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Assessing the Risk and Return of Finanial Trading Systems- a Large Deviation Approah ∗Niolas NAVETLORIA-INRIABP 239, 54506, Vandoeuvre, FraneE-mail: nnavet�loria.frRené SCHOTTIECN-LORIABP 239, 54506, Vandoeuvre, FraneE-mail: shott�loria.frWe apply large deviation theory to assess the probability that a trading systemperforms below or above a ertain threshold. Our tehnique does not requirethat the distribution of the performane riterion obeys a losed-form equa-tion, and an aept as input empirial distributions given under the form offrequeny histograms obtained by baktesting or from prior use of the tradingsystem. A nie property of the tehnique is that it an be easily automated andintegrated into a trading platform. Furthermore, the approah is not limitedto a single trading system but an be applied on portfolio of trading systems.Keywords: Risk assessment, Value-at-Risk, �nanial trading rules, large devi-ation, tehnial analysis.1. IntrodutionLarge deviation (LD) is a theory of rare events that is foused on the anal-ysis of tails of probability distributions. Large deviation is lassially usedto study how random proesses deviate from their expeted value. If up-per bounds on this quantity an be obtained through Chernov, Markov andThebyhev inequalities, LD provides the exat rate of onvergene, insteadof an upper bound that is often not tight enough for real-world appliations.LD has been a very ative �eld of investigation over the last 10 years with
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2numerous pratial appliations, for instane for evaluating performane ofalgorithms or teleommuniation infrastrutures. Another body of litera-ture applies large deviation to risk analysis (see Ref. 7 for a reent andomprehensive survey), and this is atually the �eld of appliations fromwhih originates LD theory.This paper belongs to this latter line of researh and fouses on assess-ing the risk of �nanial trading rules. This work is aimed at giving answersto the pratitioners, and thus the tehniques provided an be applied withas few tehnial assumptions as possible. In partiular, the approah de-veloped here does not require losed-form distributions, and is able to dealwith empirial distributions obtained from the baktesting step, or fromexperiene gained using the trading rules. The interest of this approahwith regard to Monte-Carlo simulations is three-fold. First, simulation isnot well suited to estimate rare events beause of the size of the samplethat is needed to ahieve reasonable error bounds. Seond an analytialapproah does not su�er the unertainties of simulation (e.g., quality of therandom number generators). Finally, this analysis an be integrated into abroader Value-at-Risk analysis.2. Charaterizing the Performane of a Trading SystemA trading system is omprised of one or several trading rules that de�neentry and exit onditions, and deide the size of eah position taken. Atrading system an be seen as an algorithm that is implemented either asa omputerized Automated Trading System (ATS) or exeuted, in a on-sistent manner, by a trader. The typial way to selet trading systems is toevaluate a set of andidate systems on historial data and keep the best sys-tem or several top-soring ones. This is the �baktesting� proedure, whihis a feature nowadays available on almost any tehnial analysis softwarepakage.The andidate systems an be seleted by exploring the parameter spaeof a andidate trading system, for instane, a tehnial analysis trading ruleor a system based on short term autoorrelations. More evolved shemesare not only onerned with the problem of setting the parameters but havealso in addition the ability to indue the trading system itself. In partiular,Geneti Programming (GP) has often been used for that purpose (see, forinstane, Ref. 2,6).It is to stress that baktesting is most often positively biased beauseof slippage and delays (in quotations and transmissions of orders) thatare hard to model, and beause of the data mining bias. Indeed, when
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3trying a large number of systems, some are likely to have bene�ted, to aertain extent, of luk, for instane, by taking advantage of noise in thedata. Thus, the performanes ahieved by baktesting should be arti�iallyredued taking all these parameters into aount. The reader might referto Ref. 1,4 for good starting points on this subjet.In our ontext, the most important harateristi of a trading system

