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Abstract

In real-time systems, schedulability is mandatory but
other application-dependent performance criteria are
most generally of interest. We first define the properties
that a “good” real-time scheduling algorithm must pos-
sess. Then, we exhibit a class of easily-implementable
policies that should be well suited to various applicative
contexts because, in our experiments, these policies pro-
vide good trade-off between feasibility and the satisfac-
tion of the application-dependent criteria. We propose a
schedulability analysis generic for all policies within this
class and evaluate other criteria by simulation. The study
is illustrated in the framework of computer-controlled sys-
tems that are known to be sensitive to various delays in-
duced by resource sharing.

1 Introduction

Context of the paper. In real-time systems, feasibility
of the task set is the basic requirement, but, usually, other
criteria besides feasibility are of interest. A prominent
example are computer-controlled systems [3] where it is
well-known that other temporal characteristics than dead-
line respect affect the performances of the controlled sys-
tem [24, 26, 25]. Classically, the design of a control loop
assumes periodic executions and constant delays. In prac-
tice, once the control law is implemented, delays and vari-
abilities arise, which leads to performance degradations
and, sometimes, even jeopardizes the stability of the sys-
tem.

Goal of our paper. The goal is here to find on-line
scheduling policies that are well suited to the satisfac-
tion of application dependent criteria whilst ensuring fea-
sibility. In the following, we will illustrate our approach
through computer-controlled systems where, most usu-
ally, reducing delays and their variabilities improve the
performances.

Related Work. Many studies have been dedicated to
find scheduling solutions that improve the performance of
computer-controlled systems.

In [9], a modified version of the Constant Bandwidth
Server (CBS), initially proposed in [1], is used to elim-
inate jitters. Data input and data output occur at fixed
points in time and control tasks run in a CBS, which is
an abstraction of a dedicated CPU offering a chosen frac-
tion of the original CPU, to ensure that control tasks finish
before the output of the data.

To better fit to the processing requirements of a control
system, new task models have been conceived. In [6, 7],
the elastic task model is proposed to handle overruns: task
adapt their period at runtime in such a way as to keep the
systems underloaded. In [11, 8], it is proposed that con-
trol tasks are subdivided in three different parts: sampling,
computation, actuation. Sampling and actuation sub-tasks
are assigned a high priority in order to reduce the jitters.

Another solution is to adjust the parameters of the tasks
to achieve the desired goals. In [4], the worst-case end-
of-execution jitter is minimized by choosing appropriate
deadlines. In [12], initial offsets and priorities are adjusted
to reduce jitter by minimizing preemption.

Improvements can also be brought by well choosing
the parameters of the scheduling policies. In [13], a pri-
ority allocation scheme is proposed to reduce the aver-
age response time while, in [20], the problem of choos-
ing scheduling policies and priorities on a Posix 1003.1b
compliant operating system (OS) is tackled.

Finally, another way is to create new scheduling poli-
cies. In [2], the scheduler is synthetized as a timed au-
tomata from the Petri net modeling the system and the
properties expected from the system. In [14], also starting
from a Petri net model of the system, an optimal schedul-
ing sequence is found by examining the marking graph of
the Petri net.

Our approach. In this paper, we propose a technique
for building new on-line scheduling policies that, on the
one hand, ensure feasibility and, on the other hand, per-



form well with regard to application dependent criteria
such as the ones that are crucial in computer-controlled
systems. We do not merely tune the parameters of a
scheduling policy, as the priorities [13] for FPP schedul-
ing, but tune the scheduling algorithm itself. The main
advantage with regard to [2] and [14], is that it scales well
and is robust to modifications of the task sets which is
almost unavoidable in an industrial design process. Fur-
thermore, the implementation on off-the-shelf OS does
not raise problem (see [15] for a prototype implementa-
tion on Posix1003.1b system). Finally, the approach could
be used in conjunction with task splitting schemes [11, 8]
or dedicated task models [6, 7]. Our proposal is made of
three distinct steps:

1. define the characteristics that a “good” real-time
scheduling policies must possess. This class of good
policies constitutes the search space of our problem,

2. propose a schedulability analysis that is generic for
all “good” policies,

3. explore the search space for finding policies that per-
form well in terms of feasibility and with respect to
the other criteria.

