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Trading System

> Defined by :
« Entry condition(s)
« Exit condition(s)
« Position sizing
> Implemented in an Automated Trading
System (ATS) or executed by a trader




Perfermance of a trading system

= Performance metric : return (P&L), Sharpe ratio, ..
= Reference period — e.g: day, week, ...

P&L interval Probability
(—3,-2] 1/25
(—2,-1] 2/25
(—1,-0] 3/25

(0,1] 12/25

(1,2 4/25
(2,3] 2/25
(3,4] 1/25

Distribution: of the perfermance metric

Obtaining the distribution of the
performance metric

1. Prior use of the TS

2. Back-testing on historical data, but :
Doees not account for slippage and delays

Data-mining bias if a large number of systems are
tested

» Performance must be adjusted accordingly!




Notations and Assumptions

Xz' : performance at period i

Xl, X2, 360 Xn : 1) are mutually independent and
identically distributed

2) obey a distribution law that
does not change over time

How to assess the risks ?

n
= We want to estimate p = P[Z X; < x9]

1

1. Monte-Carlo simulation

2. Analytic approaches:

.. Markov’s, Tchebychev’s, Chernoff's upper
bounds

». Large deviation




Monte-Carlo simulation

= Generate n random trading sequences and compute
an estimate of the probability

= CLT tells us that the estimate will convergence to p

but slowly and
vp(l—p)

V2100
Vnp

percentage error =

= Error bound of 1% with p=10- requires n=10°

= Problem : random number generators are not perfect ..

Analytic approaches

= Weak law of large numbers :

nx.
lim P (‘Z— —E[X]‘ < e) Ve > 0
n— 0o n

But the rate of convergence is unknown ..

= Elements of solution:

» Not tight enough for real-world applications




Large deviation: main result

: mean performance over n
periods

= Cramer’s theorem : if X, i.i.d. r.v.

P(Mn c G) = e—ninfmeg I(x)
\
e.g. G = (—o0,—k$]
with [(x) the rate function
“+o0

I(x) = sup[rz — log E(e™*)] = sup[rz — log Z pre®T]

7>0 T>0 k=—o00

)

Technical contribution

» Can deal with distributions given as
frequency histogram (no closed-form)

« I(X) Is the sup. of affine functions and thus
convex

« Computing the point where first derivative
egual zero is thus enough

» Can be done with standard numerical
methods




Risk over a given time interval

Upper bound on the probability

Time interval in days (n

P[M,, < —1K$] < 0.001

Quantifying the uncertainty.

» The uncertainty of trading system Sp to achieve a
performance x over n time periods is

M(af, n) — P[]\[n < x/n] <e ™ infy <z /n I(y)

= Sp is with performance objective x over n time periods
Is less uncertain than Sp’ with return objective x' over n'
time periods if

U(z,n) <U'(z',n)




Detecting changing market
conditions

= |dea: if a TS performs way below what
was foreseeable, it suggests that market
conditions have changed

E.g., if the current performance level had a
probability less than 106

Portfolio of Trading Systems

> Assumption: TS are independent

n

1 p m
~ Comes to evaluate : P~ > (X] + X7 + ..+ X") < z§]
=1

> Sum of 2 id. r.v. = convolution, computed using
Fast Fourier Transform :

fxg=FFT-YFFT(z)- FFT(y))




Conclusion

LD is better suited than simulation for rare
events (<104)

LD can serve to validate simulation results

LD helps to detect changing market conditions
Our approach is practical :

« No need for closed-form distributions

« Easily implementable

« Work for portfolio of TS
« Can be embedded in a broader analysis

Extensions

= There are ways to address the cases:

» There are serial dependencies in the trade
outcomes

« The market conditions are changing over time
=> p.d.f. non-homogeneous in time




