
EDF Scheduling
for

Identical Multiprocessor Systems

Marko Bertogna

University of Modena, Italy

June 19th, 2012, Luxembourg

As Moore’s law goes on…

� Number of transistor/chip doubles every 18 to 24 mm

June 19th, 2012, Luxembourg

…heating becomes a problem

0,1

1

10

100

1000

71 74 78 85 92 00 04 08

Power

4004
8008

8080
8085

8086
286

386
486

Pentium
P1

P2

P4

Pentium Tejas
cancelled!

P3

Hot-plate

Nuclear
Reactor

STOP !!!

Year

Power density (W/cm2)

� P � V � f: Clock speed limited to less than 4 GHz

June 19th, 2012, Luxembourg

Technology trends

� Reduced gate sizes

� Higher frequencies allowed

� Larger number of transistors

BUT

� Physical limits of semiconductor-based microelectronics

� Larger dynamic power consumed

� Leakage current becomes important

� Higher density of transistors

June 19th, 2012, Luxembourg

Intel’s timeline

Year Processor
Manufacturing

Technology
Frequency

Number of
transistors

1971 4004 10 µm 108 kHz 2.300
1972 8008 10 µm 800 kHz 3.500
1974 8080 6 µm 2 MHz 4.500
1978 8086 3 µm 5 MHz 29.000
1979 8088 3 µm 5 MHz 29.000
1982 286 1,5 µm 6 MHz 134.000
1985 386 1,5 µm 16 MHz 275.000
1989 486 1 µm 25 MHz 1.200.000
1993 Pentium 0,8 µm 66 MHz 3.100.000
1995 Pentium Pro 0,6 µm 200 MHz 5.500.000
1997 Pentium II 0,25 µm 300 MHz 7.500.000
1999 Pentium III 0,18 µm 500 MHz 9.500.000
2000 Pentium 4 0,18 µm 1,5 GHz 42.000.000
2002 Pentium M 90 nm 1,7 GHz 55.000.000
2005 Pentium D 65 nm 3,2 GHz 291.000.000
2006 Core 2 Duo 65 nm 2,93 GHz 291.000.000
2007 Core 2 Quad 65 nm 2,66 GHz 582.000.000
2008 Core 2 Quad X 45 nm 3 GHz 820.000.000
2010 Core i3, i5, i7 32 nm 3,33 GHz 1.160.000.000
2012 Core i5, i7 22 nm 3,4 GHz 2.270.000.000
2014 ? 16nm ?

June 19th, 2012, Luxembourg

Power, frequency and voltage

�

P = A C V2 f + V Ileak

Dynamic power Static power (important below 100nm)

There is no way out for classic frequency
scaling on single cores systems!

June 19th, 2012, Luxembourg

Keeping Moore’s law alive

� Exploit the immense number of transistors in
other ways

� Reduce gate sizes maintaining the frequency
sufficiently low

� Use a higher number of slower logic gates

� In other words:

Switch to Multicore Systems!

June 19th, 2012, Luxembourg

How many cores in the future?

� Patterson & Hennessy: “number of cores will
double every 18 months, while power, clock
frequency and costs will remain constant”

� More likely to be application dependent

� Many trade-offs

� Technology limits

� Transistor density

� Amdahl’s law

June 19th, 2012, Luxembourg

Amdahl’s law

� The total speedup that can be obtained
increasing the number of processors is

Parallel portion of application

Number of processors/cores

June 19th, 2012, Luxembourg

Amdahl’s law

� The total speedup that can be obtained
increasing the number of processors is

� In practice, performance/price falls rapidly as
N is increased, even with a small (1 − P)
� E.g.: P = 90% � (1 − P) = 10% � speedup < 10

June 19th, 2012, Luxembourg

Amdahl’s law

June 19th, 2012, Luxembourg

Consequences

� Parallel computing is likely to be useful for

� Small/medium number of processors, or

� Embarrassingly parallel problems (P � 1)
� Large number of parallel tasks with no dependencies

� E.g., brute-force search in cryptography, 3D projection,
GPU handled problems, etc.

� 1 core @ 4 GHz = 2 cores @ 2 GHz

� Memory, bus and I/O bottlenecks impose
further constraints

Real-time schedulability on identical
multiprocessor systems

June 19th, 2012, Luxembourg

System model

� Platform with m identical processors

� Task set τ with n independent sporadic tasks τi

� Period or minimum inter-arrival time Ti

� Worst-case execution time Ci

� Deadline Di

� Utilization Ui=Ci/Ti, density λi=Ci/min(Di,Ti)

June 19th, 2012, Luxembourg

CPU1

CPU2

Possible problems

� Feasibility problem

� Run-time scheduling problem

� Schedulability problem

τ1

τ2τ3

τ4τ5

?