Organization. In section2, the model of the system and
the assumptions made are presented. In section3, we de-
fine the search space of the scheduling policies. Section4
is dedicated to the “generic” feasibility analysis. In sec-
tion 5, the criteria besides feasibility used in this study are
introduced, and the experimental results are presented.

2 System model

This study deals with the non-idling scheduling of pe-
riodic tasks on a monoprocessor system. The tasks are not
dependent (i.e. no precedence constraints) and their char-
acteristics are known before run-time. In the following,
the time is hypothesized to be discrete (i.e. durations are
multiples of the clock time) which, in our context, is pos-
sible without loss of generality but implies that some care
must be taken (see §4.2).

2.1 Task model
The task model is the classical one used in [18]. A peri-

odic taskτi is characterized by a triple(Ci ,Di ,Ti) whereCi

is theWorst Case Execution Time(WCET), Di therelative
deadline(i.e. maximum tolerable response time of an in-
stance - equal for all instances of the same task) andTi the
inter-arrival timebetween two instances ofτi . The release
time of j th instance of theith task is denoted byAi, j . A
concretetask(τi ,Ai,1) is a task for which the release time
of its first instanceAi,1 is known before run-time while the
release times ofnon-concretetasks are unknown. For the
sake of clarity, sporadic tasks and jitters in the availability
dates are not considered here but can be taken into account
as classically done.

Concrete and non-concrete tasks. In the follow-
ing, a set of n periodic non-concrete tasks is de-
noted byΩ = {τ1,τ2, .......,τn}, where τi is a periodic
task, while a set ofn periodic concrete tasks isω =
{(τ1,A1,1),(τ2,A2,1).......(τn,An,1)}, where (τi ,Ai,1) is a
periodic concrete task. Without restrictions on the initial
offsets, there is an infinite number of mapping from the
set of non-concrete tasksΩ to the set of concrete tasksω.

Feasibility and optimality. A concrete set of tasksω is
saidfeasible(or schedulable) if no instance of the system
terminates its execution after its absolute deadlineDi,n =
Ai,n +Di . A non-concrete set of tasksΩ is feasible, if all
the concrete setsω, which can be generated fromΩ, are
feasible.

A scheduling policy isoptimalwith respect to a certain
criterion (e.g. feasibility, average response time) within its
class if no other policy of the class performs better with re-
spect to the criterion. In the following,optimal is used to
sayoptimalwith respect to feasibility. A scheduling pol-
icy is non-concrete optimal(with respect to feasibility) if
it successfully schedules all the non-concrete sets that are
schedulable with a policy of the class. As shown in [16],
Earliest Deadline First (EDF) is non-concrete and con-
crete optimal within the class of non-idling policy. A pol-
icy is saidconcrete optimalif it schedules all the schedu-
lable concrete sets.

2.2 Defining scheduling policies through priority
functions

Priority functions is a convenient way of formally
defining in a non-ambiguous manner scheduling policies,
which, to our best knowledge, has been introduced for the
first time in [19]. The priority functionΓk,n(t) indicates
the priority of an instanceτk,n at timet. The resource is
assigned, at each time, according to theHighest Priority
First (HPF) paradigm.

