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Abstract—As the demand for computing power is quickly
increasing in the automotive domain, car manufacturers and
tier-one suppliers are gradually introducing multicore ECUs in
their electronic architectures. Additionally, these multicore ECUs
offer new features such as higher levels of parallelism which
ease the respect of the safety requirements such as the ISO
26262 and the implementation of other automotive use-cases.
These new features involve also more complexity in the design,
development and verification of the software applications. Hence,
OEMs and suppliers will require new tools and methodologies
for deployment and validation. In this paper, we review the
operating system protection mechanisms (e.g., memory, timing),
needed for multi-source software in a safety critical context,
with a clear focus on AUTOSAR OS which is the upcoming de-
facto standard for automotive ECUs. Then, we identify the main
use-cases for automotive multicore ECUs and present solutions
for the scheduling in a context where there are hundreds of
software components and only a few OS tasks are allowed.
Finally, experiments aim to assess the load level that can be
reached on realistic case-studies.

I. INTRODUCTION

Multi-source software running on the same ECU (Electronic
Control Unit) is becoming increasingly widespread in the
automotive industry. One of the main reasons being that
OEMs want to reduce the number of ECUs which grew
up above 70 for high-end cars. A major outcome of the
AUTOSAR initiative, and more specifically of its operating
system, is indeed to help OEMs shift from the “one function
per ECU” paradigm to more centralized architecture designs
by providing appropriate protection mechanisms.

Another crucial evolution in the automotive industry is that
chip manufacturers are reaching the point where they can
no longer cost-effectively meet the increasing performance
requirements through frequency scaling alone. This is one
reason why multicore ECUs are being gradually introduced in
the automotive domain. Those multicore platforms offer also
additional benefits, such as higher level of parallelism allowing
for more segregation, which may help to meet the upcoming
ISO 26262. Now, the challenge is to adapt existing design
methods to the new multicore constraints. The scheduling of
the software components is one of the key issues in that regard
and it has to be revamped.

Introduction of multi-source and multicore will induce
drastic changes in the software architecture of automotive
ECUs. The aim of this paper is to provide a review of OS

protection mechanisms, needed for multi-source software in
a safety critical context, with a clear focus on AUTOSAR
OS which is the upcoming de-facto standard for automotive
ECUs. We then identify the main use cases for multicore ECUs
and eventually focus on one of them. Precisely, we address
the problem of scheduling numerous elementary software
components, called runnables, on a limited set of identical
cores. In the context of an automotive design, we assume
the use of the static task partitioning scheme which provides
simplicity and better predictability for the ECU designers by
comparison with a global scheduling approach. We show how
the global scheduling problem can be addressed as two sub-
problems: partitioning the set of runnables and building the
schedule on each core. Then, we prove that each of the sub-
problems cannot be solved optimally due to their algorithmic
complexity. We then present low complexity heuristics to
partition and build a schedule of the runnable set on each core
before discussing schedulability verification methods. Finally,
we assess the performance of our approach on a case-study.

II. AUTOMOTIVE OS ROBUSTNESS

It is of major interest for car manufacturers to be able to
re-use software components, not to mention the corresponding
calibration parameters, in order to save time and reduce costs.
On the other hand, car manufacturers, and ECU integrators
at large, may want to be able to select software components
on the market according to the best performance/cost ratio
(e.g., AUTOSAR basic software modules). Both re-use and
multi-source software are only possible if the operating sys-
tem provides protection mechanisms to ensure segregation
between software components and fault-confinement when
needed (see [1] for a review of the AUTOSAR OS protection
mechanisms). In addition, these mechanisms will enable the
ECU integrator to accept responsibility because it is ensured
that externally supplied software modules will not jeopardize
the functioning of the whole ECU.

It has been decided by the automotive industry that OS
protection mechanisms, and more generally the whole exe-
cution platform, would be outside the scope of competition
and thus could be standardized, which is being done in the
AUTOSAR consortium. These mechanisms protects against
resource confiscation (memory, CPU, drivers, etc) and misuse
of OS services (forbidden service calls, or calls issued in



wrong contexts, etc). AUTOSAR OS defines 4 scalability
classes, with different features requirements, to meet a wide
range of needs at the best cost.

AUTOSAR introduces the concept of OS-application which
is a functional unit made of OS-objects (tasks, Interrupt
Service Routine, schedule table, alarm, etc). OS-applications
can be trusted or non-trusted. In the former case, the code
of the OS-application is executed in privileged mode and has
unrestricted access to the OS API and hardware resources.
Besides, trusted OS-applications can provide so-called trusted
functions that can be called in a non-trusted context. Non-
trusted applications do not have these capabilities, neither can
they be executed without the OS protection mechanisms set at
run-time.

