1 +Ω2 − P1Ω2, sin
ethe input probability bound for β2 is same as output probability bound of β′

1. Theprobability bound for the output interfa
e of the 
omponent Ck in a servi
e 
hain
an be found using indu
tion and is given by:
Pk = Pk−1 +Ωk − Pk−1Ωk (4.6)De�nition [Arrival 
hain℄ An arrival 
hain, see �gure 4.5, is a 
hain of 
omponentswith one arrival 
urve going to �rst 
omponent in the 
hain and the subsequent
omponent re
eiving residual arrival 
urve and all the 
omponents in 
hain havetheir own servi
e 
urves.Therefore, in an arrival 
hain {C1, C2, . . . , Ck, . . . Cn} of n 
omponents with α1as an input arrival to C1 and α′

1 as an input arrival to C2 and likewise for rest ofthe 
omponents in the arrival 
hain. The probability bound for the output interfa
eof the 
omponent C1 is P1 = Ω1 + Λ1 − Ω1Λ1 (see Table 4.1) and the probabilitybound for the output interfa
e of the 
omponent C2 is P2 = P1 + Λ2 − P1Λ2, sin
ethe input probability bound for α2 is same as output probability bound of α′
1. Thus,80
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Figure 4.6: Computation of delay and ba
klog as maximum horizontal and verti
aldistan
e respe
tively.the probability bound for the output interfa
e of the 
omponent Ck in an arrival
hain 
an be found using indu
tion and is given by:
Pk = Pk−1 + Λk − Pk−1Λk (4.7)The probability bound given for a 
omponent Ck in the servi
e 
hain or thearrival 
hain is worst-
ase bound, as we stated in lemma 4.2.2.4.3.3 Component system metri
sThe real-time analysis applies delays (d) and ba
klogs (q) for s
hedulability purposes,see [Chakraborty 2003, Thiele 2000℄.Delay.Given an arrival 
urve and a servi
e 
urve as input to a 
omponent, the maximumdelay (or response time) experien
ed by an event given the resour
e represented bythe servi
e 
urves is the maximum number of ba
klogged events from the streamwaiting to be pro
essed, see �gure 4.6, and 
an be given by the following inequali-ties [Chakraborty 2003℄:

dmax ≤ sup
∆≥0

{inf{γ ≥ 0 |αu(∆) ≤ βl(∆ + γ)}} (4.8)Simply the delay is the maximum horizontal distan
e between the arrival 
urveand the servi
e 
urves. Using the delay, it is possible to de�ne the s
hedulabilityof task sets whi
h depends on the s
heduling poli
y applied as we have showed inthe previous se
tions. Indeed, the delay is the amount of time that an appli
ationhas to wait in order to have the ne
essary amount of resour
e available and then81
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Figure 4.7: Example of �xed-priority s
heduling: the servi
e 
urve is passed a

ording to thepriority assignment form the highest priority 
omponent to the lowest priority one.exe
ute. If that delay is less than or equal to the 
omponent timing requirement(the deadline for task 
omponents), then the two 
omponent are 
omposable, hen
etheir appli
ations are s
hedulable, otherwise not. The probability that an event hasto wait for more than dmax delay before being pro
essed is given by Λ′ (equal to
Ω′), as de�ned in Theorem 4.2.1.Ba
klog.On the other hand, the ba
klog qmax is the requirement of the 
omponent, given αand β as input, to avoid loss of data being unpro
essed. It is the maximum verti
aldistan
e between the arrival 
urve and servi
e 
urves (see �gure 4.6), whi
h givesthe maximum number of events waiting to be served (thus need to be stored andhen
e gives the bu�er requirement) and is given as [Chakraborty 2003℄:

