Preface

The study of real-time systems has been recognized over the past 30 years as a disci-
pline of its own whose research community is firmly established in academia as well
as in industry. This book aims at presenting some fundamental problems, methods,
and techniques of this domain, as well as questions open for research.

The field is mainly concerned with the control and analysis of dynamically evolv-
ing systems for which requirements of timeliness are paramount. Typical examples
include systems for the production or transport of goods, materials, energy or informa-
tion. Frequently, controllers for these systems are “embedded” in the sense that they
are physically implemented within the environment with which they interact, such
as a computerized controller in a plane or a car. This characteristic imposes strong
constraints on space, cost, and energy consumption, which limits the computational
power and the available memory for these devices, in contrast with traditional appli-
cations of computer science where resources usually grow exponentially according to
Moore’s law. The design of real-time systems relies on techniques that originate in
several disciplines, including control theory, operations research, software engineer-
ing, stochastic process analysis, and others.

Software supporting real-time systems needs not only compute the correct value
of a given function, but it must also deliver these values at the right moment in order
to ensure the safety and the required performance level of the overall system. Usually,
this is implemented by imposing constraints (or deadlines) on the termination of cer-
tain activities. The verification techniques presented in this volume can help to ensure
that deadlines are respected.

Chapter written by Stephan MERZ and Nicolas NAVET.

19



20 Modeling and Verification of Real-Time Systems

The chapters of this book present basic concepts and established techniques for
modeling real-time systems and for verifying their properties. They concentrate on
functional and timing requirements; the analysis of non-functional properties such as
schedulability and Quality of Service guarantees would be a useful complement, but
would require a separate volume. Formal methods of system design are based on
mathematical principles and abstractions; they are a cornerstone for a “zero-default”
discipline. However, their use for the development of real-world systems requires
the use of efficient support tools. The chapters therefore emphasize the presenta-
tion of verification techniques and tools associated with the different specification
methods, as well as the presentation of case studies that illustrate the application of
the formalisms and the tools. The focus lies on model checking approaches, which
attempt to provide a “push-button” approach to verification and integrate well into
standard development processes. The main obstacle for the use of model checking
in industrial-sized developments is the state-explosion problem, and several chapters
describe techniques based on abstraction, reduction or compression that stretch the
limits of the size of systems that can be handled.

Before verification can be applied, the system must be modeled in a formal de-
scription language such as (timed) Petri nets, timed automata or process algebra. The
properties expected of a system are typically expressed in temporal logic or using
automata as observers. Two main classes of properties are safety properties that, intu-
itively, express that nothing bad ever happens, and liveness properties that assert that
something good eventually happens. The third step is the application of the verifica-
tion algorithm itself to decide whether the properties hold over the model of the system
or not; in the latter case, model checking generates a counter-example exhibiting a run
of the system that violates the property.

Beyond verification, which compares two formal objects, the model should also
be validated to ensure that it faithfully represents the system under development. One
approach to validation is to decide healthiness properties of the model (for example,
ensure that each component action can occur in a system run), and model checking
is again useful here. In general, it is helpful to narrow the gap between the system
description and its formal model, for example by writing a model in a high-level ex-
ecutable language or in a notation familiar to designers such as UML. The chapters
of this book, written by researchers active in the fields, present different possible ap-
proaches to the problems of modeling, verification and validation, as well as open
research questions.

Chapter 1, written by Bernard Berthomieu, Florent Peres and Frangois Vernadat,
explains the analysis of real-time systems based on timed Petri nets. It illustrates the
high expressiveness of that formalism and the different, complementary verification
techniques that are implemented in the Tina tool.



Preface 21

In Chapter 2, Camille Constant, Thiery Jéron, Hervé Marchand and Vlad Rusu de-
scribe an approach that combines verification and conformance testing (on the actual
implementation platform) of input/output symbolic transition systems. Disciplined
approaches to testing are indeed a very valuable complement to formal verification
for ensuring the correctness of an implementation. This is true in particular when the
complexity of the models makes exhaustive verification impossible.