SP is the distribution P of its performane riterion over a hosen refereneperioda. We onsider the most general ase where the distribution of theperformane riterion is given under the form of a disrete probability dis-tribution diretly obtained through the frequeny histogram. However, itis of ourse required that the frequeny histograms are meaningful from astatistial point of view, whih implies that they have been obtained froma su�iently large sample. In the following, our approah to assess risksthrough LD will be illustrated onsidering that the performane riterion isthe pro�t/loss distribution, but it ould be any other performane riterionof interest.3. Risk Indued by a Trading SystemHere we assess the risk of a given trading system using large deviationtheory. Implied is the assumption that, roughly, the trading system willkeep on performing as it did on historial data. This assumption that themarket onditions are �homogeneous in time� is not questioned in this paperbut an be revisited in future work by onsidering time-hanging probabilitydistributions (see Ref. 3).3.1. Risk over a given time intervalThe risk indued by trading system SP is a funtion of n, the length of thetime interval during whih SP is used. We assume that n is a multiple of
T , the referene period of the performane riteria distribution beause, inpratie, it is usually meaningless to onsider frational referene periods.For instane, the meaning of onsidering one half of a day for an intradaytrading system is dubious given that usually all positions are leared at themarket lose to avoid overnight risks.Let (Xn), n ∈ N be the sequene of mutually independent, identiallydistributed random variables modeling the value of the performane rite-aThe hoie of the observation period depends obviously on the trading style: for intradaytrading, the day is a natural hoie, while for swing trading a week or a month would bebetter suited.
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4rion over suessive period, and let the mean Mn = 1

n

∑n

i=1 Xi. Cramer'stheorem (see Appendix A for details and notations), whih is entral inLD theory, enables us to state that P (Mn ∈ G) satis�es a rate deviationpriniple with rate-funtion I: P (Mn ∈ G) ≍ e−n infx∈G I(x) where G is anysubset of R. In our ase, G is the subset we want to assess the probabilitythat the performane riterion belongs to. For instane, if we are interestedin P (Mn ≥ k) with k ≥ E[Xi] then G = [k, +∞) and we estimate the deayrate of the right-hand tail of the distribution. From LD theory, we knowthat
I(x) = sup

τ>0
[τx − log E(eτX)] = sup

τ>0
[τx − log

+∞∑

k=−∞

pkekτ ] (1)If there is a losed form for the law of the Xn, or if the Xn form a �niteMarkov hain, it is possible to obtain an expliit expression for the ratefuntion. In our ase, where the law of Xi is given by a density histogram,this is not possible and a numerial method has to be employed. As I(x)is a supremum of a�ne funtions, it is a onvex funtion and it is enoughto ompute the point x∗ where I(x) reahes its minimum to obtain theasymptoti behavior
P (Mn ∈ G) ≍ e−nI(x∗). (2)

x∗ is the point where the �rst derivative of I(x) with respet to t is equalto 0 (see equation 1). This point is reahed for τ0 s.t. x
∑+∞

k=−∞
pkekτ0 =∑+∞

k=−∞
kpkekτ0 whih an be rewritten as ∑+∞

k=−∞
(k − x)pkekτ0 = 0. Let

u = et and
F (u) =

+∞∑

k=−∞

(k − x)pkuk, (3)the problem onsists in �nding numerially u0 > 0 s.t. F (u0) = 0. This anbe solved with Newton-like methods, whih are available in any numerialor symbolial omputation software.3.2. AppliationsLet us onsider a typial intraday trading system where positions are losedbefore the end of the trading day. The hosen performane metri is thepro�t/loss (P&L in K$) and Fig. 1 shows its empirial distribution obtainedover a su�iently large timespan.
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5P&L interval Probability k