qmax ≤ sup
∆≥0

{αu(∆)− βl(∆)} (4.9)The probability that the available resour
e β dispat
hes the workload α before theba
klog qmax over�ows, is given by the probability Λ′ (equal to Ω′), as de�ned inTheorem 4.2.1.4.3.4 S
hedulabilityThe s
hedulability of a 
omponent relies on the 
omparison among its input 
urves,the arrival and the servi
e 
urve. In parti
ular, su�
ient 
ondition 
an be derivedby 
omparing the upper bound of the arrival 
urve and the lower bound of theservi
e. Intuitively, whenever the arrival 
urve is lower than the servi
e 
urve the
omponent is s
hedulable, as we have enough servi
e to handle the work.With a probabilisti
 de�nition of 
urves, s
hedulability 
riteria 
an be extendedin order to in
lude the probability bounds. Thus, a �exible view of s
hedulability
onditions 
an be inferred.The 
omposability 
riteria in 
ase of Fixed Priority (FP) s
heduling poli
ies 
anbe derived in a 
ompositional manner [Chokshi 2008, Huang 2009, Wandeler 2005℄.For the probabilisti
 
omponent system we 
an summarize the FP s
hedulability
ondition as: 82



4.4. Safety guaranteesTheorem 4.3.4 [FP Composability℄ A 
hain of FP 
omponents is 
omposable witha resour
e provisioning 
omponent that guarantees 〈βG,ΛG〉 amount of resour
e ifthe demand from the highest priority 
omponent 〈βA
1 ,Λ

A
1 〉 is su
h that:

∀ ∆ βA
1 (∆) ≤ βG(∆), ∧ ΛA

1 ≥ ΛG (4.10)With βA
1 the resour
e assumed by highest priority 
omponent 
omputed using Equa-tion (4.11) and Λ1 
omputed using Equation (4.6).Proof Suppose we have n tasks (abstra
ted by a 
omponent having an arrival 
urveand servi
e 
urve) in an appli
ation Γ. Without loss of generality, we assume thetasks to be an order set, a

ording to their priorities, where τi is of higher than τkfor k > i. Let {C1, C2, . . . , Ck, . . . Cn} be the 
omponents abstra
ting the orderedset of tasks, i.e. a servi
e 
hain. Suppose that 〈βl

1(∆),Λ1〉 be the lower servi
e
urve provided to the highest priority 
omponent (i.e. servi
e 
hain). The residuallower servi
e 
urve 〈β′
1(∆),Λ′

1〉 after s
heduling the highest priority 
omponent C1is 
omputed using equation 4.3 and equation 4.6. In FP s
heduling, the residualservi
e is used to serve the next 
omponent in the servi
e 
hain. Therefore, theassumed servi
e 〈βA
n ,Λn〉 of the 
omponent Cn abstra
ting the task τn must be atleast βA

n (∆) = αu
n(∆−Dn). Where Dn is the deadline 
onstraint for the n-th task.Thus, the residual servi
e 
urve β′

n−1 after serving n− 1 
omponents in the servi
e
hain must be at least equal to βA
n (∆).Therefore, the servi
e bounds βA

n−1(∆), βA
n−2(∆), . . . , βA

2 (∆), 
an be 
omputedsequentially. Knowing βA
k (∆), the bound β♯

k−1(∆) on βl
k−1 
an be derived su
h thatthe residual servi
e 
urve is guaranteed to be greater than or equal to βA

k (∆) if
βl
k−1(∆) is greater than or equal β♯

k−1(∆):
β♯
k−1(∆) = βA

k (∆ − λ) + αu
k−1(∆− λ) (4.11)where λ = sup{τ : βA

k (∆ − τ) = βA
k (∆)}. Furthermore, βl

k−1(∆) must be no lessthan αu
k−1(∆−Dk−1) to guarantee the 
onstraint Dk−1. Therefore

βA
k−1(∆) = max{β♯

k−1(∆), αu
k−1(∆ −Dk−1)}.By applying the equation 4.11 for k = n−1, n−2, . . . , 2, we 
an derive the lower ser-vi
e 
urve, i.e., βA