The scope of protection is, depending on the situation, the
OS-application, a task within an application or an ISR that
is under the control of the OS. However, there is no specific
protection at the runnable level. When a protection error is
detected, the OS calls a system-wide ProtectionHook that can
terminate the faulty task or the OS-application, then optionally
restart the OS-application, reboot the ECU or call an OS-
application specific ErrorHook.

A. Memory protection

AUTOSAR specifies a basic stack monitoring mechanism
that does not require an MPU (Memory Protection Unit). This
best-effort scheme is intended to detect an abnormal usage of
the stack by a task. However, verifications are performed only
at context-switches which might be too late in many cases.

For microcontrollers equipped with an MPU, there are more
powerful protection mechanisms that are mandatory in the
highest scability classes (3 and 4). The principle is that only
write protection is imposed while read and execution protec-
tions are optional. The stack of a task/ISR can be protected at
the OS-application level or at the task level (i.e., prevent other
tasks of the same OS-application to manipulate the stack),
the same holds true for data sections. Code sections either
belongs to a specific OS-application or are shared between
OS-applications.

There are two main strategies for segregating software
modules. The first is to use distinct OS-applications but this
is not always possible since the standard merely requires the
availability of two OS-applications for the time being. The
second strategy is to implement the modules as distinct tasks
of the same OS-application with the drawback that some OS-
objects (such as alarms, peripherals, etc) are not, or weakly,
protected.

B. Temporal protection

AUTOSAR, in its highest scalability class, offers advanced
timing protection mechanisms that require the availability of
a hardware counter. The execution time protection guarantees
that a task or an ISR will not be executed for more than a
statically configured execution budget. Locking time protection
ensures that a task/ISR does not hold resources or disable
interrupts for more than its lock budget. Finally, interarrival

time protection guarantees that a task/ISR will not be activated
or resumed more often than its time-frame.

C. Service protection

Service protection means that there is a protection against
incorrect OS system calls. For instance, parameters might
be wrong, or the call is issued in an incorrect context (e.g,
terminateTask() within an ISR) or the issuer may not have
enough rights to call a certain service (e.g., shutdownOS()) or
to manipulate a certain resource.

It should be pointed out that virtualization technologies
offer other possibilities, complementary to the ones offered
by Autosar, to ensure efficient protection between software
components. While virtualization has been used for a long
time in the consumer electronics or in the avionics field, the
automotive industry is only starting to consider its use. The
reader interested in virtualization in an automotive context may
consult [2].

III. SCHEDULING OF SOFTWARE COMPONENTS - FROM
MONOCORE ECUS TO MULTICORE ECUS

In this section, the main use cases for multicore ECUs that
we can foresee are described, we then discuss the way we
envision multicore scheduling in automotive ECUs.

A. Main use cases for multicore ECUs

There exist very distinct hardware and software architec-
tures for multicore ECU platforms. As far as hardware is
concerned, suppliers envision various multicore architectures:
identical cores, heterogeneous cores with different operating
speeds and instruction sets and, possibly, various I/O and
memory structures. However, chip manufacturers have been
producing multiprocessor cores with identical cores for the PC
industry for years which may influence the automotive industry
as those architectures are proven in use and are likely to be
cheaper thanks to mass production. In this section, we discuss
the main use cases for a multicore ECU and implementation
solutions that would properly fit them.

1) Decreasing the complexity of the architecture : The
higher level of performance provided by multicore architec-
tures allows to simplify in-vehicle architectures by executing
on multiple cores the software previously run on multiple
ECUs. This possible evolution towards more centralized ar-
chitectures is also an opportunity for OEMs to decrease the
number of network connections and buses. This means that
parts of the complexity will be transferred from the E/E
architecture to the hardware and software architecture of the
ECUs. Furthermore, static cyclic scheduling allows to easily
add functions/runnables on an existing ECU. However, in
practice, important architectural shifts are hindered by the
carry-over of ECUs and existing sub-networks which is widely
used by generalist car manufacturers. The extent to which
more centralized architectures will be adopted remains thus
unsure.