FunctionΓk,n(t) takes its value from a totally ordered
set P which is chosen in [19] to be the set of multi-
dimensional IR-valued vectorsP = {(p1, ..., pn) ∈ Rn |
n ∈ N} provided with a lexicographical order. Between
two vectors, coordinates are compared one by one start-
ing from the left; the first different coordinate decides
the priority order with the convention “the smaller the
numerical value, the higher the priority”. For instance,
Γi, j(t) = (3,4,5) and Γk,n(t) = (3,4,6) implies thatτi, j

has a higher priority thanτk,n at time t. Priority vec-
tors of different sizes can be compared with the same rule
as above and the convention that a missing coordinate is
the lowest numerical value (e.g.Γi, j(t) = (3,4,5) and
Γk,n(t) = (3,4) means thatτk,n has a higher priority than
τi, j at timet). Finally, two vectors are equal iff they are
the same size and if the components are equal one by one.

Most real-time scheduling policies can be defined eas-
ily using priority functions. For instance, the priority
of an instanceτk,n under preemptive EDF isΓEDF

k,n (t) =
(Ak,n+Dk,k,n) (the last two coordinates are needed to en-



sure decidability, see definition2), Fixed Priority Preemp-
tive with the Rate Monotonic (RM) priority assignment
scheme is defined byΓFPP−RM

k,n (t) = (Tk,k,n) and with

Deadline Monotonic (DM) byΓFPP−DM
k,n (t) = (Dk,k,n).

A class of policies of particular interest, to which EDF,
FPP-RM and FPP-DM belong, are thetime independent
policies.

Definition 1 [19] A scheduling policyA is time indepen-
dent iff the priority of each instance does not vary over
time:

∀t ΓA
k,n(t) = ΓA

k,n(0) = ΓA
k,n

Time independent policy are easily implementable
since the priority of an instance is computed at release
time and does not change anymore. Furthermore, context
switches solely occur at arrival dates or when instances
finish their execution.

Besides providing non-ambiguous definition of the
scheduling policy, priority functions enable us to distin-
guish classes of scheduling policies and to derive generic
results that are valid for whatever the policy belonging to
a certain class. The next section presents the class of non-
preemptive scheduling policy that will be studied in the
rest of the paper.

3 Study domain

An arbitrary priority function does not necessarily de-
fine neither a scheduling of interest for real-time comput-
ing nor even a policy that can be implemented in practice.
In this section, we precise the requirements expected from
an acceptable policy (termed “good” policy in the follow-
ing). Then, among the set of all good policies, we define
the particular class of scheduling policies considered in
this study.

3.1 “Good” scheduling policies
A “good” policy must meet a certain number of criteria,

which are needed for the policy to be implemented in a
real-time context.

Decidable policies. Policies are needed to bedecidable:
at any timet, there is exactly one instance of maximal pri-
ority among the set of active instances (i.e. instances with
pending work). This concept of decidability was intro-
duced in [19].

Definition 2 [19] A priority function is decidable iff, at
each time t such that work is pending, there is exactly one
instance of maximal priority.

For instance, the last two components ofΓEDF
k,n (t) =

(Ak,n +Dk,k,n) ensure decidability.

Implementable policies. For being implementablein
practice, a policy must induce a finite number of context
switches over a finite time interval. This first condition
was exhibited in [19]. Furthermore, components of the
priority vectors have to be representable by machine num-
bers.

Definition 3 A scheduling policy is implementable iff the
priority function:

* is “piecewise order preserving”: during any time in-
terval of finite length, the number of changes of the highest
priority instance is finite,

* the coordinates of the priority function are “repre-
sentable” by machines number.

In the following, coordinates of a priority vector belong
to the set of rational numbersQ.

“Shift temporal invariant” policies. In this study, for
the sake of predictability of the system, we are only inter-
ested in scheduling policies such that the relative priority
between two instances does not depend on the numerical
value of the clock: relative priority must remain the same
if we “shift” the arrival of all instances to the left or the
right. The policy is thus independent of the value of the
system’s clock at startup time. We call such policiesshift
temporal invariant(STI) policies. EDF is a STI policy
since the priority between two instances only depends on
the offset between arrival dates and on relative deadlines.
On the contrary, a policy defined byΓk,n = (Ck ·Ak,n,k,n)
is not STI; just considerτi,1 andτ j,1 with Ai,1 = 0,Ci = 10
andA j,1 = 1 with Cj = 1 and the same two instances ex-
cept that the arrival dates are shifted to the right by one
unit of time.