1 (∆). From, equation 4.6 and theorem 4.2.1 for assumed interfa
ewe have ΛA
k ≥ ΛA

k+1. Therefore, using lemma 4.3.2 we 
an say that if ΛG ≤ ΛA
1 thenguaranteed is stri
ter i.e. has lesser probability of de
reasing below the assumedservi
e.4.4 Safety guaranteesThe requirements on real-time guarantees is a mandatory 
hara
teristi
 for real-time 
omponents. In a mixed deterministi
-probabilisti
 
omponent system this isa 
hallenging task sin
e we have to provide a me
hanism for giving quantitatively83
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ΩFigure 4.8: Level-L s
hedulability of a 
omponent based on SIL and identi�ed using
Ω and Λ: lower values of L mean higher safety. Where x-axis and y-axis representarrival and servi
e bounds respe
tively.veri�able measure on 
omponents; this is a di�
ult task given the probabilisti
nature of some 
omponents in system. Therefore, we require a measure whi
h 
anquantify the degree to whi
h requirements are met. Sin
e, real-time system aremostly used in 
riti
al appli
ation like avioni
s, automotive et
., the safety seemsto be a reasonable measure.In order to provide measurable safety guarantees on the analysis we use SIL. Forexample, the SIL safety bound for a probabilisti
 
omponent may be determinedusing methods des
ribed in [Gulland 2004℄.De�nition [Safety measure℄ The safety measure is the probability value asso
iatedto the 
omponents, su
h that the measure gives the 
on�den
e with whi
h the
omponent 
an be expe
ted to perform its given fun
tion.The safety measure 
an be a threshold asso
iated to a 
omponent from the SILstandards, su
h that it guarantees that threshold (i.e probability bounds of all in-terfa
es are less or equal to SIL threshold). Consider a 
omponent Ci with 〈βi,Λi〉as an input servi
e 
urve and 〈αi,Ωi〉 as an input arrival 
urve. The probabilitybound for residual servi
e and arrival 
urves for a 
omponent Ci is given by The-orem 4.2.1, whi
h is Ωi + Λi − ΩiΛi. For su
h a 
omponent Ci the safety measurethrough the SIL 
an 
onvey the idea of a Level-L 
omposability and s
hedulability,with L de�ning the probability value for a threshold (i.e. safety-threshold requested84
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CPU 2CPU 1 Bus

Input OutputFigure 4.9: Case study: distributed system 
onsisting of two CPUs joined by a bus.or required) in a SIL standard (e.g. IEC61508).De�nition [Level-L Composability and S
hedulability℄ The Level-L 
omposabilityand s
hedulability is the Safety measure of the 
omposability and the s
hedulabilityof a 
omponent, whi
h gives the measure of the 
on�den
e with whi
h the system
an be expe
ted to be 
omposable and s
hedulable, where L is the probability valueof a threshold in a SIL standard.Therefore, the probability bounds (input and residual) of the 
omponent Ci, inorder to be Level-L 
omposabile and s
hedulable, translates into guaranteeing thatthe probability bounds are less than or equal to the level-L. Whi
h implies thelevel-L 
omponent Ci. Thus, for the 
omponent Ci with 〈βG
i ,Λi〉 and 〈βG

i ,Ωi〉 asguaranteed 
urves and Λi and Ωi less than equal to L in order to be 
lassi�ed asthe level L 
omponent (
omposable and s
hedulable) the probability bound of the
omponent's output interfa
e should be bounded as:
Ωi + Λi − ΩiΛi ≤ L. (4.12)The Figure 4.8 shows the regions of safety in a 
omposition, where ea
h axisrepresents the probability bounds of input servi
e and arrivals and the semi-
ir
ularregion gives the SIL level of the 
omponent after 
omposition. After 
omposing
omponents the residual probabilities may move to a higher SIL region for a 
om-ponent (depending on the values of input probability bounds), whi
h means lowerguarantees for the 
omponent or a lower s
hedulability. The reason being that thevalue of probability bound in
reases after 
omposition, that is what Theorem 4.2.1and Lemma 4.2.2 tell us.Example For a 
omponent C having input probability bound(for both input inter-fa
es) equal to Λ, the probability bound for the output interfa
e of the 
omponentshould be 2Λ − Λ2 − L ≤ 0, in order for C to be 
alled as Level-L SIL 
om-ponent. Conversely, we 
an say that the input probabilities should be bound as