CPU3

w.r.t. a given task model

June 19th, 2012, Luxembourg

Uniprocessor RT Systems

� Solid theory (starting from the 70s)

� Optimal schedulers

� Tight schedulability tests for different task
models

� Shared resource protocols

� Bandwidth reservation schemes

� Hierarchical schedulers

� RTOS support

June 19th, 2012, Luxembourg

Single processor EDF

� Optimal

� if a set of jobs is feasible, than it can be
successfully scheduled with EDF

� Bounded number of preemptions

� Efficient implementations

� Exact feasibility conditions

� Linear test for implicit deadlines: Utot ≤ 1

� Pseudo-polynomial test for constrained and
arbitrary deadlines [Baruah et al. 90]

June 19th, 2012, Luxembourg

Muliprocessors are difficult

� “The simple fact that a task can use only one

processor even when several processors are free at
the same time adds a surprising amount of difficulty
to the scheduling of multiple processors” [Liu’69]

CPU1

CPU2

CPU3

June 19th, 2012, Luxembourg

Multiprocessor RT Systems

� Many NP-hard problems

� Few optimality results

� Heuristic approaches

� Simplified task models

� Only sufficient schedulability tests

� Limited RTOS support

June 19th, 2012, Luxembourg

Global vs partitioned
scheduling

� Single system-wide queue instead of multiple
per-processor queues:

CPU1

CPU2

CPU3

τ1

τ2

τ3

τ2 τ1τ3τ4τ5

CPU1

CPU2

CPU3

τ1

τ2τ3

τ1τ4τ5

τ2

Global scheduling Partitioned approach

June 19th, 2012, Luxembourg

Partitioned scheduling

� The scheduling problem reduces to:

Bin-packing
problem

Uniprocessor
scheduling
problem

+

NP-hard in the
strong sense

Various heuristics used:
FF, NF, BF, FFDU, BFDD, etc.

Well known

EDF
Utot ≤ 1

τ2

τ1 τ3
τ4

τ5

RM
(RTA)

...

June 19th, 2012, Luxembourg

Partitioned schedulability

� [Lopez et al.] EDF-FF gives the best utilization
bound among all possible partitioning
methods:

� A refined bound, when Umax is the maximum
utilization among all tasks, is:

June 19th, 2012, Luxembourg

Partitioned schedulability

m

June 19th, 2012, Luxembourg

Global scheduling

� The m highest priority ready jobs are always
scheduled

� Work-conserving scheduler

� No processor is ever idled when a task is ready to
execute.

CPU1

CPU2

CPU3

τ1

τ2

τ3

τ2 τ1τ3τ4τ5

June 19th, 2012, Luxembourg

Global scheduling properties

Load automatically balanced

Easier re-scheduling (dynamic loads, selective
shutdown, etc.)

Lower average response time (see queueing theory)

More efficient reclaiming and overload management

Smaller number of preemptions

Migration cost: can be mitigated by proper HW (e.g.,
MPCore’s Direct Data Intervention)

Few schedulability tests � Further research needed

o Global and partitioned approaches are incomparable

June 19th, 2012, Luxembourg

Global scheduling problem

� Optimal algorithms (Utot ≤ m) are known only for
implicit deadline systems:

� PFair (PF, PD, PD2), Boundary-Fair (DP-Wrap,
LLREF, BF, …), EKG, RUN, U-EDF [ECRTS’12]

� Preemption and synchronization issues

� No optimal scheduler known for more general
task models

� Classic schedulers (e.g., EDF) are not optimal

� Dhall’s effect

June 19th, 2012, Luxembourg

T

Dhall’s effect

Example: m processors, n=m+1 tasks, Di = Ti

τ1 ,…, τm = (1,T-1) τm+1 = (T,T)

EDF can fail at very low utilizations

DEADLINE

MISS

m light tasks
1 heavy task

Utot�1

June 19th, 2012, Luxembourg

Beyond implicit deadlines

� No optimal algorithm is known for
constrained or arbitrary deadline systems

� No optimal on-line algorithm is possible for
arbitrary collection of jobs [Leung and
Whitehead]

� Optimal algorithms for sporadic task system
with constrained deadlines require
clairvoyance [Fisher et al’09]

June 19th, 2012, Luxembourg

Global EDF scheduling

� Simple implementation

� Intuitive priority assignment

� Reduced scheduling overhead

� Small number of preemptions/migrations

� Bounded tardiness (as long as Utot ≤ m)

� Good performance on average

� Many sufficient schedulability tests

� But most of them are far from tightness

� Exact tests are intractable

June 19th, 2012, Luxembourg

Global EDF: main results

Many sufficient schedulability tests:

� GFB (RTSJ’01)

� BAK (RTSS’03 � TPDS’05)

� BAR (RTSS’07)

� LOAD (ECRTS’07,ECRTS’08,RTSJ’08 � RTSJ’09)

� BCL (ECRTS’05 � TPDS’09)

� RTA (RTSS’07)

� FF-DBF (ECRTS’09)

Most tests are incomparable

June 19th, 2012, Luxembourg

Critical instant

� A particular configuration of releases that leads to
the largest possible response time of a task.

� Possible to derive exact schedulability tests
analyzing just the critical instant situation.