Definition 4 Let two concrete task sets beω =
{(τ1,A1,1),(τ2,A2,1).......(τn,An,1)} and ω′

= {(τ1,A1,1 +
Φ),(τ2,A2,1 + Φ).......(τn,An,1 + Φ)} where ω′

is a
“shifted” version ofω (with Φ ∈ Z).

A scheduling policyA is Shift Temporal Invariant (STI)
iff for all possibleΦ, ∀i, j,k,n such that(k,n) 6= (i, j) (two
distinct instances), one has:

∀t ΓA ,ω
k,n (t) � (resp≺) ΓA ,ω

i, j (t) =⇒
ΓA ,ω′

k,n (t +Φ) � (resp≺) ΓA ,ω′
i, j (t +Φ)

whereΓA ,ω
k,n (t) is the priority ofτk,n of the concrete task set

ω at time t.

We have defined a minimum set of requirements that a
“good” policy must fulfill in the context of real-time com-
puting: the policy must be decidable, implementable and
shift temporal invariant. In the next paragraph, we pre-
cise the particular class of preemptive policies that will be
studied in the rest of the paper.



3.2 Search space
In this study, we limit the search space to the class of

“Arrival Time Dependent” policies. This choice is justi-
fied in the following.

“Arrival Time Dependent” policies. Our domain of
study is a sub-class of Time Independent policies (see def-
inition 1) that we callArrival Time Dependent Priority
(ATDP).

Definition 5 An Arrival Time Dependent policy is a pol-
icy whose priority function can be put under the form

Γk,n(t) = (Ak,n + pk,k,n) (1)

where pk: k 7→Q.

pk is an arbitrary function, which returns a constant value
for all instances of taskτk. The value can be an arbitrary
numerical value or it can be dependent of some charac-
teristics of the task (i.e. Dk, Tk andCk). For instance,
for EDF, pk is equal to the relative deadlineDk. Re-
mark that policies, which have a priority function like
Γk,n(t) = (pk,k,n), is the class of fixed-priority policies
(FPP) and other optimization methods exists to attribute
priority (see [13] for example).

Motivations for Arrival Time Dependent policies.
First of all, ATD policies are “good” scheduling policies:

• decidability is ensured by the last two components of
the priority vectors,

• the policies are implementable in the sense of defi-
nition 3; the priority functions are “piecewise order
preserving” due to constant priority over time and
they can be represented by machine numbers.

Secondly, ATD policies are promising in terms of perfor-
mances. EDF belongs to this class but they may exist other
policies that perform close to EDF in terms of feasibil-
ity while having a much better behavior with respect to
application-dependent criteria, see §5.1 for example. The
aim is to find scheduling policies that provide good trade-
off between feasibility and other performance criteria of
interest.

Thirdly, as it will be shown in §4.2, a generic feasibility
analysis, through response time bounds, can be derived for
all ATD policies.

4 Response time bounds for ATD policies

First, we recap the computation of bounds on response
times for periodic tasks scheduled under EDF as initially
proposed in [23]. Then, we show how this analysis can
be extended for dealing with all Arrival Time Dependent
policies.

4.1 EDF analysis: a recap
The response timerk(a) of a task instance is the time

elapsed between its arrivala and its completion. The set
of tasks is feasible under a given scheduling policy if the
response time of each instance is lower or equal than the
relative deadline. In general, it is not possible to compute
the response times of all instances for all foreseeable tra-
jectories of the system; a solution for assessing feasibility
is to compute bounds on response times. Such an analysis
was derived for preemptive EDF in [23].

In [23], it is shown that the worst case response time
of an instance of a task occurs after a certain arrival pat-
tern termed the “As Soon As Possible” pattern (ASAP for
short). This result uses the concept of “deadline busy pe-
riod” for an instanceτk,n, which is a period of processor
utilization without idle-time during which only instances
with deadline not greater thanτk,n are executed.