Λ ≤ 1±
√
1− L for a 
omponent to be level-L 
omponent.85
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Figure 4.10: Case study: 
omponent ar
hite
ture representation with interfa
e andprobabilisti
 
urves applied. Where Ω1 = 2Ω − Ω2 and Ω2 = 3Ω − 3Ω2 + Ω3,
omputed using Theorem (4.2.2).Table 4.2: Input streams (tasks) spe
i�
ation of the distributed system.Stream Parameters D Task Chain

α1,1 Ω = {10−4 − 10−6} 48 T1 → c1 → T4

α2,1 p = 10, j = 0, d = 10 20 T2 → c2 → T5

α3,1 p = 10, j = 0, d = 10 23 T3 → c3 → T6Thus for a SIL-L 
omponent the input and output probability bounds should be lessthan or equal to L, i.e. the probability bounds should stay within the semi-
ir
ularregion of radius L. The 
omposability, s
hedulability a
quire a ri
her de�nitionwithin probabilisti
 s
enarios, as the probability bounds o�er di�erent degrees of
omposability, hen
e s
hedulability, among the 
omponents.4.5 Case studyTo analyze our 
ase study depi
ted in Figure 4.9, we use Modular Performan
eAnalysis (MPA) toolbox in MATLAB as user front-end, see [Wandeler 2006b℄.The 
ase study 
onsiders a distributed real-time system with 2 CPU's that 
om-muni
ate via shared bus, as in Figure 4.9. There are three input streams S1, S2and S3 pro
essed by 
hains of tasks. For example, the events of stream S1 are�rst pro
essed by task T1 and the resulting stream is then pro
essed by T4. The
ommuni
ation of the intermediate stream through the bus resour
e is modeled bya 
ommuni
ation tasks C1, C2 and C3. The tasks T1, T2 and T3 are mappedto CPU1 and are s
heduled a

ording to Fixed Priority Non-Preemptive (FPNP)s
heduling, with T1 having highest priority and T3 having lowest priority. Simi-larly, T4, T5 and T6 are mapped into CPU2 and s
heduled a

ording to FPNPs
heduling, with T4 having highest priority and T6 having lowest priority. The
omputational requirement of ea
h task is exa
tly 1 time unit. The bus uses TimeDivision Multiple A

ess (TDMA), where ea
h 
ommuni
ation task C1, C2 and C3is periodi
ally allo
ated the 
ommuni
ation resour
e for 5 time units. For detailedspe
i�
ation of system ar
hite
ture see Figure 4.10. The spe
i�
ation of the input86



4.5. Case study

0 5 10 15 20 25 30
0

5

10

15

20

25

30

∆

β
(∆

)

 

 

〈β
1,1

,Λ=0〉

〈β
1,2

,Λ=10
−6

〉

〈β
1,2

,Λ=10
−5

〉

〈β
1,2

,Λ=10
−4

〉

Figure 4.11: Input servi
e 
urve and residual servi
e 
urves for di�erent values of
Λ.event streams is given in Table 4.2.To generate AAC 
urve α1,1, for di�erent probability bounds, we use the Weibulldistribution and resulting 
urves are shown �gure 4.12. The generated 
urves arethen transformed to interfa
e with the MPA toolbox, using a wrapper whi
h takesinto a