2) Dealing with resource demanding applications: Mul-
ticore ECUs bring major improvements for some applica-
tions requiring high performance such as high-end engine
controllers and real-time image processing applications. This
use case does not require any particular hardware feature
and identical cores are more likely to be used to meet high
performance requirements. In these applications, one takes
advantage of the possibility to parallelize jobs on multicore
architecture. Typically, the same application can be executed
on different cores to process different parts of a same data set
in a parallel manner.

3) Improving the safety: Multicore architectures provide
efficient ways to implement safety mechanisms. We iden-
tify three main methods to improve safety taking advantage
of the multicore architecture. The first method consists in
segregating trusted code and non trusted code on different
cores. For instance, a car manufacturer may consider the
software provided by suppliers as non-trusted code, or an
ECU integrator may consider the car manufacturer’s code as
non-trusted for responsibility reasons. This isolation between
software components requires strong protection mechanisms
for memory, CPU time and the other shared resources, as they
are now provided by Autosar OS, or, as they could be provided
by virtual machines [2].

The second method consists in executing safety critical
software components in a redundant manner, possibly with a
system of vote choosing the output given by a majority of the
duplicated runnables. It is possible to duplicate the whole set
of software components allocated to a core on another core,
or only the most critical runnables in order to find a trade-
off between safety and computational requirements. To further
increase the safety, N-Version Programming (NVP) can be
employed: multiple versions of the same runnables, developed
by different suppliers, are executed in parallel, instead of
executing copies of the same implementation.

Finally, multicore architectures enable easier implementa-
tion of function monitoring. In this case, the proper execution
of some functions on one core can be monitored from another
core. It should be noted that higher levels of safety can be
achieved by the usage of several distinct microprocessors in-
stead of several distinct cores on the same microprocessor such
as done in the E-Gas framework for engine controllers, though
those kind of solutions are more expensive to implement.

4) Dedicated use of cores: Finally, another important use
case taking advantage of a multicore ECU consists in using
a core to handle specific low-level services. In the context of
Autosar OS, a core could serve as a dedicated I/O controller,
execute the communication stack or the whole set of basic
software modules, while some other core would only take
care of applicative level software components. For instance,
a core can be used to run the time-triggered application while
a second core handles the interruptions as well as the event-
triggered runnables such as done in the PharOS project[3] on
a SX12E micro-controller.

B. Static cyclic and fixed priority scheduling

Static cyclic scheduling of elementary software components,
or runnables, is common because they are usually many more
runnables that the maximum number of tasks allowed by auto-
motive operating systems such as OSEK/VDX or AUTOSAR
OS. For this reason, runnables must be grouped together and
scheduled within a sequencer task (also called dispatcher task).
In this paper, we focus on how to schedule large runnable sets
on multicore platforms using a static partitioning approach.
Indeed, the static task partitioning scheme is very likely to be
adopted at least in a first step because it is conceptually simple
and provides a better predictability for the ECU designers
by comparison with a global scheduling approach. One aims
to develop practical algorithms, whose performances can be
guaranteed, to build the dispatcher tasks on each core and to
schedule the runnables within these dispatcher tasks so as to
respect sampling constraints and, as far as possible, uniformize
the CPU load over time. This latter objective is of course
important to minimize the hardware cost and to facilitate the
addition of new functions, as typically done in the incremental
design process of OEMs.

C. Partitioning scheduling scheme

In a multicore system, the tasks are either statically allocated
to the cores or they can be distributed dynamically at run-
time to balance the workload or migrate functions to increase
availability. The later approach involves complex task and
resource interactions which are difficult to predict and validate.
For this reason, approaches relying on static allocation (i.e.,
partitionning) and deterministic mechanisms such as periodic
cyclic scheduling are more likely to be used in the automotive
context and this is the option taken within the AUTOSAR
consortium. Scheduling tasks on a multi-processor systems
under the static partitioning approach has been well studied for
a long time, see for instance [4] and [5], [6], [7], [8]. However,
the works we are aware of deal with online algorithms such as
FPP or EDF, and do not consider the static cyclic scheduling
of tasks. The configuration algorithms developed in this paper
are closely related to [9] (mono-processor scheduling of tasks
with offsets) and [10] (scheduling of frames with offsets) but it
is applied to multi-core and goes beyond as we provide lower-
bounds on the performances. As the problem is of practical
interest in the industry, there are in-house tools at the OEMs as
well as commercial tools, such as RTaW NETCAR-ECU [11],
that have been developed for configuring the scheduling.
However, the proprietary algorithms used in these tools can
usually not be disclosed and they are sometimes specialized
for some specific usage.