Lemma 1 [23] A response time bound of an instance of
a taskτk released a units of time after the beginning of its
deadline busy period is found in a deadline busy period
such as (ASAP pattern):

• τk has an instance released at time a (and possibly
others released before),

• all others tasks are released from time t= 0 (begin-
ning of the busy period) on at their maximum rate.

This lemma allows to compute a bound on the response
time rk(a) of an instance ofτk released at timea, denoted
τk(a) in the following. It was proven that the execution
of τk(a) finishs, at the latest, at the timet solution of the
following equation which can be solved by recurrence:

t = Wk(a, t)+
(

1+
⌊

a
Tk

⌋)
·Ck︸ ︷︷ ︸

work of instances
of tasksτk

. (2)

in which t is the lengthLk(a) of the “deadline busy pe-
riod”, and whereWk(a, t) is an upper bound for the "higher
priority workload" (i.e. work induced by instances of
lower or equal deadlines) in an interval of lengtht :

Wk(a, t) = ∑
i 6=k

(
min

(⌈
t
Ti

⌉
,

⌊
a+Dk−Di

Ti

⌋
+1

))+

︸ ︷︷ ︸
maximum number of instances in intervalt

with a deadline lower than or equal toa+Dk

.Ci (3)

and where the work of the instances of taskτk is:(
1+

⌊
a
Tk

⌋)
·Ck

Thus, a bound on the response of an instance ofτk(a) is:

rk(a) = max{Ck,Lk(a)−a} .



The response time bound forτk is maxa rk(a). It is not pos-
sible to computerk(a) for all values ofa but it is proven in
[23] that the only significants values ofa are the elements
of the setAk.

Ak = {t = n×Ti +Di −Dk |
t ≥ 0, t ≤ L −Ck, n∈ N, i = 1...m}. (4)

whereL is the longest busy period (longest duration
of the resource without idle time see [23] for computation
details). In the next section, we show how this analysis
can be easily adapted to Arrival Time Dependent policies.

4.2 Analysis for ATD policies
An instanceτk,n under EDF possesses a priority vector

equal to(Ak,n + Dk,k,n); EDF is thus a particular case
of ATD policy wherepk : k 7→ Dk (see definition of ATD
policies in §3.2). In the following, it will be shown that
Lemma1 as well as the set of arrival dates to consider
after the ASAP pattern (see equation4) remain valid with
the condition thatDk is replaced bypk. “Deadline busy
periods” become “priority busy periods” for an instance
τk,n which are intervals of processor utilization without
idle-time during which only instances with higher priority
thanτk,n are executed.

Lemma 2 A response time bound of an instance of a task
τk released a units of time after the beginning of its pri-
ority busy period is found in a priority busy period such
as:

• τk has an instance released at time a (and possibly
others released before),

• all other tasks are released from time t= 0 at their
maximum rate.

Sketch Of Proof :
Consider virtual-EDF, a modified version of EDF that would

schedule tasks not by taking into account the actual relative
deadline Dk but an arbitrary “virtual” deadline pk . Its priority
function is:

Γvirtual−EDF
k,n (t) = (Ak,n + pk, k, n),

where pk, as Dk, possesses the property that its value is equal
for all instances of task τk. Indeed, this property on pk is needed
for lemma 4.1 in [23] to hold (precisely, when building the ASAP
pattern, shifting left an instance must increase the higher priority
workload).

According to lemma 1, a response time bound for τk un-
der virtual-EDF occurs after the ASAP pattern, as defined by
Spuri [23], where Dk is replaced by pk in the equations 3 and 4.
To assess the feasibility, the response time bounds just have to
be compared with the actual relative deadlines Dk.

�

The way to compute the worst case response time in
nearly the same; only the value ofDk is replaced bypk in
equation3.

