On Predictability and Profitability: Would AI induced Trading Rules be Sensitive to the Entropy of time Series

Nicolas NAVET – INRIA
France
nnavet@loria.fr

Shu-Heng CHEN – AIECON/NCCU
Taiwan
chchen@nccu.edu.tw

09/04/2008
Outline

- **Entropy Rate**: uncertainty remaining in the next information produced given knowledge of the past ⇒ *measure of predictability*

- **Questions**:
 - Do stocks exhibit differing entropy rates?
 - Does low entropy imply profitability of TA?

- **Methodology**:
 - NYSE US 100 Stocks – daily data – 2000-2006
 - TA rules induced using Genetic Programming
Estimating entropy

- Active field of research in neuroscience
- Maximum-likelihood (“Plug-in’’):
 - empirical distribution of fixed length word
 - not suited to capture long/medium term dependencies
- Compression-based techniques:
 - Lempel-Ziv algorithm, Context-Tree Weighting
 - fast convergence rate – suited to long/medium term dependencies
Selected estimator

- Kontoyannis et al 1998

\[\hat{h}_{SM} = \left(\frac{1}{n} \sum_{i=1}^{n} \Lambda_i \right)^{-1} \log_2 n \]

\(\Lambda_i \): length of the shortest string that does not appear in the \(i \) previous symbols

Example: 0 1 1 0 0 1 0 1 1 0 0

\(\Lambda_6 = 3 \)
Performance of the estimator

Experiments:
- Uniformly distributed r.v. in \{1,2,..,8\} – theoretical entropy \(h = -\sum_{i=1}^{8} 1/8 \log_2 p = 3 \) b.p.c.
- Boost C++ random generator
- Sample of size 10000

\[\hat{h}_{SM} = 2.96 \]

- Note 1: with sample of size 100000, \(\hat{h}_{SM} \geq 2.99 \)
- Note 2: with standard C \textit{rand()} function and sample size = 10000, \(\hat{h}_{SM} = 2.77 \)
Preprocessing the data (1/2)

- Log ratio between closing prices: \(r_t = \ln\left(\frac{p_t}{p_{t-1}}\right) \)

- Discretization: \(\{r_t\} \in \mathbb{R} \rightarrow \{A_t\} \in \mathbb{N} \)

3, 4, 1, 0, 2, 6, 2, ...

GE - graph0 = 0.01
Discretization is tricky – 2 problems:
- How many bins? (size of the alphabet)
- How many values in each bin?

Guideline: maximize entropy with a number of bins in link with the sample size

Here:
- alphabet of size 8
- same number of values in each bin ("homogeneous partitioning")
Entropy of NYSE US 100 stocks – period 2000-2006

Mean = Median = 2.75
Max = 2.79
Min = 2.68
Rand() boost = 2.9

NB: a normal distribution of same mean and standard deviation is plotted for comparison.
Entropy is high but price time series are not random!

Original time series

Randomly shuffled time series
Stocks under study

Highest entropy time series

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Entropy</th>
</tr>
</thead>
<tbody>
<tr>
<td>OXY</td>
<td>2.789</td>
</tr>
<tr>
<td>VLO</td>
<td>2.787</td>
</tr>
<tr>
<td>MRO</td>
<td>2.785</td>
</tr>
<tr>
<td>BAX</td>
<td>2.78</td>
</tr>
<tr>
<td>WAG</td>
<td>2.776</td>
</tr>
</tbody>
</table>

Lowest entropy time series

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Entropy</th>
</tr>
</thead>
<tbody>
<tr>
<td>TWX</td>
<td>2.677</td>
</tr>
<tr>
<td>EMC</td>
<td>2.694</td>
</tr>
<tr>
<td>C</td>
<td>2.712</td>
</tr>
<tr>
<td>JPM</td>
<td>2.716</td>
</tr>
<tr>
<td>GE</td>
<td>2.723</td>
</tr>
</tbody>
</table>
BDS tests: are daily log price changes i.i.d?