IV. MULTICORE SCHEDULING ALGORITHMS

In this section we present algorithms, and when possible
derive lower bounds on their efficiency, to schedule large
numbers of runnables on multicore ECUs. These algorithms
are especially suited to the first of the use cases we identified
for multicore architectures, that is to permit a reduction of



the number of ECUs in the E/E architecture by using more
powerful ECUs.

Since automotive OSs can only handle a limited amount of
OS-tasks, the scheduling of runnables has to be done within
dispatcher tasks. A first step of the approach is to partition
the runnable sets onto the different cores. The next and last
step consists in determine the offsets between the runnables
allocated on each core so as to balance the load over time.

A. Model description

In this study, we consider a large set of n periodic elemen-
tary software components, also called runnables, that are to
be allocated on an ECU consisting in m identical cores. In
practice, a runnable can be implemented as a function called,
whenever appropriate, within the body of an OS task.

1) Runnable characteristics: The ith runnable is denoted
by Ri = (Ci, Ti, Oi, {R}, Pi). Quantities Ci, Ti and Oi

correspond respectively to the Worst-Case Execution Time
(WCET), the period and the offset of the Ri. The offset of
a runnable is the release date of the first instance of that
runnable, subsequent instances are then released periodically.
The choice made for the offset values has a direct influence
on the repartition of the workload over time.

A set of inter-runnable dependencies is denoted by {R}.
Indeed, due to specific design requirements, such as shared
variables, some runnables may have to be allocated on the
same core and the set {R} is used to capture those constraints.
In addition, some specific features, as I/O ports being located
on a given core, may require a runnable to be allocated onto
a specific core. This locality constraint is expressed by Pi.

2) Dispatcher task: Runnables are scheduled on their des-
ignated core using a dispatcher task, or “sequencer task”, that
stores the runnable activation times in a table and releases them
at the right points in time. A dispatcher task is characterized
by the duration of the dispatch table Tcycle that is executed in a
cyclic manner1, and by a quantum Ttic which is the duration
of a slot in the table. For instance, typically, one may have
Tcycle = 1000ms and Ttic = 5ms. It should be noted that
Tcycle must be a multiple of the gcd of the runnable periods
and the lcm of these periods must be a multiple of Ttic. As a
result, a dispatch table holds Tcycle/Ttic slots.

3) Assumptions: In this paper, we place a set of working
assumptions, which, in our experience, can most often be met
in today’s automotive applications:

• Each runnable are executed strictly periodically. As a
result, the whole trajectory of the system is defined by the
first activation times of the runnables (i.e., their offsets).

• The runnables are assumed to be offset-free, in the sense
that the offset of a runnable can be freely chosen in the
limit of its period (see [9]). Those offsets will be assigned
during the construction of the dispatch table with the
objective to uniformize the CPU load over a scheduling
cycle.

1The total dispatch table is sometimes referred to as the dispatcher round.

• The worst case execution times of the runnables are
assumed to be small compared to Ttic. Typical values
for the case we consider would be 5ms for Ttic and
Ci ≤ 300µs.

• All cores are identical regarding their processing speed.
• There are no dependencies between runnables allocated

on different cores. Therefore, all cores can be sched-
uled independently. This assumption is in line with the
choices made by AUTOSAR regarding multicore archi-
tecture [12].

This last assumption allows to divide the overall problem into
two independent sub-problems. A first part of the problem
consists in allocating all of the n runnables onto the m cores
with respect to their constraints with the aim of balancing the
CPU load of the m resulting partitions (see §IV-B). The second
part of the problem consists in building the dispatch table for
each core (see §IV-C).

4) Scheduling condition: In our context, the system is
schedulable, and thus can be safely deployed, if and only if
on each core:

1) The runnables are executed strictly periodically.
2) The initial offset of each runnable is smaller than its

period.
3) The sum of the WCET of the runnables allocated in

each slot does not exceed a given threshold, which is
typically chosen as the duration of the slot, i.e. Ttic.

B. Building tasks as a bin-packing problem
It is assumed that the number of cores is fixed. We first

distribute all the runnables on the cores without checking
the schedulability condition at that stage. Assigning n tasks
to m cores is like subdividing a set of n elements into m
non-empty subsets. By definition, the number of possibilities
for this problem is given by the Stirling number of the
second kind (see [13]): 1

m!