Furthermore, the setAk (i.e. the set of significant val-
ues ofa where compute the response time), is (values ofa
which correspond to local maxima ofLk(a)−a):

Ak = {t = dn×Ti + pi − pke |
t ≥ 0, t ≤ L −Ck, n∈ N, i = 1...m}. (5)

Notice thatpi and pk are rational values. Thus,pi −
pk ∈Q while, with the assumption of discrete time, the ar-
rival times considered inAk must belong toN. In this case,
the “significant” values of the EDF analysis (see equa-
tion 4) become heredn×Ti + pi − pke (proof is given in
AppendixA).

5 Experiments

Experiments in this study are performed in the frame-
work of computer-controlled systems. Chosen perfor-
mance criteria are presented in §5.1 while the space of
scheduling policies that will be considered is defined in
§5.2.

5.1 Performance criteria
We consider periodic control loops where the control

algorithm is modeled by a periodic taskτk with periodTk

(i.e. the sampling period). In classical control theory, the
main parts of a control loop are sampling, control compu-
tation and actuation. Some assumptions are made:

• the reading of data from sensors (i.e. sampling) is
assumed to be done at the beginning of each instance
(at timeBk,n),

• the computation of the control law is performed in a
constant timeCk,

• the actuation, that is the transmission of output data
to the actuators, is done at the end of execution of
each task instance (at timeEk,n).

Specific delays of control loops have been identified to
be of particular importance for the stability of the sys-
tem, and, more generally, for its performances (see, for
instance, studies in [3, 26, 25]). These delays are:

• the input-output latencyof an instanceτk,n, which is
the time elapsed between the sampling and the actua-
tion. This value, denotediolk,n, is equal toEk,n−Bk,n

with our notations,

• the sampling interval sin, which is the time inter-
val between two consecutive sampling instants (i.e.
Bk,n+1−Bk,n),

• the sampling latencyof an instanceτk,n, which is the
time elapsed between the theoretical sampling time
and its actual occurrence (i.e. Bk,n). This valueslk,n
is equal toBk,n−Ak,n,



In classical discrete control theory, input-output latencies
and sampling intervals are assumed to be constant with
no sampling latency. In practice, when resources are not
dedicated to a single control loop, these delays exists and
greatly impact the performances (see [25, 17]). The aim is
thus to keep these delays and their variabilities (jitters) as
close as possible to the assumptions made by the theory.

In the following, as to our best knowledge there is no
analytic technique, values of the criteria are computed
with the data collected during simulation runs. A given
criterion is evaluated for a policy as the average value of
the criterion for all tasks.

5.2 Search space
The aim is to find policies that performs good in terms

of feasibility, for optimizing the use of resources, but also
policies that are efficient with respect to the above-defined
criteria. In the following, experiments will be done within
a sub-class of ATDP policies having a priority vector of
the form

Γk,n = (Ak,n +c.Ck +d.Dk,k,n) (6)

whered ∈ [0,1] andc∈ [0,100] (i.e. pk = c.Ck +d.Dk in
definition5). A point C in our search space is a policy de-
fined by a priority function having the form of equation6.

This class has been chosen because we expect that it
contains policies providing a good trade-off between fea-
sibility and the satisfaction of the other criteria important
for control systems (see5.1). EDF actually belongs to
this class and policies whose priority function is “close”
to EDF are expected to have nearly the same behavior in
terms of schedulability. On the other hand, introducing a
term dependent of the execution time should help to im-
prove the other criteria. Indeed, it has been shown that
Shortest Remaining Processing Time First is optimal for
average response times in various contexts (see [21, 22]
quoted in [5]) and, in our experiments, Shortest Maximum
Processing Time first (defined asΓk,n = Ck,n) performed
much better than EDF for all defined criteria except, of
course, feasibility.