Chapters 3 and 4 are devoted to the presentation of model checking techniques.
Starting with the canonical example of a lift controller, Stephan Merz presents the
basic concepts and techniques of model checking for discrete state transition systems:
temporal logics, principles of model checking algorithms and their complexity, and
strategies for mastering the state explosion problem. Patricia Bouyer and Frangois
Laroussinie focus on model checking for timed automata, the main semantic formal-
ism for modeling real-time systems. They describe the formalism itself, timed modal
and temporal logics, as well as some extensions and subclasses of timed automata.
Finally, algorithms and data structures for the representation and verification of timed
automata are introduced, and the modeling and verification environment Uppaal is
described in some detail.

Using a model of an industrial drilling station as a running example, Radu Ma-
teescu presents in Chapter 5 the functionalities of the CADP toolbox for modeling
and verification. CADP is designed to model arbitrary asynchronous systems whose
components run in parallel and communicate by message passing. The toolbox ac-
cepts models written in different formalisms, including networks of communicating
automata or higher-level models written in Lotos. It implements a set of model trans-
formations, simulation and verification algorithms, and offers the possibility to gener-
ate conformance tests for the implementation.

Chapter 6, written by Pascal Raymond, is devoted to the verification of programs
written in the synchronous language Lustre with the help of the model checker Lesar.
Synchronous languages enjoy ever more success for the development of reactive sys-
tems, of which real-time systems are a particular instance. Based on mathematical
models of concurrency and time, synchronous languages provide a high-level abstrac-
tion for the programmer and are well-suited to formal verification.

In Chapter 7, Paul Caspi, Grégoire Hamon and Marc Pouzet go on to describe the
language Lucid Synchrone that extends Lustre with constructs borrowed from func-
tional languages, further augmenting expressiveness. The authors start by asking why
synchronous languages are relevant for the design of critical systems. They give an
account of the development of the Lucid language, and present in detail its primitives
and the underlying theoretical concepts, illustrating them by several examples.

One of the most exciting developments over the past 15 years has been the emer-
gence of techniques for the verification of probabilistic systems, intimately coupled



22 Modeling and Verification of Real-Time Systems

with work on stochastic processes carried out in the realms of performance evaluation.
Probabilistic models are very useful because they add quantitative information above
the non-deterministic representation of the behavior of system components and the en-
vironment. They can also be used to determine system parameters such as queue sizes,
as a function of the desired failure guarantees. Marta Kwiatkowska, Gethin Norman,
David Parker and Jeremy Sproston lay the bases in Chapter 8 by defining probabilis-
tic timed automata and extending the model checking algorithms for ordinary timed
automata to handle probabilistic models. The case study of the IEEE FireWire Root
Contention Protocol illustrates the application of these techniques. In Chapter 9, Serge
Haddad and Patrice Moreaux give an overview of verification techniques for proba-
bilistic systems: discrete and continuous time Markov chains, stochastic Petri nets,
Markov decision processes and associated temporal logics. They also cover some of
the main tools used in this domain, including GreatSPN, ETMCC, and Prism.

Chapter 10, written by Marius Bozga, Susanne Graf, Laurent Mounier, and Iulian
Ober, presents the IF toolbox, a tool environment for modeling and verifying real-time
systems centered around a common internal description language based on commu-
nicating timed automata. User-level specifications written in languages such as SDL
or UML are translated into this internal representation and can be subject to analy-
sis using algorithms of static analysis, reduction and model checking. An extended
case study from the aerospace domain, based on joint work with EADS concludes the
chapter.

Chapter 11, written by Anne-Marie Déplanche and Sébastien Faucou, is dedicated
to the architecture description language AADL, originally designed and standardized
for the avionic and aerospace domains, but which is an excellent candidate for ar-
bitrary real-time systems. Architectural descriptions can serve as a reference for all
actors involved in system design; they contain the information needed for simulation,
formal verification, and testing. The authors examine the specific requirements for
describing real-time systems and then present the AADL and its support tools. Their
use is illustrated with the help of a case study of a closed-loop control system.

We would like to express our gratitude to all of the authors for the time and energy
they have devoted to presenting their topic. We are also grateful to ISTE Ltd. for
having accepted to publish this volume and for their assistance during the editorial
phase.

We hope that you, the readers of this volume, will find it an interesting source of
inspiration for your own research or applications, and that it will serve as a reliable,
complete and well-documented source of information on real-time systems.

Stephan MERZ and Nicolas NAVET
INRIA Nancy Grand Est and LORIA
Nancy, France



