Automotive embedded systems: some research challenges

Nicolas Navet
nicolas.navet@realtimeatwork.com

ETR’2009, Paris
03/09/2009

Electronics is the driving force of innovation

- 90% of new functions use software
- Electronics: 40% of total costs
- Huge complexity! 70 ECUs, 2000 signals, 6 networks, multi-layered run-time environment (AUTOSAR), multi-source software, multi-core CPUs, etc

Strong costs, safety, reliability, time-to-market, reusability, legal constraints!
Many issues in the design of E/E systems are not strictly technical!
Eg. Key issues in architecture development at Volvo in paper ref[2]

- Lack of background in E/E at management level (often mechanical background)
- Influence of E/E architecture wrt to business value? Lacks long term strategy
- Lack of clear strategy between in-house and externalized developments
- Technical parameters are regarded as less important than cost for supplier / components selection

Key issues in architecture development at Volvo in paper ref[2] (2/2)

- How to share architecture/sub-systems between several brands/models with different constraints/objectives?
- Sub-optimal solutions for each component / function
- Architectural decisions often:
 - are made on experience / gut feeling (poor tool support)
 - Lacks well-accepted process
Where to tackle the problem from a technical point of view? (see ref[3])

- **Design**: model functional and non-functional features ⇒ software components, MDD, etc
- **Validation / Analysis**: dependability, (end-to-end) response time, memory consumption (e.g. buffers), deadlocks, etc
- **Synthesis**: remove unused features, mapping of components to runtime objects (ECU/Tasks), setting runtime parameters (priorities, offsets, etc)
- **Runtime mechanisms**: OS, protocols, drivers, NM, diagnostics, etc

Validation is a key activity!

Personal view on the developments

- Mostly ahead of us!
- **Talk part 2**: «correctness by construct» and optimal synthesis
- **Talk part 1**: «Worst-case» deterministic analysis system level
- Probabilistic analysis system level
- «Worst-case» deterministic analysis (sub-system)
- «Smart» monitoring tools
- Simulation tools (co-simulation, HIL)

Timeline:

- 1994
- 1997
- 2009
Part 1 - probabilistic framework for schedulability analysis: illustration on the aperiodic traffic on the bus
(joint work with PSA Peugeot-Citroën see paper ref[5])

Probabilistic analysis is needed

- Systems are not designed for the worst-case (provided it is rare enough!)
- Reliability/Safety are naturally expressed and assessed in terms of probability (e.g. < 10^-9 per hour)
- Deterministic assumptions are sometimes unrealistic or too pessimistic, e.g.:
 - Worst-Case Execution Time on modern platforms,
 - Aperiodic activities: ISR, frame reception,
 - …
- Faults/errors are not deterministic (and better modeled probabilistically)
Accounting for the aperiodic traffic

- Transmission patterns can hardly be characterized: purely aperiodic, mixed periodic/aperiodic, etc
- Aperiodic frames do jeopardize RT constraints
- Few approaches in the literature:
 - Deterministic approaches, such as sporadic, generally lead to unusable results (e.g., $\rho > 1$)
 - Average case probabilistic approach not suited to dependability-constrained systems
 - Probabilistic approaches with safety adjustable level, see paper ref[6] and ref[7]

Approach advocated here

1) Measurements / data cleaning
2) Modeling aperiodic traffic arrival process
3) Deriving aperiodic Work Arrival Process (WAF)
4) Integrating aperiodic WAF into schedulability analysis
Data trace analysis

y: aperiodic interarrival times – x: index of interarrivals

Approximate because what is seen on the bus is not the actual arrival process at ECU level! can be handled

Question: are interarrival times i.i.d. ?

Use of BDS test for non-linear dependencies

Periodic frame?
Distribution fitting for aperiodic interarrival: 3 candidates here

MLE adjusted parameters

Kolmo. Smi. and χ^2 tests to confirm visual impression

Captured data trace VS random trace generated with MLE-fitted Weibull

Real data trace

Simulated data trace
Deriving the aperiodic WAF

- \(S(t) \): aperiodic WAF
- \(X(t) \): stochastic process which counts the number of aperiodic frames in time interval \(t \)
- “smallest” \(S(t) \) such that the probability of \(X(t) \) being larger than or equal to \(S(t) \) is lower than a threshold \(\alpha \)

\[
\hat{S}(t) = \min\{S(t) \mid Pr[X(t) \geq S(t)] \leq \alpha\}
\]

By simulation, numerical approximation or analysis (simplest cases such as exp.)

Design choice: e.g., \(10^{-9} \)

Aperiodic WAF depends on the underlying interarrival distribution

Same average intensity
Case-study on a typical body network

- Body network benchmark generated using GPL-licensed Netcarbench
- Characteristics:
 - 125kbps, 16 ECUs, 105 CAN frames with deadlines equal to periods and 1 to 8 bytes of data.
 - Total periodic load is equal to 35.47%
- NETCAR-Analyzer for WCRT computation
- 3% aperiodic traffic
- 7 byte aperiodic frames
- $\alpha = 10^{-4}$

Worst-case response times with/out aperiodic traffic (3%)

13 frames with $T=100\text{ms}$ add delays
Conclusion - part 1

- Chosen dependability requirements are met while pessimism kept to minimum:
 - Practical approach
 - Real data are required
 - Can be extended to the non i.i.d. case (not needed here)

- What is needed now is a system level approach that
 - Can handle arbitrary activation processes
 - Goes beyond the i.i.d. case (for dependability)

Part 2 – optimized synthesis, the case of frame scheduling on CAN

(see paper ref[8])
Optimizing the use of resources is becoming an industrial requirement

- Reasons for optimizing (i.e., less hardware):
 - Complexity of the architectures (protocols, wiring, ECUs, gateways, etc)
 - Hardware costs / weight, room, fuel consumption, etc
 - Need for incremental design
 - Industrial risk and time to master new technologies
 - Performances (sometimes):
 - Ex1: A 60% loaded CAN network may be more efficient than two 35% networks interconnected by a gateway
 - Ex2: cost of communication in distributed functions
 - Limits of current technologies (CPU frequency w/o fan),

Scheduling frames with offsets ?!