5.3 Experimental results
We consider several control tasks sharing a CPU where

the initial offsets of the tasks are not known (i.e. non-
concrete set of tasks). In the following, we will distinguish
the case where the policy has to be efficient on average (it
can be used with different task sets) and the case where
the policy is tuned for a particular application.

For the experiments, non-concrete task sets are gen-
erated with a global load randomly chosen in the in-
terval [0.8,0.9] with Di = Ti . For the simulations, off-
sets are to be known; a concrete set of tasks is gen-
erated from a non-concrete one by randomly choosing
the offsetAi,1 of each taskτi in the interval[0,Ti ]. Re-
sponse time bounds and simulation software are im-
plemented in C++; an applet version of the simulator
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Figure 1. Feasibility, average sampling la-
tency and average sampling interval jitter
with comparison to EDF. The policies eval-
uated are defined by equation 6 with d = 0.1
and c ranging from 0 to 100. Experiments
made on random sets of 10 tasks for an av-
erage load of 0.85.

is available athttp://webloria.loria.fr/equipes/
TRIO/simulateur/SimApplet.html.

5.3.1 Scheduling for the average case

Our search space is defined by equation6. Figure 1
only shows the performances of the set of policies where
d = 0.1 and wherec takes its value in[0,100] with step
0.5 in equation6. The two first performance criteria are
the average sampling latency and the average sampling
interval jitter (measured as the standard deviation of the
sampling intervals), their values are read on the ’y’ axis
on the left and they are computed as the average value of
1500 simulation runs (100 non-concrete sets of tasks with
15 different offsets). The other criterion is feasibility; the
’y’ axis on the right shows the percentage of feasible task
sets where all task sets have been chosen to be feasible
under plain EDF.

As expected, one sees on figure1 that the larger the
value ofc in Γk,n, the better performances with respect to
average sampling latency and average sampling interval
jitter. The counterpart is that feasibility significantly di-
minishes whenc increases. Whenc becomes large, terms
Ak,n and d ·Dk tend to be annihilated byc ·Ck in equa-
tion 6 and policies behave in a quite similar manner as
Shortest Maximum Processing Time first (see5.2). The
peak value for feasibility (i.e.c around 8) can be ex-
plained because, with the parameters of our experiments,
c·Ck +d ·Dk, ≈ Dk so the policies are close to EDF.

As an example, let us consider the policy defined by
Γk,n = (Ak,n +15.Ck + 1

10Dk,k,n), it is feasible with 58%
of task sets while achieving an improvement of 25% for
the average sampling latency and of 22% for average sam-

http://webloria.loria.fr/equipes/TRIO/simulateur/SimApplet.html
http://webloria.loria.fr/equipes/TRIO/simulateur/SimApplet.html
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Figure 2. Average sampling latency and av-
erage sampling interval jitter with compari-
son to EDF for the best feasible policy found
in the search space defined by equation 6.
The improvement is evaluated for a number
of task ranging from 6 to 16.

pling interval jitter. In practice, a computer-controlled
system will have better performances with this policy
than with EDF. It worth noting that equivalent results, not
shown here, were found for the average input-output la-
tency and the input-output latency jitter.

5.3.2 Scheduling for a particular application

The aim is here to find the policy that leads to a feasi-
ble schedule and that provides the greatest improvement
for the other criteria. The search space, defined by equa-
tion 6, is exhaustively searched with steps of granularity
d = 0.1 andc = 0.5 (the search space comprises approx-
imatively 2000 policies). Each point shown on figure2
is the average improvement over 100 runs (only the best
policy at each run is considered), where a run is defined
by a task set randomly generated with an average load of
0.85. As in §5.3.1, the performance criteria are the av-
erage sampling latency and the average sampling interval
jitter.

On figure2, one sees that for a particular application,
improvements are always larger than 32% for average
sampling latency and larger than 26% for average sam-
pling interval jitter whatever the cardinality of the set of
tasks. For example, the average improvement achieved
for 10 tasks is 35% for average sampling latency and 30%
for average sampling interval jitter.