∑m
i=0(−1)(m−i) (m

i ) in. Consider-
ing that the runnables may have core allocation constraints,
and thus cores should be distinguished, the m! combinations
of cores must be considered. As a result, one has at most∑m

i=0(−1)(m−i) (m
i ) in different possibilities for the partition-

ing problem alone. Such a complexity prevents us from an
exhaustive search because even for small-sized runnable sets.
For instance, with n = 30 and m = 2, the search space holds
more than one billion possibilities.

Considering this complexity, to balance as evenly as possi-
ble the utilization of processor cores, we propose a heuristic
based on the bin-packing decreasing worst-fit scheme for a
fixed number of bins (where “bins” here are processor cores).
The heuristic is given in Algorithm 1. Step (1) runs in O(n).
Step (2) runs in O(n) but all the runnables allocated in (2)
will not have to go through the steps (3) and (4) that are
algorithmically more complex. Step (3) runs in O(n · log n).
Finally step (4) runs in O(n ·m). As a conclusion, algorithm 1
runs in O(n(m + log n)) which does not raise any issue in
practical cases. It is worth pointing out that m ≥

⌈∑m
i=1

Ci

Ti

⌉
is a necessary schedulability condition which can be used to
rule out configurations with too few processor cores.



Algorithm 1 Partitioning of the runnable set.
input: runnable set {Ri}, number of cores m
(1) Group inter-dependent runnables into runnable clusters.
Independent runnables become clusters of size 1.
(2) Allocate the runnable clusters which have a locality
constraint to the corresponding cores.
(3) Sort runnable clusters by decreasing order of CPU utiliza-
tion rate ρ =

∑
i

Ci

Ti
.

(4) Iterate over the sorted clusters
(a) Find the least loaded core,
(b) Assign the current cluster to this core.

C. Strategies for scheduling tasks

The next stage consists in building the dispatch table for
the set of runnables. Here, it is assumed that there are no
precedence constraints between the runnables and that a single
sequencer table is needed per core (this later assumption can
be easily relaxed as done in [14]).

1) Least-loaded algorithm: Considering a runnable Ri

of period Ti, there are Ti

Ttic
possibilities for allocating this

runnable (see schedulability condition #2 in §IV-A4). As a
result there are

∏n
i=1

Ti

Ttic
alternative schedules for the n

runnables and, given the cost function, we are not aware of any
ways to find the optimal solution with an algorithm does not
have an exponential complexity. Considering a realistic case
of 50 runnables having their period as least twice as large as
Ttic, it would be needed to evaluate a minimum of 250 possible
solutions. Once again, given the complexity, we have to resort
to a heuristic. Here, we adapt to the problem of scheduling
runnables the “least-loaded” algorithm proposed by Grenier et
al. in [10] for the frame offset allocation on a CAN network.

The intuition behind the heuristic is simple: at each step, we
assign the next runnable to the least loaded slot, as described
in Algorithm 2. The load of a slot is the sum of the Ci of the
runnables {Ri} already assigned to this slot.

Algorithm 2 Assigning runnables to slots: the “least-loaded”
heuristic.
input: runnable set {Ri}, Ttic, Tcycle

(1) Sort runnables Ri such that Ttic ≤ T1 ≤ . . . ≤ Tn ≤
Tcycle.
(2) For i = 1 . . . n

(a) Look for the least loaded slot in the Ti

Ttic
first slots,

(b) Allocate Ri in every Ti

Ttic
slot starting from this slot.

Step (1) runs in O(n · log n). Step (2) iterates n times over
steps (2a) and (2b) which run respectively in Ti

Ttic
≤ Tcycle

Ttic
and

Tcycle

Ti
≤ Tcycle

Ttic
. As a result, this algorithm runs in O(n(log n+

maxi{Ti}
Ttic

+ Tcycle

mini{Ti} ) ≤ O(n(log n + 2Tcycle

Ttic
).

For practical applications, ties at step (1) are broken using
highest WCET first and ties at step (2a) by choosing the central
slot of the longest sequence of consecutive slots having the
minimum load. While the latter rule for breaking ties does not
have any impact on the theoretical results that will be derived

next, it helps to separate load peaks, which is important from
the ECU designer point of view. As an illustration, the result
of applying the least-loaded heuristic to the set of runnables
Ri(Ti, Ci): R1(10, 2), R2(10, 1), R3(20, 4), R4(20, 2) leads
to the dispatch table shown in Figure 1.

Figure 1. Example of dispatch table.

The resulting distribution of the load is:

Slot 1 2 3 4 5 6 7 8
Load 2 4 2 3 2 4 2 3

Table I
LOAD REPARTITION CORRESPONDING TO THE DISPATCH TABLE IN

FIGURE 1.