ount the probability bounds.The servi
e 
urves β1,1, β2,1, β2,2, β2,2, β2,3, β3,1 are deterministi
 and thus haveprobability bound value of Λ = 0 and similarly α2,1 and α3,1 have probability boundvalue of Ω = 0. In this 
ase study we assume some of the arrivals with deterministi
bounds, while others with probabilisti
 bounds (with bounds Ω di�erent than 0) inorder to motivate the �exibility of analyzing mixed (probabilisti
 and deterministi
)
omponents using the framework. Nevertheless, our approa
h 
an e�e
tively workwith 
omplete deterministi
 or probabilisti
 systems. For the 
omponents re
eivingmixed inputs the output 
urves are 
omputed using MPA and the probability boundsare 
omputed using the Theorem 4.2.1.For example, 
omponent T1 re
eives deterministi
 β1,1 and AAC α1,1 with prob-ability bound Ω varying between 10−4− 10−6. The residual 
urves β1,2 is 
omputedusing MPA, as 
an be seen in Figure 4.11. It has a probability bound value 
omputedusing the Theorem 4.2.1.The �gure 4.13 shows the input and output 
urves (arrival and servi
e). Theimpa
t of ACC (α11) be
omes obvious after the initial events streams α21 and α31,whi
h are periodi
 and deterministi
, show a mu
h larger degree of non-determinism(upper and lower 
urves have a large distan
e) in the 
orresponding residual output87
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Figure 4.12: AAC 
urve α1,1, for di�erent probability bounds.streams .A 
loser look at the residual 
urves reveals the minimal interval between twosubsequent events is the time interval (minimum) when the upper 
urve a
quiresvalue 2. Similarly, the largest interval between two subsequent events is the timeinterval (minimum) when the lower 
urve has value 1. In our 
ase we �nd theintervals to be [1, -℄ for the residual events streams α24 and α34, whi
h are of 
oursemu
h larger varian
es than [10, 10℄ for the 
orresponding input event streams α21and α31 . The servi
e 
urves β11 and β31 represent the full servi
e available fromCPU1 and CPU2. β12, β13 and β14 show the servi
e available after �xed prioritys
heduler has allo
ated resour
es for tasks T1, T2 and T3, and it 
an be seen that notmu
h is left in terms of available servi
e. The 
hanges to probability bound a�e
tsthe α11 whi
h in turn produ
es an e�e
t of redu
ed available servi
e for su

essive
omponents. In Figure 4.11 it 
an be 
learly seen that as the 
riti
ality/safety of α1,1in
reases, the 
riti
ality of β1,2 also in
reases resulting in redu
ed servi
e o�eringsto the next 
omponent.Deadline miss Given an arrival 
urve and a servi
e 
urve as input to a 
ompo-nent, we 
an 
ompute the maximum delay for ea
h 
omponent. Then, the delays ofea
h 
omponent is 
omposed to �nd the end-to-end delay, to �nd the s
hedulabilityof task 
hain with respe
t to deadlines given in Table 4.2. By 
omparing the delaysand the deadlines (the maximum a�ordable delays) it is possible to 
on
lude aboutthe s
hedulability of the 
omponent or 
hain of 
omponents. For example, for task
hain 1 the end-to-end delay 
hanges from 36.4 to 49 as the 
riti
ality/safety level88
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k) on CPU2.Figure 4.13: Results of analysis for the given 
ase study.
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4.6. Summary
hanges from 10−4−10−6 for α1,1. As a result, it 
an be 
learly seen that for higher
riti
ality/safety-threshold the deadline requirements spe
i�ed for task 
hains 1, 2, 3are not met, as 
an be seen in Figure 4.14. Following similar reasoning (that ofend-to-end delay) it is possible to show how probability bound a�e
t ba
klog, as isshown is �gure 4.15. Therefore, it is interesting to su
h problems as we are now ableto evaluate the response of a 
omponent systems with mixed interfa
es (i.e. bothdeterministi
 and probabilisti
 event streams), with the di�erent 
riti
ality/safetyrequirements.4.6 SummaryIn this 
hapter we have developed an analysis framework for 
omponent-based real-time systems. We have �rst de�ned a probabilisti
 version of the 
omponent in-terfa
es based on bounds and probabilisti
 thresholds, through whi
h it be
omespossible to model both deterministi
 and probabilisti
 