Lowest entropy time series

<table>
<thead>
<tr>
<th>m</th>
<th>δ</th>
<th>TWX</th>
<th>EMC</th>
<th>C</th>
<th>JPM</th>
<th>GE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>18.06</td>
<td>14.21</td>
<td>13.9</td>
<td>11.82</td>
<td>11.67</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>22.67</td>
<td>19.54</td>
<td>18.76</td>
<td>16.46</td>
<td>16.34</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>34.18</td>
<td>29.17</td>
<td>28.12</td>
<td>26.80</td>
<td>24.21</td>
</tr>
</tbody>
</table>

Highest entropy time series

<table>
<thead>
<tr>
<th>m</th>
<th>δ</th>
<th>OXY</th>
<th>VLO</th>
<th>MRO</th>
<th>BAX</th>
<th>WAG</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>5.66</td>
<td>4.17</td>
<td>6.69</td>
<td>8.13</td>
<td>7.45</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>6.61</td>
<td>5.35</td>
<td>9.40</td>
<td>11.11</td>
<td>8.89</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>9.04</td>
<td>6.88</td>
<td>13.08</td>
<td>15.31</td>
<td>11.17</td>
</tr>
</tbody>
</table>

- Null that log price changes are i.i.d. always rejected at 1% level but - whatever BDS parameters - rejection is much stronger for high-entropy stocks.
Autocorrelation analysis

Up to a lag 100, there are 2.7 x more autocorrelations outside the 99% confidence bands for the lowest entropy stocks than for the highest entropy stocks.
Part 2: does low entropy imply better profitability of TA?

Addressed here: are GP-induced rules more efficient on low-entropy stocks?
GP: the big picture

1) Creation of the trading rules using GP

2) Selection of the best resulting strategies

Further selection on unseen data

One strategy is chosen for out-of-sample performance evaluation

Training interval

Validation interval

Out-of-sample interval

GP performance assessment

- Buy and Hold is not a good benchmark
- GP is compared with lottery trading (LT) of
 - same frequency: avg nb of transactions
 - same intensity: time during which a position is held
- Implementation of LT: random sequences with the right characteristics, e.g.: 0,0,1,1,1,0,0,0,1,1,1,1,0,0,1,1,0,1,0,0,0,0,0,1,1,1,1,1,…
- GP\(>\)LT ? LT\(>\)GP ? Student’s t-test at 95% confidence level – 20 GP runs / 1000 LT runs
Experimental setup

- Data preprocessed with 100-days MA
- Trading systems:
 - Entry (long): GP induced rule with a classical set of functions / terminals
 - Exit:
 - Stop loss : 5%
 - Profit target : 10%
 - 90-days stop
- Fitness: net return - Initial equity: 100K$ - position sizing : 100%
Results: high entropy stocks

<table>
<thead>
<tr>
<th></th>
<th>GP net profits</th>
<th>LT net profits</th>
<th>GP>LT?</th>
<th>LT>GP?</th>
</tr>
</thead>
<tbody>
<tr>
<td>OXY</td>
<td>15.5K$</td>
<td>14K$</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>VLO</td>
<td>7K$</td>
<td>11.5K$</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>MRO</td>
<td>15K$</td>
<td>18.5K$</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>BAX</td>
<td>24K$</td>
<td>13K$</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>WAG</td>
<td>6K$</td>
<td>−0.5K$</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

GP is always profitable

LT is never better than GP (at a 95% confidence level)

GP outperforms LT 2 times out of 5 (at a 95% confidence level)
Results: low entropy stocks

<table>
<thead>
<tr>
<th></th>
<th>GP net profits</th>
<th>LT net profits</th>
<th>GP>LT?</th>
<th>LT>GP?</th>
</tr>
</thead>
<tbody>
<tr>
<td>TWX</td>
<td>$-9K$</td>
<td>$-1.5K$</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>EMC</td>
<td>$-16.5K$</td>
<td>$-11K$</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>C</td>
<td>$15K$</td>
<td>$18.5K$</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>JPM</td>
<td>$6K$</td>
<td>$10K$</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>GE</td>
<td>$-0.5K$</td>
<td>$0.5K$</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

GP is never better than LT (at a 95% confidence level)

LT outperforms GP 2 times out of 5 (at a 95% confidence level)
Explanations (1/2)

- GP is not good when training period is very different from out-of-sample e.g.

Typical low entropy stock (EMC)

2000 2006
Explanations (2/2)

- The 2 cases where GP outperforms LT: training quite similar to out-of-sample

![Graph of BAX and WAG stocks](image.png)
Conclusions

- EOD NYSE time series have high but differing entropies
- There are (weak) temporal dependencies
- Here, more predictable ≠ less risks
- GP works well if training is similar to out-of-sample
Perspectives

- Higher predictability level can be observed at intraday timeframe (what about higher timeframes?)
- Experiments needed with stocks less similar than the ones from NYSE US 100
- Predictability tells us about the existence of temporal patterns – but how easy / difficult to discover them ??