� Uniprocessor FP and EDF: a critical instant is when

� all tasks arrive synchronously

� all jobs are released as soon as permitted

June 19th, 2012, Luxembourg

Multiprocessor anomaly

� Synchronous periodic arrival of tasks is not a
critical instant for multiprocessors:

τ1 = (1,1,2)
τ2 = (1,1,3)
τ3 = (5,6,6)

Synchronous periodic
situation

Second job of τ2

delayed by one unit

from [Bar07]

Need to find pessimistic situations to
derive sufficient schedulability tests

June 19th, 2012, Luxembourg

Problem window

L

Di

Ck

Ti

εi

τk

τi

Dk

Ci

Carry-in

First missed deadline

t

June 19th, 2012, Luxembourg

Adopted techniques

� Consider the interference on the problem job

� Bound the interference with the workload

� Use an upper bound on the workload

� Existing schedulability tests differ in

� Problem window selection: L

� Carry-in bound εi in the considered window

� Amount of each contribution (BAK, LOAD, BCL, RTA)

� Number of carry-in contributions (BAR, LOAD)

� Total amount of all contributions (FF-DBF, GFB)

June 19th, 2012, Luxembourg

Introducing the interference












= ∑

m

RI
RI k

i
k

kk

)(
)(

Ik = Total interference suffered by task τk

Ik
i = Interference of task τi on task τk








+=+= ∑
≠ki

k
i
kkkkkk RI

m
CRICR)(

1
)(

ττττk
ττττk

ττττkCPU1

CPU2

CPU3

rk
rk+Rk

Ik
2

Ik
1

Ik
2

Ik
3Ik

4

Ik
5

Ik
6

Ik
8

Ik
5

Ik
3

Ik
7

Ik
3

June 19th, 2012, Luxembourg

Limiting the interference

ττττk
ττττk

ττττkCPU1

CPU2

CPU3

rk
rk+Rk

Ik
2

Ik
1

Ik
2

Ik
3Ik

4

Ik
5

Ik
6

Ik
8

Ik
5

Ik
3

Ik
7

Ik
3

It is sufficient to consider at most the portion (Rk-Ck+1)
of each term Ii

k in the sum

1)()(+−<≤ kkkkk
i
k CRRIRI








 +−+← ∑
≠ki

kkk
i
kkk CRRI

m
CR)1),(min(

1
It can be proved that WCRTk is given by the fixed point of:

June 19th, 2012, Luxembourg

Bounding the interference

Exactly computing the interference is complex

Pessimistic assumptions:

1. Bound the interference of a task with the
workload:

2. Use an upper bound on the workload.

)()(kik
i
k RWRI ≤

June 19th, 2012, Luxembourg

Bounding the workload

Consider a situation in which:
� The first job executes as close as possible to its deadline

� Successive jobs execute as soon as possible

)()()()(LCLNLwLW iiiii ε+=≤








 −+=
i

ii
i T

CDL
LN)(

))(,min()(iiiiiii TLNCDLCL −−+=ε
where:

Ci
iτ

L

Di

Ci Ci Ci

Ti εi

(# jobs excluded the last one)

(last job)

June 19th, 2012, Luxembourg

Bounding the workload

Consider a situation in which:
� The first job executes as close as possible to its deadline

� Successive jobs execute as soon as possible

Ci
iτ

L

Di

Ci Ci Ci

Ti εi








 +−+← ∑
≠ki

kkkikk CRRw
m

CR)1),(min(
1

An upper bound on the WCRT of task k is given by the
fixed point of Rk in the iteration:

June 19th, 2012, Luxembourg

Interference refinement

The computed bound Ri can be used to improve
the interference estimation

where:







 −+=
i

ii
ii T

CRL
RLN),(

)),(,min(),(iiiiiiiii TRLNCRLCRL −−+=ε

Ciiτ
L

Di

Ci Ci Ci

TiRi

),(),(),()(iiiiiiii RLCRLNRLwLW ε+=≤

June 19th, 2012, Luxembourg

Iterative schedulability test

1. All response times Ri initialized to Di

2. Compute response time bound for tasks
1,…,n

� if smaller than old value � update Ri

� If Ri > Di, mark as temporarily not schedulable

3. If all tasks have Ri ≤ Di � return success

4. If no response time has been updated for
tasks 1,…,n � return fail

5. Otherwise, return to point 2

June 19th, 2012, Luxembourg

Considerations

� Very good performances

� Allows finding the largest number of EDF
schedulable task sets for various load distributions

� Pseudo-polynomial complexity

� A simpler version takes O(n2)

� Fast average behavior

June 19th, 2012, Luxembourg

Conclusions

� Real-Time systems need to deal with the
multicore revolution

� Multiprocessor Real-Time systems are “difficult”

� No critical instant

� Optimality often needs clairvoyance

� Many sufficient schedulability tests

� Often far from tight conditions

� Exact tests are intractable

� Further research is needed!

June 19th, 2012, Luxembourg

marko.bertogna@unimore.it