(−3,−2] 1/25 −2.5
(−2,−1] 2/25 −1.5
(−1,−0] 3/25 −0.5

(0, 1] 12/25 0.5
(1, 2] 4/25 1.5
(2, 3] 2/25 2.5
(3, 4] 1/25 3.5.Fig. 1. Empirial distribution of the Pro�t and Loss in K$ with an expetation equalto 0.54. Value of k is the mean of the interval.Risk indued by a trading system. A �rst information that an bederived is the risk indued by the trading system, whih omes to evaluatingthe probability that the average return over n days is lower than a giventhreshold: P [Mn ≤ x]. Of partiular signi�ane is the risk of losing moneywhih orresponds, below a ertain loss threshold, to the risk of ruin. Ifthe market onditions do not hange over time, and if the expetation ofthe P/L is positive, we know that this risk deays exponentially and thehigher the deay rate, the less risky is the orresponding trading system.This leads us to formulate the following de�nition.De�nition 3.1. The unertainty of trading system SP to ahieve a perfor-mane x over n time periods is U(x, n) = P [Mn ≤ x/n] ≤ e−n infy≤x/n I(y).De�nition 3.2. Trading system SP with performane objetive x over ntime periods is less unertain than trading system S

′

p with return objetive
x′ over n′ time periods if U(x, n) ≤ U ′(x′, n′).Considering our example, we evaluate the probabilities to ahieve anaverage P&L lower than x for x ∈ {0,−0.5,−1}. For eah x value, we replae
x by its value in Equation 3 and obtain numerially u0 s.t. F (u0) = 0. Thevalue of t s.t. Equation 1 is maximized is t0 = lnu0. Then, we ompute
I(x) over the interval G of interest (here (−∞, x]) and the in�mum is thedeay rate I(x∗) we are looking for (see Equation 2). The upper bound onthe probability that P [Mn < x] for x ∈ {0,−0.5,−1} is shown in Fig. 2.For instane, over 10 trading days, the probability to get a negative returnis less than 0.42 while the probability to get less than −0.5K$ and −1K$are respetively lower than 0.04 and 0.001.
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Fig. 2. Upper bound on the probability that P [Mn ≤ x] with x ∈ {0,−0.5,−1} over
n ∈ [1, 50] periods of time. The risk deays exponentially with rate 0.08 (x = 0), 0.32(x = −0.5) and 0.68 (x = −1).Probability of pro�ts above expetations. The same proedure pro-vides us with a way to estimate the probability that the trading systemoutperforms a given threshold x with x ≥ E[Xi]. On the same exam-ple, we derived an upper bound on the probability that P [Mn ≥ x] with
x ∈ {1, 1.5, 2}. The probability deays exponentially with rate 0.06 (x = 1),
0.28 (x = 1.5) and 0.64 (x = 2) and we obtain urves similar to the onesshown in Fig. 2.Deteting when market onditions have hanged. In an indiretmanner, LD provides us with a way to detet that the market onditionshave hanged sine the empirial distribution of the trading system's perfor-mane has been olleted. Indeed, if a trading system experienes a perfor-mane that is way below what was foreseeable, if it ahieves a performanelevel that has been evaluated as highly unlikely, this gives us evidene thatthe market onditions have hanged, and thus suggests to us that our as-sumptions about the market should be re-examined. We believe this isimportant beause markets's dynamis hange over time and it is ruialto be able to detet when trading systems stop being e�ient.4. Risk indued by a Portfolio of Trading SystemsIn pratie, investors may prefer to employ a set of trading systems insteadof a single system, beause diversi�ation provides additional pro�t possi-bilities, and also helps to limit slippage and redue risks. If the probabilitydistributions of the performane riteria of the trading systems are inde-
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7pendentb, it is possible to assess the risk of a �portfolio� of trading systemsin the same way as done in previously for a single system. More formally,this omes to evaluate

P [
1

n

n∑

i=1

(X1
i + X2

i + ... + Xm
i ) ∈ G]where the Xj

i is the sequene of random variables giving the performaneof system j over time.The probability distribution of the sum of two independent disrete ran-dom variables X and Y with probability distribution f and g is given by theonvolution f ⋆ g. In pratie, the most e�ient way to ompute a onvolu-tion is to use a Fast Fourier Transform (FFT) : f ⋆ g = FFT−1(FFT (x) ·