Principle: desynchronize transmissions to avoid load peaks

Algorithms to decide offsets are based on arithmetical properties of the periods and size of the frame
System model (1/2)

- Performance metric: worst-case response time

ECU

Frame Transmission request

Frame response time

CAN

Higher prio. frames

System model (2/2)

- The offset of a message stream is the time at which the transmission request of the first frame is issued

- Complexity: best choosing the offsets is exponential in the task periods → approximate solutions
- Middleware task imposes a certain granularity
- Without ECU synchronisation, offsets are local to ECUs
But task scheduling has to be adapted...

Frame response time

In addition, avoiding consecutive frame constructions on an ECU allows to reduce latency

Simple offsets Algorithm (1/3)

- Ideas:
 - assign offsets in the order of the transmission frequencies
 - release of the first frame is as far as possible from adjacent frames
 - identify “least loaded interval”
- Ex: \(f_1 = (T_1 = 10), \ f_2 = (T_2 = 20), \ f_3 (T_3 = 20) \)

<table>
<thead>
<tr>
<th>Time</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>14</th>
<th>16</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame</td>
<td>(f_{1,1})</td>
<td>(f_{2,1})</td>
<td>(f_{1,2})</td>
<td>(f_{3,1})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Offsets Algorithm applied on a typical body network

![Graph showing WCRT comparison]

- WCRT without offset
- WCRT with offsets (algorithm of the paper)

CAN frames sorted by decreasing priority order

- 65 ms
- 21 ms

Offsets Algorithm – industrial needs

- Low complexity and efficient as is but further improvements possible:
 - add frame(s) / ECU(s) to an existing design
 - user defined criteria: optimize last 10 frames, a specific frame,
 - take priorities on the bus into account
 - optimization algorithms: tabu search, hill climbing, genetic algorithms
- ...
Efficiency of offsets: some insight (1/2)

- Almost a straight line, suggests that the algorithm is near-optimal

Efficiency of offsets: some insight (2/2)

- A larger workload waiting for transmission implies larger response times for the low priority frames..
Computing worst-case response times with offsets

Requirements:
- handle 100+ frames
- very fast execution times
- ≠ waiting queue policy at the microcontroller level
- limited number of transmission buffers

Waiting queue:
- FIFO
- Highest Priority First (HPF - Autosar)
- Carmaker specific

CAN Controller
9 6 8
buffer Tx

CAN Bus
WCRT : State of the art

- Scientific literature:
 - Complexity is exponential
 - No schedulability analysis with offsets in the distributed non-preemptive case
 - Offsets in the preemptive case: not suited for > 10-20 tasks
 - WCRT without offsets: infinite number of Tx buffers and no queue at the microcontroller level

- RTaW software: NETCAR-Analyzer

Performance evaluation:

- Experimental Setup
- WCRT of the frames wrt random offsets and lower bound
- WCRT reduction ratio for chassis and body networks
- Load increase: add new ECUs / add more traffic
Experimental Setup

- Body and chassis networks

<table>
<thead>
<tr>
<th>Network</th>
<th>#ECUs</th>
<th>#Messages</th>
<th>Bandwidth</th>
<th>Frame periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body</td>
<td>15-20</td>
<td>70</td>
<td>125Kbit/s</td>
<td>50ms-2s</td>
</tr>
<tr>
<td>Chassis</td>
<td>5-15</td>
<td>≈ 60</td>
<td>500Kbit/s</td>
<td>10 ms-1 s</td>
</tr>
</tbody>
</table>

With / without load concentration: one ECU generates 30% of the load

- Set of frames generated with NETCARBENCH

Offsets in practice : large response time improvements (1/2)

![Graph showing WCRT improvements](image)

WCRT without offset
WCRT with random offsets (average value)
WCRT with offsets (algorithm of the paper)
WCRT lower bound

65 ms
32
21
17
WCRT Reduction Ratio

- Results are even better with loaded stations

Offsets allow higher network loads

- Typically: WCRT at 60% with offsets ≈ WCRT at 30% without offsets
Partial offset usage

Conclusions on offsets

- Offsets provide an cost-effective short-term solution to postpone multiple CANs and FlexRay
- Tradeoff between Event and Time Triggered

<table>
<thead>
<tr>
<th>ET CAN</th>
<th>CAN with offsets</th>
<th>TT-CAN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+ Complexity</td>
<td>+ Determinism</td>
</tr>
</tbody>
</table>

- Further large improvements are possible by synchronizing the ECUs ...
References

References (1/2)

Automotive Embedded Systems - General

Dependability / probabilistic framework

Scheduling frame with offsets on CAN

Questions / feedback?

Please get in touch at:
nicolas.navet@realt imeatwork.com
http://www.realt imeatwork.com