There are two metrics to evaluate the quality of a dispatch
table. The first important criterion is to have the lowest
maximum load in the cycle since this will determine the
feasibility of the schedule and the possibility to add further
functions later in the lifetime of the system. The maximum
load over all slots is also referred to as the peak load. In a
second step, a more fine-grained assessment of the uniformity
of the load balancing can be given by the standard deviation
of the load distribution over all the slots.

2) Upper bound on the peak load: Here we derive an upper
bound on the peak load which holds for runnable sets having
harmonic periods. From this bound, we then derive a closed-
form sufficient schedulability condition. In this perspective,
we first point out that the slots in which a runnable Ri will
be periodically assigned are of equal load.

Lemma 1: Before inserting runnable Ri, the slot allocation
induced by the previously allocated runnables repeats with a
period Ti

Ttic
.

Proof: This is proved by induction. The property holds
for R1 as all slots are empty. Assuming that the property holds
for Ri, this runnable will be periodically allocated in every
Ti

Ttic
slots. Therefore, the slot allocation will still repeat with a

period Ti

Ttic
after its allocation. Since runnables are sorted by

increasing periods and that their periods are harmonic, Ti+1 =
k · Ti with k ∈ N∗ and the slot allocation also repeats with a
period k · Ti

Ttic
= Ti+1

Ttic
before the allocation of Ri+1.

The least loaded slot in the first Ti

Ttic
slots is the least loaded

over the whole dispatch table and thus one does not need to
look farther. As a second step, we show that when the load is
equal in every slot, the resulting load after an insertion if the
highest.

Lemma 2: The maximum load in the least loaded slot is
obtained for a perfect load balancing, which corresponds to a
constant load throughout the cycle.

Proof: Any allocation different from a perfectly balanced
allocation will result in a load below the average in one or
several slots, among which one will eventually be chosen for
the runnable under consideration.



As a result, the highest peak a runnable can induce occurs
in the case of a perfect load balancing. Now, Let us define
ρk =

∑
i∈{R}k

Ci

Ti
the total utilization of core k where {R}k

is the set of runnables allocated to core k and card{R}k the
cardinality of {R}k.

Theorem 1: On core k, an upper bound on the peak load
of a slot allocation is

PLk = max
i∈{R}k

{Ci + ρkTtic −
card{R}k∑

j=i

Cj

Tj
Ttic} (1)

Proof: In the case of a perfect load balancing, before the
allocation of Ri, the load of a slot is given by:∑

allocated runnables
WCET ·number of allocation slots

total number of slots , i.e.

i−1∑
j∈{R}k

Cj ·
Tcycle

Tj
· Ttic

Tcycle

After the allocation of Ri, the load in the corresponding slot
is

Ci +
i−1∑

j∈{R}k

Cj ·
Ttic

Tj

Moreover:
∑i−1

j∈{R}k

Cj

Tj
= ρk −

∑card{R}k

j=i
Cj

Tj

Consequently, the worst-case peak load on processor core
k resulting of the allocation of Ri in a slot is

PLi
k = Ci + ρkTtic −

card{R}k∑
j=i

Cj

Tj
Ttic (2)

Taking the max for all the runnables gives equation 1.
If the worst case peak load is below Ttic for all runnables,

then the solution given by the algorithm is schedulable. Hence
the following corollary:

Corollary 1: From theorem 1, we derive the following
sufficient schedulability condition:

ρk ≤ 1 +
Cmin

Tmax
− Cmax

Ttic
(3)

with Cmax = maxi∈{R}k
{Ci}, Tmax = maxi∈{R}k

{Ti} and
Tmin = mini∈{R}k

{Ti}
Proof: ∀i, Ci ≤ Cmax and ∀i,

∑card{R}k

j=i
Cj

Tj
≥ Cmin

Tmax

gives :

∀i, PLi
k ≤ Cmax + ρkTtic − Cmin

Tmax
Ttic

The scheduling condition 3 in §IV-A4 (i.e., PLi
k ≤ Ttic)

leads to the result.
This bound is achievable for n · k identical runnables with

period equal to k ·Ttic and load equal to C and a last runnable
Rn·k+1 of period Tmax and load C. With this setup, Cmin =
Cmax = C and the allocation of n ·k first runnable results in a
perfect load balancing of constant load ρk ·Ttic−C ·Ttic/Tmax

. As a result, allocating the last runnables induces the load
ρk · Ttic − Cmin · Ttic/Tmax + Cmax in some slots.