FFT (y)). In our ase, if P j denotes the probability law of the sequene
Xj

i , one has P
1 ..m,⋆ = P

1 ⋆ P
2 ⋆ ... ⋆ P

m = FFT−1(
∏m

i=1 FFT (P i)) and
P (1

n

∑
n

i=1
Pi

1 ..m,⋆ ∈ G) ≍ e−n infx∈G I(x).5. Conlusion and PerspetivesIn this study, we apply large deviation theory to assess the risks of tradingsystems. Our approah is pratial in the sense that and it an ope withempirial distributions given under as frequeny histograms, an be easilyautomated and integrated into a existing trading platform and is able toonsider the ase of portfolios of several trading systems. The informationprovided by the analysis is twofold: �rst a preise estimation of the prob-ability to perform below or above a ertain threshold, but also a way todetet, with a hosen ertainty level, that a trading system has stoppedbeing e�ient.We assumed that market onditions do not hange over time, preiselythat a trading system will keep on performing as it did in the past. This as-sumption an be relaxed, for instane by onsidering that the performanesare likely to derease with the passing of time beause of hanging marketonditions. Tehniques developed in Ref. 3 in the ontext of dynami ran-dom walks may provide us with the theoretial foundations to address theproblem.bTotal independene is probably out-of-reah beause there are trends and orrelationsin the markets but studying the orrelation between the returns of di�erent systemsgives us a good insight into the extent to whih this assumption is ful�lled. In pratie,having as little orrelation as possible is a meaningful riterion to ompose a portfolio oftrading systems.
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8Appendix A. Large Deviation: Notations and ReapLet us reall that (Xn), n ∈ N, is the r.v. giving the performane of atrading rule over suessive periods and Mn = 1

n

∑n

i=1 Xi. Cramer theoremstates that:
− inf

x∈G◦
I(x) ≤ lim inf

n→∞

1

n
lnP (Mn ∈ G) ≤

lim sup
n→∞

1

n
lnP (Mn ∈ G) ≤ − inf

x∈Ḡ
I(x)where G is any subset of R, with G◦ the open subset and x ∈ Ḡ thelosed subset. From the previous inequalities, one derives − infx∈G◦ I(x) ≤

1
n

lnP (Mn ∈ G) ≤ − infx∈Ḡ I(x) whih gives us the behavior of the loga-rithm of the quantity of interest. Taking the exponential, we obtain
e−n infx∈G◦ I(x) ≤ P (Mn ∈ G) ≤ e−n infx∈Ḡ I(x)that, as in Ref. 5, will be noted P (Mn ∈ G) ≍ e−n infx∈G I(x).Referenes1. David R Aronson. Evidene-Based Tehnial Analysis: Applying the Sienti�Method and Statistial Inferene to Trading. John Wiley & Sons, 2006.2. S.-H. Chen, T.-W. Kuo, and K.-M. Hoi. Geneti programming and �nanialtrading: How muh about "what we know". In C. Zopounidis, M. Doumpos,and P. M. Pardalos, editors, Handbook of Finanial Engineering. Springer,2007. Forthoming.3. N. Guillotin-Plantard and R. Shott. Dynami random Walks: Theory andAppliations. Elsevier, February 2006. ISBN-13: 978-0-444-52735-6.4. D. Jensen and P. Cohen. Multiple omparisons in indution algorithms. Mah.Learn., 38(3):309�338, 2000.5. J. T. Lewis and R. Russel. An introdution to large deviations for teletra� en-gineers, 1997. available at http://www.statslab.am.a.uk/%7Errw1/ld/LD-tutorial.ps.6. N. Navet. Geneti programming for �nanial trading: a tutorial. Tutorial atthe 5th International Conferene on Computational Intelligene in Eonomisand Finane (CIEF2006), 2006. Slides available at url http://www.loria.fr/~nnavet.7. H. Pham. Some appliations and methods of large deviations in �nane, Febru-ary 2007. available at http://arxiv.org/abs/math.PR/0702473.