omponents. The resultingfeasibility analysis is able to 
ope with mixed (probabilisti
 and deterministi
) 
om-ponent systems where probabilisti
 and deterministi
 
omponents intera
t. Theframework is �exible enough to deal with a) in
omplete spe
i�
ations, as it 
anarise early in the design 
y
le, b) with di�erent feasibility requirements: from hardreal-time, requiring deterministi
 bounds, to soft real-time where probabilisti
 guar-antees are enough, and 
) allows better dimensioning of the system as we do not putany pessimisti
 
onditions or assumptions of the resour
e demand or work arrivals.In future works, we intend to apply the proposal to large distributed appli
a-tions, su
h as automotive and avioni
 systems, and evaluate the out
omes in termsof 
omplexity, tightness and expressiveness with regards to the other existing for-malisms. Moreover, exploring other s
heduling poli
ies, than FP s
heduling, 
an betaken 
are of with similar reasoning. Also would like to extend this framework sothat it 
an handle and evaluate the o

urren
e of rare events, for instan
e throughlarge deviations or importan
e sampling.
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Chapter 5Summary
Contents5.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 945.1.1 Near Future . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95This thesis presents a s
hedulability analyses for automotive systems and em-bedded networks, with the aim to fa
ilitate 
ost-e�e
tive and reliable design andanalysis of automotive embedded systems. The framework is applied in the au-tomotive domain, so a to dimension the system better and to redu
e the risk ofdeadline failure due to hardware limitations and interferen
e due to probabilisti
tra�
. The analyses is shown to fa
ilitate safety-
riti
ality and �exible integrationof probabilisti
 tra�
 into system modeling.We began in Chapter 1 with the problem de�nition and the understanding ofanalyses requirements in the automotive embedded systems. We looked into thestate of the art and presented limitations in terms of la
k of modeling details su
h as,integrating hardware limitations, implementation overheads, safety and integrationof aperiodi
 arrivals. This allowed us to understand the key points that need tobe integrated into the analyses of the automotive embedded systems, whi
h 
ouldresult in the better system dimensioning of the system.In Chapter 2, we developed a new approa
h for integrating the aperiodi
 tra�
 inresponse time analysis. The main interest of the proposal is that the overestimationof the aperiodi
 tra�
 is kept to the minimum that still enables the system to meetsome 
hosen dependability requirements. The analysis developed 
an be pessimisti
espe
ially for lower priority frames when there is a large volume of aperiodi
 tra�
,as we have assumed worst-
ase arrival pro
ess when estimating the release timesfrom data tra
e. The estimated arrival pro
ess is burst in nature and will be seenmore by the lower priority frames. It is possible to be less pessimisti
 by modelingea
h aperiodi
 stream individually and integrate only the higher priority aperiodi
WAFs into the s
hedulability analysis. However, we believe that this more �ne-grained approa
h will not be always pra
ti
al sin
e it requires signi�
ant modelinge�orts and large quantity of data tra
es. We have provided few s
hemes whi
hwould minimize the pessimism due to priority issues and still respe
ting the safetythreshold while being as a

urate as possible (i.e., dis
ard as mu
h as possible ofthe lower priority aperiodi
 tra�
).In Chapter 3, we gave an analyti
al model for s
hedulability analysis for CAN
ontrollers when �nite 
opy-time of messages is 
onsidered and when the transmis-