3) Lower bound on the efficiency: We introduce here a
lower bound on the core capacity that algorithm 2 guarantees
to be able to use given a harmonic runnable set. This is referred
to as the harmonic schedulability bound.

Theorem 2: The harmonic schedulability bound is equal to
(1 − Cmax

Ttic
) of the capacity of the core.

Proof: Reasoning as done for Corollary 1, the worst
case peak load is given by allocating a runnable R =
(Cmax, Tmax = Ttic) in a slot allocation with a perfect
balance load. In the worst case, the system is still schedulable
when this average slot load is equal to Ttic − Cmax. In other
words, when the system becomes no longer schedulable, every
slot has an allocated load greater or equal to Ttic −Cmax. As
a consequence, at least (1 − Cmax

Ttic
) of the capacity of the

considered core can been used by our algorithm.
For example, with Ttic = 5ms and Cmax = 300µs, at least

94% of the CPU is guaranteed to be usable. In practice, when
Cmax is small, this bound is very useful.

Corollary 2: Considering the problem of scheduling a given
harmonic runnable set on a multicore ECU with an infinite
number of cores using as few cores as possible, this corollary
gives a bound of the maximum number required by this
algorithm. Defining P =

∑
i

Ci

Ti
the total load of a runnable set

with harmonic periods and mmin the number of cores required
to schedule it, it follows from theorem 2 that

mmin ≤
⌈

P
1 − Cmax/Ttic

⌉
(4)

4) Dealing with non harmonic runnable set: In practice,
often, runnable sets do not have strictly harmonic periods. As
a consequence, lemma 1 and lemma 2 do not hold anymore
and equations 1 and 3 cannot be applied to provide bounds.
In particular, placing a runnable in the least loaded slot of
the dispatch table could induce peaks because of the runnable
periodicity. Take the following runnable set for instance:
R1(10, 2), R2(20, 3), R3(20, 1), R4(50, 2) with Ttic = 5 and
Tcycle = 100. Figure 2 shows the dispatch table before the
allocation of R4.

Figure 2. Dispatch table before the insertion of R4.

The resulting distribution of the load is:

Slot 1 2 3 4 5 6 7 8 9 10 12 12 ...
Load 1 2 4 2 1 2 4 2 1 2 4 2 ...

Table II
LOAD REPARTITION CORRESPONDING TO THE DISPATCH TABLE IN

FIGURE 2.

At that point, choosing one of the least loaded slots in the
dispatch table with make the schedule fail because R4 will also
have to be allocated in a slot with the highest load because
of its periodicity. For example, if the first instance of R4 is
allocated in slot 1, the next instance will be placed in slot 11



and make the system unschedulable. However, allocating R4

in any even slot is safe.
In order to deal with non-harmonic runnable sets, we need

to go through a larger window of slots for the choice of the
offsets. In the following, variable Twindow is equal to the lcm
of the periods of the runnables already scheduled at the current
state of the algorithm. Instead of looking for the least loaded
slot in the first Ti/Ttic slots, we try to create the smallest
peak over Twindow, knowing that the schedule repeats in cycle
afterwards.

Algorithm 3 generalized “least-loaded” heuristic.
input: runnable set {Ri}, Ttic, Tcycle

(1) Sort runnables Ri such that Ttic ≤ T1 ≤ . . . ≤ Tn ≤
Tcycle.
(2) Twindow = Ttic.
(3) For i = 1 . . . n

(a) Twindow = lcm(Twindow, Ti),
(b) In the first Ti

Ttic
slots, look for the slot such that the

highest load in the slots where Ri is periodically allocated in
the Twindow

Ttic
first slots is the lowest,

(c) Allocate Ri in every Ti

Ttic
slot starting from this slot.

Step (1) of algorithm 3 runs in O(n · log n). Step (3a)
runs in O(log Tcycle). Step (3b) and (3c) respectively run in
O(nTwindow

Ttic
) ≤ O(nTcycle

Ttic
) and O(nTcycle

Ti
) ≤ O(nTcycle

Ttic
).

As a result, the whole algorithm runs in O(n(log n+2Tcycle

Ti
+

log Tcycle)).
5) Improvement: placing outliers first: The algorithms de-

scribed in sections IV-B and IV-C construct the scheduling
of runnables with arbitrary periods and possibly with locality
and inter-runnable constraints. Experiments show that these
algorithms sometimes do not handle well runnable sets where
a few runnables with a low frequency have a very large WCET
compared to the other runnables.