Overall, the technique is efficient, even on heavily
loaded systems (average load of 0.85 in our experiments)
and the improvement over EDF for average sampling la-
tency and average sampling interval jitter is really signif-
icant whilst always ensuring feasibility. Similar results,
not shown here, were found for the average input-output
latency and the input-output latency jitter.

6 Conclusion and future work

In this paper, we highlight a class of on-line scheduling
algorithms that are both easy to implement and that can
provide interesting performances for feasibility and, espe-
cially, for other application-dependent criteria. We pro-
pose an algorithm to compute worst-case response time
bounds that is generic for all policies of the class. Exper-
iments show that, in the context of computer-controlled
systems where delays and jitters impact the performances
of the control loop, well chosen policies can bring impor-
tant improvements over plain EDF.

In the future, we intend to evaluate more precisely
the impact of the scheduling policies using software tools
such as TrueTime [10] or the tool described in [17], that
allow to integrate delays induced by the scheduling in the
control loops. It is also planed to experiment new search
techniques for exploring the policy search space; prelim-
inary experiments show that simple neighbourhood tech-
niques such hill-climbing are much more efficient than ex-
haustive search.

This work could be extended to other class of policies
such as time-sharing policies (e.g. Round-Robin, Pfair).
The main problem will be here to come up with a generic
schedulability analysis.
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A Significant values ofa for response time
bound analysis

A proof of formula5 is given here.

Which a are to be analyzed ? Only arrival datesa,
which imply changes in the workload brought by the oth-
ers tasks and by the same task, are to be considered. In-
deed, leta1 anda2 be two arrival dates witha2 > a1 and

Wk(a1, t)+
(

1+
⌊

a1

Tk

⌋)
·Ck = Wk(a2, t)+

(
1+

⌊
a2

Tk

⌋)
·Ck , (7)

thenrk(a1) ≥ rk(a2). Indeed, from equation7 and equa-
tion 2:

Lk(a1) = Lk(a2)

Lk(a1)−a1 ≥ Lk(a2)−a2

rk(a1)≥ rk(a2).

Thus, only the response time for the instance arrived ina1

has to be computed.

Significant values ofa. Let us determine the values of
a that induce changes in the workload

1. brought by instances of the same task (i.e.(
1+

⌊
a
Tk

⌋)
·Ck):

∀n∈N then
⌊

a
Tk

⌋
= n iff n·Tk ≤ a< (n+1) ·Tk. The

values ofa that imply changes are:

a∈ {t = n·Tk | t ≥ 0, n∈ N}. (8)

2. brought by instances of the oth-
ers tasks (i.e. Wk(a, t) =

∑
i 6=k

(
min

(⌈
t
Ti

⌉
,

⌊
a+ pk− pi

Ti

⌋
+1

))+

︸ ︷︷ ︸
maximum number of instances in intervalt

·Ci):

∀n∈ N, ∀i 6= k then
⌊

a+pk−pi
Ti

⌋
= n iff:

n≤ a+ pk− pi

Ti
< n+1,

n·Ti + pi − pk ≤ a < (n+1) ·Ti + pi − pk.

as by assumptiona∈N, andn·Ti + pi− pk ∈Q, then
the smallest value ofa greater thann ·Ti + pi − pk

which is by definitiondn×Ti + pi − pke. The values

of a that imply changes in
⌊

a+pk−pi
Ti

⌋
are thus

a∈ {t = dn×Ti + pi − pke |
t > 0, i = {1,2, ...,m}\{k}, n∈ N}. (9)

Finally, from equation8 and equation9, the values ofa
for which response time bounds have to be computed are:

a∈ {t = dn×Ti + pi − pke |
t > 0, t < L −Ck, i = 1..m, n∈ N}.

http://www-eleves-isia.cma.fr/%7Egury/ORDO/
http://www-eleves-isia.cma.fr/%7Egury/ORDO/
http://www.inria.fr/rrrt/rr-2772.html
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