Chapter 5. Summarysion bu�ers 
an not be aborted. The models developed in this 
hapter providesvery important understanding of the 
onsequen
es due ar
hite
tural limitations inCAN. We also derived a more realisti
 response time analysis in a typi
al 
ase where
ontrollers have three or more transmission bu�ers and the ability to 
an
el trans-mission requests is absent. As seen in 
ase study of se
tion 3.4 the implementationquality and the ar
hite
ture of the CAN devi
e driver 
an have 
onsequen
es on theWCRT of messages and we provide the some guidelines to avoid the same. Thisanalysis is of parti
ular interest to automotive se
tor where multiple Tier 1 suppli-ers provide ready to use ECUs in an automobile. And the la
k of knowledge at thetime of integration, about the limitations of CAN 
ontroller used or devi
e driverprovided by tier 1 suppliers, 
an have serious 
onsequen
es.In 
hapter 4, we developed an analysis framework for 
omponent-based real-timesystems. We �rst de�ned a probabilisti
 version of the 
omponent interfa
es basedon bounds and probabilisti
 thresholds, through whi
h it be
omes possible to modelboth deterministi
 and probabilisti
 
omponents. The resulting feasibility analysisis able to 
ope with a systems with both probabilisti
 and deterministi
 arrivals.The framework is �exible enough to deal with a) in
omplete spe
i�
ations, as it 
anarise early in the design 
y
le, and b) with di�erent feasibility requirements: fromhard real-time, requiring deterministi
 bounds, to soft real-time where probabilisti
guarantees are enough.5.1 Future workIn 
hapter 2, the results hold under the assumption that the aperiodi
 inter-arrivalsare independent and identi
ally distributed. In pra
ti
e, this assumption 
an be eas-ily tested using statisti
al tests su
h as the BDS test (Bro
k, De
hert, S
heinkman)statisti
s but it is 
lear that it may not hold for all kinds of systems and workloads.Future work should be devoted to studies aimed at determining a s
hedulabilityanalysis, in presen
e of non-i.i.d aperiodi
 load. It would be also interesting tostudy, for instan
e by simulation, how departure from the i.i.d. property impa
tsthe a

ura
y of the results. Furthermore, it is interesting to in
lude the 
orner 
asesin tailed distributions, perhaps through theory of large deviation.In 
hapter 3, As seen in the 
ase-study of se
tion 3.6 the 
hoi
e of priorities has ane�e
t su
h that the additional delay gets redu
ed,therefore as a future work it wouldbe very interesting to study the priority mapping s
hemes whi
h 
ould redu
e theamount of additional delay in 
ase a message su�ers from priority inversion. Also,we will study the 
hoi
e of o�sets on ECUs so that messages are not released at thevery same moment, to redu
e the 
han
es of priority inversion in a CAN 
ontroller.Moreover, the analysis should be extended for an arbitrary deadline 
ase, with thee�e
ts of 
opy-time 
onsidered.In Chapter 4, we intend to apply the proposal to large distributed appli
ations,su
h as automotive and avioni
 systems, and evaluate the out
omes in terms of 
om-plexity, tightness and expressiveness with regards to the other existing formalisms.94



5.1. Future workMoreover, exploring other s
heduling poli
ies should be taken 
are of, with the samereasoning. We would like to extend this framework so that it 
an handle and evaluatethe o

urren
e of rare events, for instan
e through large deviations or importan
esampling. It would be interesting to apply this framework to a real 
ase-study andthen demonstrate its expressiveness.5.1.1 Near FutureIn near future I would like to a
hieve following milestones for this work:
• Develop a probabilisti
 model of aperiodi
 tra�
 arrivals, when we have taileddistributions and non-i.i.d 
ases.
• Develop a priority assignment algorithm for the system with probabilisti
 anddeterministi
 arrivals, e.g. based on expe
tations.
• Develop a robust priority assignment algorithm that takes into a

ountpriority-inversion and resulting additional delay.
• Develop a Matlab based modeling and analyses toolbox for mixed (probabilis-ti
 and deterministi
) 
omponent system.
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