In practice, runnables with a large WCET tend to have
a large period. As a result, runnables with large WCET are
usually processed late in the runnable allocation process which
explains the load peaks. In order to reduce those peaks,
the scheduling algorithm is improved by processing some
runnables with a large WCET first2.

We define the WCET threshold Ccritic = µ + k · σ with
µ and σ denoting respectively the average and the standard
deviation of the distribution of {Ci} and k an integer value.
The runnables with Ci larger than Ccritic are allocated first.
Then, the rest of the runnables are processed as done in
algorithm 3. This new version of the load-balancing algorithm
is referred to as Generalized least-loaded sigma, or G-LLkσ

for short.

V. LOAD-BALANCING PERFORMANCES ON A CASE STUDY

To evaluate the performances of the algorithms, we apply
them to a set of runnables randomly generated according to re-

2Allocating the runnables by decreasing order of WCET proves not to be
an efficient approach in our experiments.

alistic distributions of WCET and periods. The largest WCET
is 30x the smallest and the periods are non-harmonics chosen
in {10, 20, 25, 40, 50, 100, 200, 250, 500, 1000ms} with distri-
butions derived from an existing body gateway ECU. The re-
sulting average workload is around 85% which is common for
automotive ECUs. Random dependencies between runnables
are also introduced through the following parameters:

• Interdependency ratio, that is the percentage of runnables
that are dependent and thus must be executed on the same
core, chosen equal to 25% in the experiments.

• Maximum size of the clusters of dependent runnables is
equal to 4.

• Core locality constraint ratio: percentage of runnables that
are pre-allocated to a given core, chosen equal to 25%.

The following parameters are used for the simulations:
Cmax = 1.5ms, Ttic = 5ms, Tcycle = 1s and there are 600
runnables to schedule on 3 cores. This may correspond to the
configuration of a powerful ECU in a few years from now.

The distribution of the load obtained with the generalized
least-loaded (LL) and generalized least-loaded sigma (G-
LLkσ) algorithms are shown in figure 3. In these graphics,
the X axis is the time-line and the Y axis shows the load of
the slots in percentage. The upper graphic shows that LL fails
to provide a feasible schedule since the load is above 100% in
some slots. The load peaks are due to runnables having a large
WCET. For instance, the green peaks are created by runnables
with WCET=1.5ms. However, G-LLkσ is able to sucessfully
schedule the runnable sets on the three cores. In addition, about
10% of the capacity of each core remains available almost all
the time, which means that some more runnables can be added
in future evolution of the ECU.

It is worth mentioning that usually, as in the figure 3,
generalized least-loaded sigma outperforms generalized least-
loaded for well chosen value of k, although, in some rare
cases, generalized least-loaded might produce better solutions.
Those experiments also show that, even if the theoretical
lower bound does not hold anymore, runnables with non-
harmonic periods can be efficiently handled by the heuristics.
For instance, here the theoritical lower bound would be 70%
for harmonic periods without any locality nor interdependency
constraints, whereas G-LLkσ is able to produce a schedulable
slot allocation for 86% of load, non-harmonic periods and both
locality and interdependency constraints. The reader interested
in more comprehensive experiments, also in the case where
several sequencer tasks are needed for instance for memory
protection accross runnables, can refer to [14].

VI. CONCLUSION

Multi-source and multicore ECUs will drastically change
E/E architectures and should enable to conceive more cost-
effective and more flexible automotive embedded systems.
In our view, the OS protection mechanisms specified by
AUTOSAR provide a sound basis for coming up with ap-
propriate safety mechanisms and policies, despite the growing
complexity and criticality of software functions.



Figure 3. Distribution over time of the load percentage on the 3 cores. The upper graphic shows the result with the generalized least-loaded algorithm while
the lower curve is obtained with the generalized least-loaded sigma algorithm for k = 2. The algorithms of this study have been implemented as plugins of
RTaW’s NETCAR-ECU [11].

However, today’s design methodologies need to be adapted
to this new context and there is a wide range of technical
problems to be solved. The design of the software archi-
tectures and the scheduling of the software components are
among these issues. In this paper, we have presented practical
scheduling solutions well suited to the basic use-case which
is to execute a large number of software components on the
same multicore processor. The set of algorithms described in
this paper have shown on realistic case-studies to be versatile
and efficient in terms of CPU usage optimization, providing
even guaranteed performance levels in some specific contexts.
Future work will consist in extanding this framework to handle
other requirements such as precedence constraints, lockstep
redundant executions and distributed timing chains.
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