Pushing the limits of CAN -Scheduling frames with offsets provides a major performance boost

Nicolas NAVET INRIA / RealTime-at-Work

http://www.loria.fr/~nnavet http://www.realtime-at-work.com Nicolas.Navet@loria.fr ERTS – 30/01/2008

Joint work with Mathieu GRENIER and Lionel HAVET

In-vehicle networking : will CAN be able to keep up the pace?

- Typically max. bus load is set to 35%
- Not enough wrt to short/medium term bandwidth needs ...
 - Solution 1: multiple CAN networks ... but gateways induce heavy overhead
 - Solution 2: switch to FlexRay ... expensive for bandwidth alone
 - Solution 3: optimize the scheduling of CAN frame .. Offsets provide a solution to make CAN predictable at higher network load (≥60%)

Scheduling frames with offsets ?!

Principle: desynchronize transmissions to avoid load peaks

Algorithms to decide offsets are based on arithmetical properties of the periods and size of the frame

RealTime-at-Work RIA 3

System model (2/2)

The offset of a message stream is the time at which the transmission request of the first frame is issued

- Complexity: best choosing the offsets is exponential in the task periods → approximate solutions
- Middleware task imposes a certain granularity
- Without ECU synchronisation, offsets are local to ECUs

RealTime-at-Work INRIA 5

RealTime-at-Work RIA 6

Offsets Algorithm (1/3)

Ideas:

- assign offsets in the order of the transmission frequencies
- release of the first frame is as far as possible from adjacent frames
- identify "least loaded interval"
- Ex: $f_1 = (T_1 = 10), f_2 = (T_2 = 20), f_3(T_3 = 20)$

Time	0	2	4	6	8	10	12	14	16	18
Frame			f _{1,1}		f _{2,1}			f _{1,2}		f _{3,1}

RealTime-at-Work

RINRIA

Offsets Algorithm applied on a typical body network

Offsets Algorithm (3/3)

- Low complexity and efficient as is but further improvements possible:
 - add frame(s) / ECU(s) to an existing design
 - user defined criteria : optimize last 10 frames, a specific frame,
 - take into account priorities

 optimization algorithms: tabu search, hill climbing, genetic algorithms

Efficiency of offsets : some insight (1/2)

> Almost a straight line, suggests that our algorithm is near-optimal

RealTime-at-Work RIA

10

Efficiency of offsets : some insight (2/2)

➤ A larger workload waiting for transmission implies larger response times for the low priority frames ..

RealTime-at-Work RIN RIA 11

Computing worst-case response times with offsets

Computing frame worst-case response time with offsets

WCRT : State of the art

Scientific literature:

- Complexity is exponential
- No schedulability analysis with offsets in the distributed non-preemptive case
- Offsets in the preemptive case : not suited for > 10-20 tasks
- WCRT without offsets: infinite number of Tx buffers and no queue at the microcontroller level

Our software: NETCAR-Analyzer

NETCAR-Analyzer : developed at INRIA, then RealTime-at-Work

15

NETCAR-Analyzer : an overview

Worst-case response time on CAN with and without offsets

Proven near-optimal offsets assignments with userdefined frames)

 Exhibit the situations leading to the worst-case (results can be checked by simulations/testing)

Enable to dimension transmission/reception buffers
 (RAM)

Handle both FIFO and prioritized ECUs

✓ Fast multi-core implementation (<1mn for 100 frames)</p>

✓ Industrial use since December 2006

Performance evaluation :

- Experimental Setup
- WCRT of the frames wrt random offsets and lower bound
- WCRT reduction ratio for chassis and body networks
- Load increase : add new ECUs / add more traffic

Experimental Setup

Body and chassis networks

Network	#ECUs	#Messages	Bandwidth	Frame periods
Body	15-20	≈ 70	$125 \mathrm{Kbit/s}$	$50 \mathrm{ms}$ - $2 \mathrm{s}$
Chassis	5-15	≈ 60	$500 { m Kbit/s}$	$10 \mathrm{ms}$ - $1 \mathrm{s}$

With / without load concentration: one ECU generates 30% of the load

 Set of frames generated with NETCARBENCH (GPL-licenced)

Offsets in practice : large response time improvements (1/2)

19

WCRT Reduction Ratio

Body Networks

Chassis Networks

Results are even better with loaded stations

Offsets allow higher network loads

■ Typically: WCRT at 60% with offsets ≈ WCRT at 30% without offsets

RealTime-at-Work RIA

Partial offset usage

RealTime-at-Work RIA

22

Conclusions

Offsets provide an cost-effective short-term solution to postpone multiple CANs and FlexRay
 Tradeoff between Event and Time Triggered

Questions, feedback? please contact me at <u>Nicolas.Navet@loria.fr</u>

